孫逢瑞,姚約東*,李相方,李駿,李賀,孫政
1 中國石油大學(北京)石油工程學院,北京 102249
2 中國石油大學(北京)油氣資源與探測國家重點實驗室,北京 102249
*通信作者, yaoyuedong@163.com
海上同心雙管注過熱型多元熱流體井筒傳熱數(shù)值模擬
孫逢瑞1,2,姚約東1,2*,李相方1,李駿1,李賀1,孫政1
1 中國石油大學(北京)石油工程學院,北京 102249
2 中國石油大學(北京)油氣資源與探測國家重點實驗室,北京 102249
*通信作者, yaoyuedong@163.com
與同心雙管注飽和蒸汽不同,同心雙管注過熱型多元熱流體過程中,無接箍油管與環(huán)形空間之間的熱量交換可引起流體溫度迅速變化。在充分考慮同心雙管井筒內(nèi)部熱量傳遞的基礎上,利用能量和動量守恒方程,結合海水擾流的井筒外傳熱模型,建立了海上同心雙管注過熱型多元熱流體井筒傳熱模型。利用有限差分和迭代方法計算得到了無接箍油管和環(huán)形空間內(nèi)過熱型多元熱流體的流動典型曲線,現(xiàn)場數(shù)據(jù)驗證表明該模型具有良好的實用性。研究結果表明:該模型適用于不同注汽參數(shù)下同心雙管井筒中熱物性參數(shù)的分布預測,并可對海上SAGD及多元熱流體吞吐的注汽參數(shù)進行優(yōu)化;無接箍油管與環(huán)形空間的較小溫差即可導致大量熱能流動,引起溫度和過熱度迅速變化;海水流動對井筒熱損失有顯著影響;隨著非凝結氣質(zhì)量分數(shù)增加,井筒內(nèi)溫度和過熱度均下降。
海上稠油油藏;同心雙管;非凝結氣輔助過熱蒸汽;熱物性參數(shù)分布;海水擾流
注蒸汽是稠油開采的重要手段之一[1-5]。隨著技術的發(fā)展,注過熱蒸汽或過熱型多元熱流體在國內(nèi)外油田均取得較好的開發(fā)效果[6-8]。過熱蒸汽即在一定壓力條件下對飽和蒸汽繼續(xù)加熱使其完全呈汽態(tài),此時蒸汽干度為1,該壓力條件下過熱蒸汽與飽和蒸汽的溫度差稱為過熱度[9-12]。過熱型多元熱流體為過熱蒸汽與非凝結氣的混合汽/氣,其中非凝結氣的主要成分為氮氣和二氧化碳[13-16]。準確預測井筒內(nèi)熱物性參數(shù)分布對現(xiàn)場注汽參數(shù)優(yōu)選,分析井筒熱損失規(guī)律具有重要意義。Willhite[17]于1967年提出了早期的井筒綜合導熱系數(shù)計算方法??紤]摩擦阻力的影響,Pacheco等[18]于1972年建立了井筒內(nèi)飽和蒸汽壓力計算模型。Ali[19]描述了飽和蒸汽向上和向下流動過程的壓力分布特征。Durrant等[20]于1986年通過將瞬態(tài)導熱方程對時間疊加,得到了飽和蒸汽壓力分布精確解。Ejiogu等[21]于1987年、Tortike等[22]于1989年分別提出了不同的飽和蒸汽熱參數(shù)計算經(jīng)驗公式。Sagar等[23]于1991年提出了計算飽和蒸汽溫度分布的快速預測方法?;贑oulter-Bardon方程,Alves[24]于1992年對井筒內(nèi)飽和蒸汽的溫度分布計算方法進行了改進。Hasan等[25-33]圍繞井筒內(nèi)多相流壓力降、溫度分布及傳熱模型3個方面進行了大量研究。Livescu等[34-35]于2010年建立了飽和蒸汽井筒內(nèi)流動的半解析模型。通過考慮沿井筒垂向的熱損失,Bahonar等[36-37]于2011年改進了井筒內(nèi)穩(wěn)態(tài)傳熱模型。Cheng等[38-41]考慮了井筒熱容的影響,對傳統(tǒng)地層內(nèi)非穩(wěn)態(tài)傳熱模型進行了改進,提出了無因次地層導熱函數(shù)。
但上述模型均以單管注汽為研究對象。礦場實踐表明,當油層非均質(zhì)性較強或水平井的水平段較長時,傳統(tǒng)單管注汽方式條件下的蒸汽局部突進和油層動用不均等情況更易發(fā)生。因此,在SAGD及蒸汽吞吐過程中常采用同心雙管結構,即在無接箍油管和無接箍油管與油管之間的環(huán)形空間(以下簡稱為環(huán)形空間)同時注汽,以同時提高水平段跟端和趾端的加熱效果[42]。Filho[43]于 1986年,Antonio等[44-45]于 2002年,Yu等[46]于2010年分別建立了不同的數(shù)學模型來預測環(huán)形空間飽和蒸汽的壓力降。2014年Gu等[47]提出了當量半徑新算法,得到了環(huán)形空間內(nèi)飽和蒸汽壓降計算的改進模型。
