亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

        2017-10-10 01:02:00HUShuangnianLIYanyan
        關(guān)鍵詞:有理理工學(xué)院工程學(xué)院

        HU Shuangnian, LI Yanyan

        (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

        The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

        HU Shuangnian1,2, LI Yanyan3

        (1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

        finite field; rational point; Markoff-Hurwitz-type equations

        0 Introduction and the main result

        Markoff-Hurwitz-type equations are the following type of the Diophantine equation:

        wheren,care positive integers andn≥3. This type of equations were firstly studied by MARKOFF[1]for the casen=3,c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ[2].

        Recently, BAOULINA[5-7]studied the generalized Markoff-Hurwitz-type equation:

        (1)

        In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form

        (2)

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Clearly,Nqis independent of the coefficientsai,cand the exponentskn+1,…,kt. Lettingt=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.

        This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.

        1 Preliminary lemmas

        In this section, we present some useful lemmas which are needed in section 2. Letmbe a positive integer andh(x1,x2,…,xr) be a polynomial with integer coefficients. We useN[h≡0(modm)] to denote the number of the solutions of the congruenceh(x1,x2,…,xr)≡(modm). We first recall two well known results in the elementary number theory.

        Lemma1[13]Leta,bbe positive integers. Then

        gcd(a,b)lcm[a,b]=ab.

        Nq[a(x1x2…xr)d=α].

        Since lemma 2 tells us that

        Then the desired result follows immediately. This ends the proof of lemma 2.

        The following result comes from PAN et al[8].

        Nq[a1x1m1+a2x2m2+…+anxnmn=cx1k1x2k2…xnkn]=

        qn-1+(-1)n-1.

        2 Proof of theorem 1

        In this section, we give the proof of theorem 1.

        ProofFirstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition

        is equivalent to the following two conditions:

        are pairwise coprime. Since

        thus we can deduce that the condition

        (3)

        qt-n-(q-1)t-n.

        (4)

        Using the assumptiond1,d2,…,dnare pairwise coprime, it follows from (4) and lemma 4 that

        (qt-n-(q-1)t-n)×

        qn-1(qt-n-(q-1)t-n)=

        qt-1-qn-1(q-1)t-n.

        (5)

        d(q-1)t-n-1×

        (6)

        Then, it follows from lemma 6 that

        (7)

        Using (6) and (7), one can derive that

        (8)The desired result can follow immediately from (3),(5) and (8). This ends the proof of theorem 1.

        In concluding this section, we present some trivial corollaries.

        Corollary1For the further generalized Markoff-Hurwitz-type equations of the form

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Corollary2For the further generalized Markoff-Hurwitz-type equations of the form

        (a1x1m1+a2x2m2+…+anxnmn)k=cx1m1x2m2…xtmt

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Corollary3For the further generalized Markoff-Hurwitz-type equations of the form

        Nq=qt-1+(-1)n-1(q-1)t-n.

        Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over

        (8)

        [1]MARKOFFAA.Surlesformesquadratiquesbinairesindéfinies[J].MathematischeAnnalen,1880,17(3):379-399.

        [2] HURWITZ A. über eine aufgabe der unbestimmten analysis[J].ArchivderMathematikundPhysik,1907(3):185-196.

        [3] CARLITZ L. Certain special equations in a finite field[J].MonatshefteFürMathematik,1954,58(1):5-12.

        [4] CARLITZ L. The number of solutions of some equations in a finite field[J].PortugaliaeMathematica,1954,13(1):25-31.

        [6] BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields [J].JournalofNumberTheory,2006,118(1):31-52.

        [8] PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J].ArchivderMathematik,2014,102(4):337-343.

        [9] CAO W. On generalized Markoff-Hurwitz-type equations over finite fields [J].ActaApplicandaeMathematicae,2010,112(3):275-281.

