亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

        2017-10-10 01:02:00HUShuangnianLIYanyan
        關(guān)鍵詞:有理理工學(xué)院工程學(xué)院

        HU Shuangnian, LI Yanyan

        (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

        The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

        HU Shuangnian1,2, LI Yanyan3

        (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

        finite field; rational point; Markoff-Hurwitz-type equations

        0 Introduction and the main result

        Markoff-Hurwitz-type equations are the following type of the Diophantine equation:

        wheren,care positive integers andn≥3. This type of equations were firstly studied by MARKOFF[1]for the casen=3,c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ[2].

        Recently, BAOULINA[5-7]studied the generalized Markoff-Hurwitz-type equation:

        (1)

        In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form

        (2)

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Clearly,Nqis independent of the coefficientsai,cand the exponentskn+1,…,kt. Lettingt=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.

        This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.

        1 Preliminary lemmas

        In this section, we present some useful lemmas which are needed in section 2. Letmbe a positive integer andh(x1,x2,…,xr) be a polynomial with integer coefficients. We useN[h≡0(modm)] to denote the number of the solutions of the congruenceh(x1,x2,…,xr)≡(modm). We first recall two well known results in the elementary number theory.

        Lemma1[13]Leta,bbe positive integers. Then

        gcd(a,b)lcm[a,b]=ab.

        Nq[a(x1x2…xr)d=α].

        Since lemma 2 tells us that

        Then the desired result follows immediately. This ends the proof of lemma 2.

        The following result comes from PAN et al[8].

        Nq[a1x1m1+a2x2m2+…+anxnmn=cx1k1x2k2…xnkn]=

        qn-1+(-1)n-1.

        2 Proof of theorem 1

        In this section, we give the proof of theorem 1.

        ProofFirstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition

        is equivalent to the following two conditions:

        are pairwise coprime. Since

        thus we can deduce that the condition

        (3)

        qt-n-(q-1)t-n.

        (4)

        Using the assumptiond1,d2,…,dnare pairwise coprime, it follows from (4) and lemma 4 that

        (qt-n-(q-1)t-n)×

        qn-1(qt-n-(q-1)t-n)=

        qt-1-qn-1(q-1)t-n.

        (5)

        d(q-1)t-n-1×

        (6)

        Then, it follows from lemma 6 that

        (7)

        Using (6) and (7), one can derive that

        (8)The desired result can follow immediately from (3),(5) and (8). This ends the proof of theorem 1.

        In concluding this section, we present some trivial corollaries.

        Corollary1For the further generalized Markoff-Hurwitz-type equations of the form

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Corollary2For the further generalized Markoff-Hurwitz-type equations of the form

        (a1x1m1+a2x2m2+…+anxnmn)k=cx1m1x2m2…xtmt

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Corollary3For the further generalized Markoff-Hurwitz-type equations of the form

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over

        (8)

        [1]MARKOFFAA.Surlesformesquadratiquesbinairesindéfinies[J].MathematischeAnnalen,1880,17(3):379-399.

        [2] HURWITZ A. über eine aufgabe der unbestimmten analysis[J].ArchivderMathematikundPhysik,1907(3):185-196.

        [3] CARLITZ L. Certain special equations in a finite field[J].MonatshefteFürMathematik,1954,58(1):5-12.

        [4] CARLITZ L. The number of solutions of some equations in a finite field[J].PortugaliaeMathematica,1954,13(1):25-31.

        [6] BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields [J].JournalofNumberTheory,2006,118(1):31-52.

        [8] PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J].ArchivderMathematik,2014,102(4):337-343.

        [9] CAO W. On generalized Markoff-Hurwitz-type equations over finite fields [J].ActaApplicandaeMathematicae,2010,112(3):275-281.

        [10] SONG J, CHEN F Y. The number of some equations over finite fields[J].JournalofUniversityofChineseAcademyofSciences,2015,32(5):582-587.

        [11] CAO W, SUN Q. On a class of equations with special degrees over finite fields [J].ActaArithmetica,2007,130(2):195-202.

        [12] ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields [J].JournalofMathematicalResearchandExposition,2010,30(6):957-966.

        [13] KENG H L.IntroductiontoNumberTheory[M]. Heidelberg: Springer-Verlag,1982.

        [14] BAOULINA I. Solutions of equations over finite fields: Enumeration via bijections [J].JournalofAlgebraandItsApplications,2016,15(7):1650136.

        [15] LIDL R, NIEDERREITER H.FiniteFields-EncyclopediaofMathematicsandItsApplications[M]. 2nd ed. Cambridge: Cambridge University Press,1997.

        胡雙年1,2, 李艷艷3

        (1. 南陽(yáng)理工學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 南陽(yáng) 473004; 2. 鄭州大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 河南 鄭州 450001; 3. 南陽(yáng)理工學(xué)院 電子與電氣工程學(xué)院, 河南 南陽(yáng) 473004)

        有限域;有理點(diǎn);Markoff-Hurwitz-type方程

        O 156.1

        :A

        :1008-9497(2017)05-516-04

        date:Nov.7, 2016.

        Supported by the Key Program of Universities of Henan Province of China (17A110010), China Postdoctoral Science Foundation Funded Project (2016M602251) and by the National Science Foundation of China Grant (11501387).

        Abouttheauthor:HU Shuangnian (1982-),ORCID:http://orcid.org/0000-0002-5174-8460,male, Ph.D, lecturer, the field of interest is number theory, E-mail:hushuangnian@163.com.

        10.3785/j.issn.1008-9497.2017.05.003

        有限域上廣義Markoff-Hurwitz-type方程的有理點(diǎn)個(gè)數(shù).浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):516-519,537

        猜你喜歡
        有理理工學(xué)院工程學(xué)院
        福建工程學(xué)院
        福建工程學(xué)院
        有理 有趣 有深意
        江蘇理工學(xué)院
        《有理數(shù)》鞏固練習(xí)
        常熟理工學(xué)院
        福建工程學(xué)院
        理工學(xué)院簡(jiǎn)介
        福建工程學(xué)院
        圓周上的有理點(diǎn)
        午夜精品一区二区三区视频免费看| 国产成人无码一区二区在线播放| 无码人妻丰满熟妇区毛片| 国产精品亚洲一区二区无码| 日韩永久免费无码AV电影| 久久精品国产亚洲av桥本有菜| 精品一区二区三区亚洲综合| 丰满人妻一区二区三区蜜桃| 亚洲色大成网站www久久九九 | 国产精品女同一区二区久久| 色婷婷亚洲一区二区在线| 丰满人妻中文字幕一区三区| 日本本土精品午夜视频| 亚洲熟女综合色一区二区三区| 依依成人精品视频在线观看 | 天堂69亚洲精品中文字幕| 青青草视频视频在线观看| 97一期涩涩97片久久久久久久| 久久久精品人妻久久影视| 日本久久久久| 蜜桃视频一区视频二区| 亚洲av永久无码精品古装片| 久久精品亚洲中文字幕无码网站 | 亚洲国产高清在线一区二区三区| 亚洲中字幕永久在线观看| 久久久精品国产亚洲av网麻豆| 国产精品毛片无遮挡| 国产精品户露av在线户外直播| 亚洲va中文字幕欧美不卡| 亚洲视频免费在线观看| 黑人上司粗大拔不出来电影| 99久久综合精品五月天| 青青青草视频手机在线| 国产在线第一区二区三区| 国产成人无码免费网站| 国产激情久久久久久熟女老人| 一道之本加勒比热东京| 三年中文在线观看免费大全| 免费成人福利视频| 亚洲福利视频一区二区三区| 国产无遮挡又黄又爽高潮|