但以上模型的研究對象都為飽和蒸汽,飽和蒸汽的溫度和壓力之間呈函數(shù)關系,但該函數(shù)對過熱型多元熱流體不適用。近年來,隨著過熱型多元熱流體的工業(yè)化應用,其井筒熱損失計算成為新熱點。Zhou等[48]于 2010年,Xu等[49]于 2013年,Gu等[50]于2015年,F(xiàn)an等[51]于 2016年、Sun等[5,52-53]于2017年分別建立了單管注過熱蒸汽井筒傳熱模型。李兆敏等[54]于2013年建立了單管注過熱型多元熱流體井筒傳熱模型,但該模型采用理想氣體狀態(tài)方程來描述混合汽/氣的密度等物性參數(shù),帶來一定誤差。程文龍等[55]于2015年分析了S-R-K實際氣體狀態(tài)方程與理想氣體狀態(tài)方程在求解精度上的不同。該模型計算表明,采用理想氣體狀態(tài)方程來描述高溫高壓條件下的混合汽/氣狀態(tài)參數(shù)會帶來較大誤差。Dong等[56]于2014年、東曉虎等[57]于2016年建立了水平井水平段井筒內(nèi)的過熱型多元熱流體變質(zhì)量流動模型,但該模型對摩擦力做功考慮不夠全面,使得模型在計算高速注汽條件下的溫度值時出現(xiàn)一定誤差。以上模型都是基于單管注汽方式建立的,不能分析無接箍油管與環(huán)形空間之間的熱量傳遞對溫度和壓力分布的影響。Sun等[12-13,15]于2017年建立了適用于陸地條件下的同心雙管注過熱蒸汽/過熱型多元熱流體井筒傳熱數(shù)值模型,但模型不能分析海水流動條件下的同心雙管內(nèi)過熱型多元熱流體的溫度和壓力變化規(guī)律。
目前,國內(nèi)外關于海上注汽條件下的同心雙管注過熱型多元熱流體的井筒傳熱研究尚處于起步階段。筆者利用動量和能量守恒方程,結合海水擾流的井筒外傳熱模型,建立了海上非凝結氣輔助過熱蒸汽同心雙管傳熱計算的數(shù)值模型。在現(xiàn)有文獻的基礎上,新模型主要有3點貢獻:(1)建立了適用于海上注汽條件下的同心雙管注過熱型多元熱流體數(shù)值模型。(2)考慮了海水流動的影響,給出了海上同心雙管注過熱型多元熱流體井筒內(nèi)典型曲線。(3)分析了不同注汽參數(shù)對典型曲線的影響。新模型對于海上平臺注汽參數(shù)優(yōu)化,分析傳熱規(guī)律具有一定指導意義。
海上同心雙管注過熱型多元熱流體即:將過熱蒸汽、氮氣和二氧化碳等的混合汽分別注入無接箍油管和環(huán)形空間,如圖1所示,以實現(xiàn)水平段趾端和跟端“多點注汽”,改善加熱效果。為了建立數(shù)學模型預測井底溫度和壓力,并分析井筒傳熱規(guī)律,做以下基本假設[12-13]:①海上平臺注汽參數(shù)視為穩(wěn)定;②過熱型多元熱流體向隔水管外壁的傳熱為穩(wěn)態(tài)傳熱;③過熱型多元熱流體向水泥環(huán)外壁的傳熱為穩(wěn)態(tài)傳熱;④海水熱物性參數(shù)不隨深度變化。
基于文獻[12-13,15, 47]關于陸地同心雙管結構的描述,海上同心雙管非凝結氣與過熱蒸汽混注井筒結構如圖1所示。
(1)無接箍油管數(shù)學模型
無接箍油管(Integral Joint Tubing)中流體流動過程中無質(zhì)量損失,可由質(zhì)量守恒方程表示為[12-13,15,47]:
式中,wij為無接箍油管中過熱型多元熱流體的質(zhì)量流速,kg/s; riji為無接箍油管的內(nèi)半徑,m;ρij為無接箍油管中過熱型多元熱流體的密度,當過熱蒸汽冷凝為飽和蒸汽時,采用兩相流體密度算法計算[58],kg/m3;vij為無接箍油管中過熱型多元熱流體的流速,m/s;z為井筒深度,m。
圖1 無接箍油管和環(huán)形空間同時注汽管柱剖面圖Fig. 1 A schematic of CDTW with SMTF injection
無接箍油管向環(huán)形空間的傳熱損失和重力勢能損失之和等于流體內(nèi)能和動能變化之和,可由能量守恒方程表示為:
式中,Qij為無接箍油管與環(huán)形空間之間的的傳熱速率(具體傳熱方向由溫差確定),J/s;hij為無接箍油管中過熱型多元熱流體的熱焓,當過熱蒸汽冷凝為飽和蒸汽時,采用兩相流體熱焓算法計算[55],J/kg;g為重力加速度,m/s2;θ為非生產(chǎn)段井筒偏離垂向的角度,rad。
無接箍油管中微元段流體受到兩端壓差、重力和摩擦力的共同作用,由動量守恒方程表示為:
式中,pij為無接箍油管中過熱型多元熱流體的壓力,Pa;τf為無接箍油管中的剪切力,采用文獻[59]中方法進行計算,N。
(2)環(huán)形空間數(shù)學模型
環(huán)形空間(Annuli)中過熱型多元熱流體在流動過程中無質(zhì)量損失,可由質(zhì)量守恒方程表示為[12-13,15]:
式中,wan為環(huán)形空間中過熱型多元熱流體的質(zhì)量流速,kg/s;rai為油管的內(nèi)半徑,m;ρan為環(huán)形空間中過熱型多元熱流體的密度,kg/m3;van為環(huán)形空間中過熱型多元熱流體的流速,m/s。
環(huán)形空間與無接箍油管之間的熱量傳遞、向隔水管外壁的熱量傳遞、摩擦力做功和重力勢能損失之和等于流體內(nèi)能和動能變化之和:
式中,Qan為環(huán)形空間向隔水管外壁的傳熱速率,W;han為環(huán)形空間中過熱型多元熱流體的熱焓,J/kg。
環(huán)形空間中微元段內(nèi)過熱型多元熱流體受到壓力、重力和摩擦力的共同作用,由動量守恒方程表示為:
式中,pan為環(huán)形空間中過熱型多元熱流體的壓力,Pa。