        [10] SONG J, CHEN F Y. The number of some equations over finite fields[J].JournalofUniversityofChineseAcademyofSciences,2015,32(5):582-587.

        [11] CAO W, SUN Q. On a class of equations with special degrees over finite fields [J].ActaArithmetica,2007,130(2):195-202.

        [12] ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields [J].JournalofMathematicalResearchandExposition,2010,30(6):957-966.

        [13] KENG H L.IntroductiontoNumberTheory[M]. Heidelberg: Springer-Verlag,1982.

        [14] BAOULINA I. Solutions of equations over finite fields: Enumeration via bijections [J].JournalofAlgebraandItsApplications,2016,15(7):1650136.

        [15] LIDL R, NIEDERREITER H.FiniteFields-EncyclopediaofMathematicsandItsApplications[M]. 2nd ed. Cambridge: Cambridge University Press,1997.

        胡雙年1,2, 李艷艷3

        (1. 南陽(yáng)理工學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 南陽(yáng) 473004; 2. 鄭州大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 河南 鄭州 450001; 3. 南陽(yáng)理工學(xué)院 電子與電氣工程學(xué)院, 河南 南陽(yáng) 473004)

        有限域;有理點(diǎn);Markoff-Hurwitz-type方程

        O 156.1

        :A

        :1008-9497(2017)05-516-04

        date:Nov.7, 2016.

        Supported by the Key Program of Universities of Henan Province of China (17A110010), China Postdoctoral Science Foundation Funded Project (2016M602251) and by the National Science Foundation of China Grant (11501387).

        Abouttheauthor:HU Shuangnian (1982-),ORCID:http://orcid.org/0000-0002-5174-8460,male, Ph.D, lecturer, the field of interest is number theory, E-mail:hushuangnian@163.com.

        10.3785/j.issn.1008-9497.2017.05.003

        有限域上廣義Markoff-Hurwitz-type方程的有理點(diǎn)個(gè)數(shù).浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):516-519,537

        猜你喜歡
        有理理工學(xué)院工程學(xué)院
        福建工程學(xué)院
        福建工程學(xué)院
        有理 有趣 有深意
        江蘇理工學(xué)院
        《有理數(shù)》鞏固練習(xí)
        常熟理工學(xué)院
        福建工程學(xué)院
        理工學(xué)院簡(jiǎn)介
        福建工程學(xué)院
        圓周上的有理點(diǎn)
        亚洲成在人网站天堂日本| 91日本精品国产免| av少妇偷窃癖在线观看| 蜜臀久久久精品国产亚洲av| 国产夫妻自拍视频在线播放| 国产精品爽爽v在线观看无码| 精品欧美一区二区在线观看 | 在线亚洲AV不卡一区二区| 亚洲一区在线二区三区| 久久影院午夜理论片无码| 国产精品美女久久久久| 国产亚洲欧洲AⅤ综合一区| 日韩av一区二区无卡| 香蕉视频在线观看亚洲| a级毛片无码免费真人| 久久国产免费观看精品| 国产日产高清一区二区三区| 玩弄少妇人妻中文字幕| 成人精品综合免费视频| 精品综合久久久久久99| 我揉搓少妇好久没做高潮| 国内精品久久久人妻中文字幕| 色欲麻豆国产福利精品| 国产日韩午夜视频在线观看| 日韩中文字幕素人水野一区 | 日韩有码中文字幕在线观看| 国产亚洲欧美精品久久久| 日韩在线看片| 看大陆男女真人草逼视频| 亚洲图片自拍偷图区| 日本乱人伦在线观看| 国产欧美久久久精品影院| 日本刺激视频一区二区| 青青国产揄拍视频| 久久99精品免费一区二区| 国产99久久久国产精品免费| 国产精品久久久久久久久电影网 | 中文字幕第1页中文字幕在| 女同性恋一区二区三区四区| 制服丝袜一区二区三区| 国产剧情麻豆女教师在线观看|