另外,由于注汽速率過低,管線較長等因素,過熱型多元熱流體在井筒某一位置可能發(fā)生相變,即過熱蒸汽冷凝為飽和蒸汽。此時,控制方程中的流體密度、熱焓和黏度必須采用兩相流體密度、熱焓和黏度算法進行計算[58]。
基于理想氣體狀態(tài)方程,文獻[54]給出了過熱型多元熱流體熱焓的計算方法,但在井筒高溫高壓條件下,理想氣體狀態(tài)方程將產(chǎn)生一定誤差。文本采用文獻[55]中給出的基于S-R-K方程的混合汽熱焓計算方法,采用逸度代替分壓計算混合汽熱焓[60-61]。
其中,mH2O、mCO2和mN2為過熱型多元熱流體中的過熱蒸汽、二氧化碳和氮氣的質(zhì)量分數(shù),無因次;fH2O、fCO2和fN2為過熱型多元熱流體中的過熱蒸汽、二氧化碳和氮氣的逸度,Pa;hH2O、hCO2和hN2為過熱型多元熱流體中的過熱蒸汽、二氧化碳和氮氣的熱焓,J/kg。
S-R-K實際氣體狀態(tài)方程在石油工業(yè)中有廣泛應用[55],模型表述如下[62-64]:
其中,Zm為過熱型多元熱流體的壓縮系數(shù),無因次;A,B,a和b分別為過熱型多元熱流體的狀態(tài)常數(shù),無因次;Rm為摩爾氣體常數(shù),J/(mol·K);ai和bi為過熱型多元熱流體各組分的狀態(tài)常數(shù),無因次;yi為過熱型多元熱流體中各組分的摩爾分數(shù),無因次。
逸度系數(shù)由下式求解[55]:
過熱型多元熱流體中各組分逸度為:
其中,?i為過熱型多元熱流體中各組分的逸度系數(shù),無因次。
當過熱型多元熱流體中的過熱蒸汽組分冷凝為飽和蒸汽時,采用汽液兩相流熱焓計算方法?;谄?液相平衡理論,汽相飽和蒸汽逸度應等于液相飽和水逸度[55,65]:
其中,x為飽和型多元熱流體干度,采用文獻[55]中的方法計算,無因次;和分別為汽相飽和蒸汽和液相飽和水的熱焓,J/kg。
基于文獻[47]關于飽和蒸汽的研究,方程(2)中無接箍油管和環(huán)形空間之間的熱交換速率Qij可表示為[5, 12-13,15,47]:
式中,qij為無接箍油管與環(huán)形空間之間的熱交換速率,W/m;rijo為無接箍油管的外半徑,m;Tij和Tan分別為無接箍油管和環(huán)形空間中過熱型多元熱流體的溫度,K;Uijo為綜合傳熱系數(shù),W/(m2·K);λtub為管材導熱系數(shù),W/(m·K);hfiji、hfijo分別為無接箍油管內(nèi)壁和外壁的強迫對流換熱系數(shù),W/(m2·K)。
方程(5)中環(huán)形空間向隔水管外壁的導熱速率Qan表示為[5, 12-13,15, 47]:
式中,qan為環(huán)形空間中的過熱型多元熱流體向隔水管外壁的導熱速率,W/m;rao、rci、rco和rriser分別為油管的外半徑、套管的內(nèi)半徑、套管的外半徑和隔水管的外壁半徑,m;Th為隔水管外壁的溫度,K;Uao為綜合傳熱系數(shù),W/(m2·K);λtub、λcas和λriser分別為油管、套管和隔水管的導熱系數(shù),W/(m·K);hc、hr分別為油套環(huán)空的輻射換熱系數(shù)和對流換熱系數(shù),采用文獻[66]中的迭代方法計算,W/(m2·K)。
基于文獻[5, 52, 67]中的計算方法,考慮海水擾流下的井筒外熱損失速率為[67]:
式中,Tw為海水的溫度,K;hm為隔水管外壁的強迫對流換熱系數(shù),W/(m2·K)。
方程(18)中hm計算式為[67]:
其中,
式中,Re為海水的雷諾數(shù),無因次;Pr為海水的普朗特數(shù),無因次;C?為角度修正系數(shù),無因次;λsea為海水的導熱系數(shù),W/(m·K);μsea為海水的黏度,Pa·s;Csea為海水的比熱,J/kg。
根據(jù)連續(xù)性原理[12-13,47,67],由式(16)和(18)得:
式(17)中,hc和hr需采用迭代法求解[66]。具體方法為:①估計Uao初值為0.5[66];②利用式(22)計算隔水管外壁溫度[67];③利用式(18)計算熱損失速率qan;④利用式(23)和(24)計算外油管內(nèi)壁溫度Tbi和套管內(nèi)壁溫度Tci[66]:
⑤利用式(25)和(26)計算hc和hr[12-13,47,66]:
其中,
式中,λa為油套環(huán)空中空氣的導熱系數(shù),W/(m·K);Gr為格拉曉夫數(shù),無因次;σ為斯蒂芬-玻耳茲曼常數(shù),σ=5.67×10-8;ωbi和ωci分別為油管和套管的黑度;Ca為油套環(huán)空中空氣的比熱容,J/(kg·K);μa為空氣的黏度,Pa·s;λa為空氣的導熱系數(shù),W/(m·K)。⑥利用式(17)計算Uao'。⑦判斷誤差是否成立,如果不滿足精度要求,返回步驟②,否則輸出qao。
當過熱型多元熱流體到達海底后(此時海水段井筒計算完畢),采用文獻[66]中地層內(nèi)瞬態(tài)導熱模型繼續(xù)計算,直至油層。
采用求函數(shù)零點法求過熱型多元熱流體的壓力和溫度沿程分布。求解過程中共有無接箍油管和環(huán)形空間中pij、pan、Tij和Tan共4個未知數(shù),因此對于求解過程需要4個獨立方程才能封閉求解。分別對無接箍油管和環(huán)形空間中過熱型多元熱流體流動的動量守恒方程和能量守恒方程差分并變形得到:
具體計算方法如下:①將同心雙管井筒中的無接箍油管和環(huán)形空間分別等分為m個微元段,輸入平臺注汽參數(shù)。②對于第i微元段,估計一組微元段出口端的溫度值,利用式(30)和(31)對微元段出口端得壓力進行封閉求解。③將步驟②中出口端的壓力值計算結果帶入式(32)和(33),得到一組新的微元段出口端溫度值,判斷估計值與計算值是否滿足工程計算精度要求,若不滿足,返回步驟②繼續(xù)計算,若滿足則轉(zhuǎn)入步驟④計算。④判斷是否到達海底,若到達海底,則調(diào)用文獻[66]中地層內(nèi)瞬態(tài)導熱模型繼續(xù)計算,若未到達海底,則將微元段出口端的壓力和溫度值作為下一微元段的入口端溫度和壓力值,并返回步驟②。⑤判斷是否到達油層,若到達油層,則輸出無接箍油管和環(huán)形空間中壓力值和溫度值的沿程分布,若未到達油層,則返回步驟②繼續(xù)進行計算。
以海上某同心雙管注過熱型多元熱流體井為例進行計算。該井無接箍油管和環(huán)形空間井口的注汽壓力、溫度和注汽速度分別為4.5 MPa,650 K,175 t/d和3.5 MPa,600 K,105 t/d。井身結構參數(shù)如表1所示,模型計算結果如圖2所示。圖2(a)和圖2(b)給出了壓力和溫度實測值與預測值對比結果,最大相對誤差小于5%,證明模型準確度較高。海上平臺一般用一臺鍋爐同時向無接箍油管和環(huán)形空間注汽,因此無接箍油管與環(huán)形空間的注汽參數(shù)往往相同。據(jù)此,計算了無接箍油管與環(huán)形空間注氣條件相同時(4.5 MPa,650 K,175 t/d)的井筒內(nèi)熱物性參數(shù)分布,如圖2(c)和圖2(d)所示。需要強調(diào)的是,實際工況中海水并非靜止狀態(tài),因此計算中設定海水流速為2 m/s,下文將對取值依據(jù)詳細論證。
由圖2(a)可知:(1)在平臺注汽參數(shù)不變的條件下,無接箍油管和環(huán)形空間中過熱型多元熱流體的壓力均不斷下降。(2)無接箍油管中的壓力梯度略大于環(huán)形空間中的壓力梯度。這是由于該井無接箍油管中的注汽速度比環(huán)形空間中的注汽速度大,摩擦力更大,所以壓力梯度較大。
表1 模型基本參數(shù)Table 1 Basic parameters used for calculation
圖2 不同注汽條件下無接箍油管和環(huán)形空間中過熱型多元熱流體的壓力和溫度分布Fig. 2 Pro fi les of pressure and temperature of SMTF in IJT and annuli with different injection parameters
由圖2(b)可知:(1)無接箍油管中過熱型多元熱流體的溫度在0 m~25 m段內(nèi)迅速下降,在50 m后溫度下降速度趨于穩(wěn)定,并與環(huán)形空間中溫度下降速度相近。(2)環(huán)形空間中過熱型多元熱流體的溫度在0 m~25 m段內(nèi)略有升高,在25 m后開始下降,在50 m后,過熱型多元熱流體的溫度下降速度與無接箍油管中的溫度下降速度相近。分析認為,在0 m~25 m段內(nèi),無接箍油管和環(huán)形空間中溫差較大,而且無接箍油管為金屬材料,導熱性能良好(模型中Uijo值約為1.5 kW/(m2·K)),導致 0 m~25 m段內(nèi)無接箍油管中過熱型多元熱流體的熱能損失速率很大。因此,在25 m后無接箍油管和環(huán)形空間中流體溫度迅速趨于一致。
由圖2(c)可知,在井口注汽參數(shù)相同時,無接箍油管中的過熱型多元熱流體壓力梯度高于環(huán)形空間中的壓力梯度,這是由于無接箍油管流動半徑小于環(huán)形空間流動當量半徑,摩擦力較大,壓力損耗也較大。但由于管材良好的導熱性及過熱型多元熱流體的溫度和壓力的不相關性,無接箍油管和環(huán)形空間中溫度差異較小,如圖2(d)所示。
以上分析均建立在海水流速為2 m/s的基礎上,現(xiàn)設定海水流速分別為0 m/s、2 m/s和6 m/s,重點研究海水流速對井筒內(nèi)熱物性參數(shù)分布及熱損失速率的影響,計算結果如圖3所示。
由圖3(a)可知,海水流速對井筒內(nèi)過熱型多元熱流體的壓力影響不大。從圖3(b)和圖3(c)可以看出,當海水由靜止開始流動時(由0 m/s增加至2 m/s),在0 m~150 m段內(nèi)過熱型多元熱流體的溫度梯度和過熱度梯度均有所增大。當海水流速由2 m/s繼續(xù)增大至4 m/s時,井筒內(nèi)過熱型多元熱流體的溫度和過熱度分布幾乎不變。分析認為:若海水靜止,井筒外傳熱規(guī)律與地層內(nèi)傳熱規(guī)律類似,此時從隔水管外壁到海水的溫度遞減具有連續(xù)性,在井筒周圍形成溫度逐漸下降的“溫度場”。但當海水由靜止開始流動時,“溫度場”被破壞,隔水管外壁溫度“斷崖式”下降至海水原始溫度,“溫差”增加,導熱速率增大,井筒熱損失速率增加。但海水流速繼續(xù)增大時,由于海水原始溫度不變,“溫差”不會繼續(xù)增大,對井筒熱損失速率影響不大。所以只需分析海水流速為2 m/s時對井筒熱損失的影響即可。
圖3 海水流速對熱物性參數(shù)分布的影響((a)壓力分布;(b)溫度分布;(c)過熱度分布)Fig. 3 Effect of seawater fl ow rates on pro fi les of thermophysical properties ((a) pressure; (b) temperature; (c) superheat degree)
在實際生產(chǎn)過程中,過熱型多元熱流體中的非凝結氣是由柴油和空氣以約1:14.9的質(zhì)量比經(jīng)過充分燃燒后得到的,按照元素質(zhì)量分數(shù)之間的關系,燃燒后得到的非凝結氣中N2和CO2的質(zhì)量比約為4:1[55,68]。據(jù)此,在其他注汽參數(shù)不變的條件下,設定模型中N2、CO2和過熱蒸汽質(zhì)量分數(shù)分別為以下3種情況:(1)4%、1%和 95%;(2)20%、5%和 75%;(3)40%、10%和50%。根據(jù)以上條件,計算井筒內(nèi)熱物性參數(shù)的沿程分布,結果如圖4所示。由圖4(a)和圖4(b)可知,(1)隨著非凝結氣質(zhì)量分數(shù)的增加,無接箍油管和環(huán)形空間中過熱型多元熱流體的溫度均下降,無接箍油管中過熱型多元熱流體向環(huán)形空間的傳熱速率減小,環(huán)形空間中過熱型多元熱流體的凈熱損失速率增大。實際上,過熱型多元熱流體中的非凝結氣主要用于改善油藏內(nèi)滲流特征,而非用于攜帶熱能,過熱蒸汽的比例過低會導致加熱效果變差。因此礦場應結合實際油藏與非凝結氣的作用特征,對過熱蒸汽和非凝結氣質(zhì)量比例進行優(yōu)選。(2)海水段井筒內(nèi)過熱型多元熱流體的溫度梯度和過熱度梯度(圖4(c)和圖4(d))比地層段井筒內(nèi)過熱型多元熱流體的溫度梯度和過熱度梯度大,且海水流動對環(huán)形空間中過熱型多元熱流體的影響較大,對無接箍油管中過熱型多元熱流體的影響較小。
圖4 非凝結氣含量對熱物性參數(shù)分布及井筒熱損失速率的影響((a)無接箍油管內(nèi)溫度分布;(b)環(huán)形空間內(nèi)溫度;(c)無接箍油管內(nèi)過熱度;(d)環(huán)形空間內(nèi)過熱度)Fig. 4 Effect of non-condensing gas content on pro fi les of thermophysical properties and wellbore heat loss rates ((a) temperature in IJT; (b) temperature in annuli; (c) superheat degree in IJT; (d)superheat degree in annuli)
為了進一步探討井筒內(nèi)熱物性參數(shù)分布規(guī)律,計算了相同井口注汽參數(shù)條件下不同非凝結氣含量對井筒內(nèi)熱物性參數(shù)分布的影響。設定模型中N2和CO2質(zhì)量分數(shù)分別為:(1)4%、1%;(2)20%、5%;(3)40%、10%;計算結果如圖5所示。由圖5(a)可知,(1)不同非凝結氣含量條件下,無接箍油管中過熱型多元熱流體的壓力梯度比環(huán)形空間中過熱型多元熱流體的壓力梯度更大。(2)非凝結氣質(zhì)量分數(shù)對井筒內(nèi)過熱型多元熱流體的壓力分布影響很小。由圖5(b)可以看出,隨著非凝結氣質(zhì)量分數(shù)增加,無接箍油管和環(huán)形空間中過熱型多元熱流體的溫度均下降,這是由于相同壓力條件下,非凝結氣熱焓值比過熱蒸汽低。為了充分利用過熱蒸汽攜帶熱能高的優(yōu)勢,應將非凝結氣含量控制在一定范圍內(nèi)。由圖5(c)可以看出,隨著非凝結氣質(zhì)量分數(shù)增加,井筒內(nèi)過熱型多元熱流體的過熱度下降。因此,礦場應結合室內(nèi)試驗分析,依據(jù)實際油層,對比分析過熱蒸汽與非凝結氣各自的優(yōu)勢,合理選擇非凝結氣含量,充分發(fā)揮非凝結氣與過熱蒸汽各自的優(yōu)勢。
圖5 無接箍油管與環(huán)形空間注汽參數(shù)相同時,非凝結氣質(zhì)量分數(shù)對井筒內(nèi)熱物性參數(shù)分布的影響((a)井筒內(nèi)壓力分布;(b)井筒內(nèi)溫度分布;(c)井筒內(nèi)過熱度分布)Fig. 5 Effect of non-condensing gas content on pro fi les of thermophysical properties with identical injection parameters ((a)pressure pro fi les; (b) temperature pro fi les; (c) superheat degree pro fi les)
(1)在充分考慮同心雙管井筒內(nèi)部和外部熱量傳遞的基礎上,結合能量和動量守恒方程,建立了海上同心雙管注過熱型多元熱流體井筒傳熱數(shù)學模型。利用有限差分方法得到無接箍油管和環(huán)形空間過熱型多元熱流體的溫度和壓力分布。分析了海水流速及不同注汽參數(shù)對溫度和壓力分布的影響。該模型適用于不同注汽參數(shù)條件下井筒中熱物性參數(shù)分布的計算,并可以對海上過熱型多元熱流體SAGD及吞吐過程的注汽參數(shù)進行優(yōu)化。
(2)流動的海水帶走了隔水管外壁的大量熱能,造成環(huán)形空間中過熱型多元熱流體的熱能損失速率增大,當過熱型多元熱流體到達海底穿過泥層段時,環(huán)形空間中熱損失速率出現(xiàn)“斷崖式”下降。當海水由靜止開始流動時,在近井口處,井筒內(nèi)過熱型多元熱流體的溫度梯度和過熱度梯度均增加,但當海水流速繼續(xù)增大時,井筒內(nèi)過熱型多元熱流體的溫度梯度和過熱度梯度幾乎不變。
(3)隨著非凝結氣含量增加,過熱型多元熱流體的溫度和過熱度均下降。礦場應結合實際油藏與非凝結氣的作用特征,對過熱蒸汽和非凝結氣質(zhì)量比例進行優(yōu)選。
[1] 孫逢瑞, 黃世軍, 鄒明. 過熱蒸汽吞吐水平井產(chǎn)能評價模型[J]. 特種油氣藏, 2016, 23(3): 122-125. [SUN F R, HUANG S J, ZOU M. Productivity forecast model of horizontal well with superheated steam huff-puff[J]. Special Oil & Gas Reservoir, 2016, 23(3): 122-125.]
[2] 孫逢瑞, 姚約東, 李相方, 等. 稠油油藏蒸汽吞吐水平井生產(chǎn)動態(tài)分析[J]. 斷塊油氣田, 2017, 24(1): 83-86. [SUN F R, YAO Y D, LI X D, et al. Production performance of cyclic steam stimulation horizontal well in heavy oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 83-86.]
[3] 孫逢瑞, 姚約東, 李相方, 等. 過熱蒸汽吞吐水平井加熱半徑及產(chǎn)能預測模型[J]. 特種油氣藏, 2017, 24(2): 120-124. [SUN F R,YAO Y D, LI X F, et al. Forecast model for heating radius and productivity of horizontal wells with overheated steam soaking[J]. Special Oil & Gas Reservoir, 2017, 24(2): 120-124.]
[4] 孫逢瑞, 姚約東, 李相方, 等. 熱采水平井注多元熱流體水平段傳質(zhì)傳熱模型[J]. 斷塊油氣田, 2017, 24(2): 259-263. [SUN F R, YAO Y D, LI X F, et al. Mathematical modeling of the mass and heat transfer process for multi-component thermal fl uid injection wells[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 259-263.]
[5] SUN F R, YAO Y D, LI X F, et al. Type curve analysis of superheated steam fl ow in offshore horizontal wells [J]. International Journal of Heat and Mass Transfer, 2017, 113, 850-860.
[6] 孫逢瑞,姚約東,李相方,等. 過熱型多元熱流體平行雙管流動特征 [J]. 大慶石油地質(zhì)與開發(fā), http://kns.cnki.net/kcms/detail/23.1286.TE.20170822.1353.003.html. [SUN F R, YAO Y D, LI X F, et al. Flow characteristics of the parallel dualtubing for superheated multi-component thermal fluid [J]. Petroleum Geology and Oilfield Development in Daqing, http://kns.cnki.net/kcms/ detail/23.1286.TE.20170822.1353.003.html.]
[7] 孫逢瑞, 黃世軍, 王巖,等. 過熱蒸汽吞吐水平井注采參數(shù)多因素正交試驗研究[J]. 北京石油化工學院學報, 2016, 24(2): 17-20.[SUN F R, HUANG S J, WANG Y, et al. Multi-factor orthogonal test on injection parameters of horizontal wells with superheated steam stimulation[J]. Journal of Beijing Institute of Petrochemical Technology, 2016, 24(2): 17-20.]
[8] 孫逢瑞, 李春蘭, 鄒明, 等. 過熱蒸汽吞吐直井產(chǎn)能預測模型[J]. 石油化工高等學校學報, 2016, 29(4): 25-28. [SUN F R, LI C L,ZOU M, et al. Production calculation model for superheated steam stimulation of vertical well [J]. Journal of Petrochemical Universities,2016, 29(4): 25-28.]
[9] 孫逢瑞, 鄒明, 李乾. 特稠油過熱蒸汽吞吐產(chǎn)能預測模型[J]. 北京石油化工學院學報, 2016, 24(1): 12-16. [SUN F R, ZOU M, LI Q. Production capacity model for cyclic superheated steam stimulation of extra-heavy oil reservoir[J]. Journal of Beijing Institute of Petrochemical Technology, 2016, 24(1): 12-16.]
[10] SUN F R, LI C L, CHENG L S, et al. Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation[J]. Energy, 2017, 121: 356-371.
[11] 孫逢瑞, 姚約東, 李相方. 海上主副油管注過熱蒸汽熱損失等效算法探討[J]. 北京石油化工學院學報, 2017, 25(2): 15-18, 24.[SUN F R, YAO Y D, LI X F. An equivalent evaluation model for heat loss of superheated steam fl ow in offshore parallel dual-tubing wells [J]. Journal of Beijing Institute of Petrochemical Technology, 2017, 25(2): 15-18, 24.]
[12] SUN F R, YAO Y D, LI X F, et al. The fl ow and heat transfer characteristics of superheated steam in concentric dual-tubing wells [J].International Journal of Heat and Mass Transfer, 2017, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.08.062.
[13] SUN F R, YAO Y D, LI X F, et al. A numerical approach for obtaining type curves of superheated multi-component thermal fl uid fl ow in concentric dual-tubing wells [J]. International Journal of Heat and Mass Transfer, 2017, 111: 41-53.
[14] 孫逢瑞, 姚約東, 李相方, 等. 南堡油田注多元熱流體吞吐水平井加熱效果評價[J]. 北京石油化工學院學報, 2017, 25(1): 5-8.[SUN F R, YAO Y D, LI X F, et al. Evaluation of heating effect on the horizontal well in 35-2 Bohai Oil fi eld with multiple thermal fl uid stimulation [J]. Journal of Beijing Institute of Petrochemical Technology, 2017, 25(1): 5-8.]
[15] 孫逢瑞, 姚約東, 李相方, 等. 基于R-K-S方程的同心雙管注多元熱流體傳熱特征研究[J]. 石油鉆探技術, 2017, 45(2): 107-114.[SUN F R, YAO Y D, LI X F, et al. An R-K-S equation-based study on the heat transmission features of multi-component thermal fl uid injection through concentric dual-tubing [J]. Petroleum Drilling techniques, 2017, 45(2): 107-114.]
[16] SUN F R, YAO Y D, LI X F, et al. The mass and heat transfer characteristics of superheated steam coupled with non-condensing gases in perforated horizontal wellbores [J]. Journal of Petroleum Science and Engineering, 2017, 156, 460-467.
[17] WILLHITE G P. Over-all heat transfer coef fi cients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967,19(5):607-615.
[18] PACHECO E F. Wellbore heat losses and pressure drop in steam injection[J]. Journal of Petroleum Technology, 1972, 24(2):139-144.
[19] ALI F. A comprehensive wellbore stream/water flow model for steam injection and geothermal applications[J]. SPE Journal, 1981,21(5):527-534.
[20] DURRANT A J, THAMBYNAYAGAM R K M. Wellbore heat transmission and pressure drop for steam/water injection and geothermal production: A simple solution technique[J]. SPE Reservoir Engineering, 1986, 1(2):148-162.
[21] EJIOGU G C, FIORI M. High-pressure saturated-steam correlations[J]. Journal of Petroleum Technology, 1987, 39(12):1 585-1 590.
[22] TORTIKE W S, ALI F. Saturated-steam-properties functional correlations for fully implicit thermal reservoir simulation [J]. SPE Reservoir Engineering, November 1989: 471-474.
[23] SAGAR R, DOTY D R, SCHMIDT Z. Predicting temperature profiles in a flowing well[J]. SPE Production Engineering, 1991,6(4):441-448.
[24] ALVES I N, ALHANATI F J S, SHOHAM O. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPE Production Engineering, 1992, 7(4):363-367.
[25] HASAN A R, KABIR C S. Heat transfer during two-phase fl ow in wellbores; Part I-formation temperature[C]. Society of Petroleum Engineers, 1991.
[26] HASAN A R, KABIR C S. Aspects of wellbore heat transfer during two-phase fl ow (includes associated papers 30 226 and 30 970 )[J].SPE Production & Facilities, 1994, 9(3):211-216.
[27] HASAN A R. Void fraction in bubbly and slug fl ow in downward vertical and inclined systems[J]. SPE Production & Facilities, 1995,10(3):172-176.
[28] HASAN A R, KABIR C S. A simple model for annular two-phase fl ow in wellbores[J]. SPE Production & Operations, 2005, 22(2):168-175.
[29] HASAN A R, KABIR C S, WANG X. A robust steady-state model for fl owing-fluid temperature in complex wells[J]. SPE Production &Operations, 2009, 24(24):269-276.
[30] HASAN A R, KABIR C S, SAYARPOUR M. A basic approach to wellbore two-phase flow modeling[C]. Society of Petroleum Engineers, 2007.
[31] HASAN A R, KABIR C S. Modeling two-phase fl uid and heat fl ows in geothermal wells[J]. Journal of Petroleum Science & Engineering, 2010, 71(1):77-86.
[32] HASAN A R, KABIR C S, SAYARPOUR M. Simpli fi ed two-phase fl ow modeling in wellbores[J]. Journal of Petroleum Science &Engineering, 2010, 72(1–2):42-49.
[33] HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications [J]. Journal of Petroleum Science & Engineering, 2012, s 86–87(3):127-136.
[34] LIVESCU S, DURLOFSKY L J, AZIZ K, et al. A fully-coupled thermal multiphase wellbore fl ow model for use in reservoir simulation[J]. Journal of Petroleum Science & Engineering, 2010, 71(3–4):138-146.
[35] LIVESCU S, DURLOFSKY L J, AZIZ K, et al. Application of a new fully-coupled thermal multiphase wellbore fl ow model[J]. SPE Symposium on Improved Oil Recovery, 2008.
[36] BAHONAR M, AZAIEZ J, CHEN Z. A semi-unsteady state wellbore steam/water fl ow model for prediction of sandface condition in steam injection wells[J]. Journal of Canadian Petroleum Technology, 2009, 49(9):13-21.
[37] BAHONAR M, AZAIEZ J, CHEN Z. Two issues in wellbore heat fl ow modelling along with the prediction of casing temperature in the steam injection wells[J]. Journal of Canadian Petroleum Technology, 2011, 50(1):43-63.
[38] CHENG W L, HUANG Y H, LU D T, et al. A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity [J]. Energy, 2011, 36:4 080-4 088.
[39] CHENG W L, HUANG Y H, LIU N, et al. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data [J]. Energy, 2012, 38:21-30.
[40] CHENG W L, LI T T, NIAN Y L, et al. Studies on geothermal power generation using abandoned oil wells [J]. Energy, 2013, 59:248-254.
[41] CHENG W L, NIAN Y L, LI T T, et al. A novel method for predicting spatial distribution of thermal properties and oil saturation of steam injection well from temperature logs [J]. Energy, 2014, 66:898-906.
[42] 顧浩. SAGD注蒸汽井筒-地層耦合傳質(zhì)傳熱模型及應用[D]. 北京: 中國石油大學, 2016. [GU H. Mass and heat transfer model and application of wellbore/formation coupling during steam injection in SAGD Process [D]. Beijing: China University of Petroleum, 2016.]
[43] FILHO E C. Upward vertical two-phase fl ow through an annulus[J]. Journal of Energy Resources Technology, 1986, 114:1(1):14-30.
[44] LAGE A C V M, TIME R W. Mechanistic model for upward two-phase flow in annuli[J]. SPE Annual Technical Conference and Exhibition, 2000, 1: 1-11.
[45] LAGE A. An experimental and theoretical investigation of upward two-phase fl ow in annuli[J]. SPE Journal, 2000, 7(3):325-336.
[46] YU T, ZHANG H Q, LI M, et al. A mechanistic model for gas/liquid fl ow in upward vertical annuli[J]. SPE Production & Operations,2010, 25(3):285-295.
[47] GU H, CHENG L S, HUANG S J, et al. Prediction of thermophysical properties of saturated steam and wellbore heat losses in concentric dual-tubing steam injection wells[J]. Energy, 2014, 75:419-429.
[48] ZHOU T Y, CHENG L S, HE C B, et al. Calculation model of on-way parameters and heating radius in the superheated steam injection wellbore[J]. Petroleum Exploration & Development, 2010, 37(1):83-88.
[49] ZHU X A, MU L, FAN Z, et al. New fi ndings on heatloss of superheated steam transmitted along the wellbore and heating enhancement in heavy oil reservoirs[C]. International Petroleum Technology Conference, 2013.
[50] GU H, CHENG L S, HUANG S J, et al. Thermophysical properties estimation and performance analysis of superheated-steam injection in horizontal wells considering phase change[J]. Energy Conversion & Management, 2015, 99(12):119-131.
[51] FAN Z, HE C G, XU A Z. Calculation model for on-way parameters of horizontal wellbore in the superheated steam injection[J].Petroleum Exploration & Development, 2016, 43(5):798-805.
[52] SUN F R, YAO Y D, LI X F, et al. The fl ow and heat transfer characteristics of superheated steam in offshore wells and analysis of superheated steam performance [J]. Computers & Chemical Engineering, 2017, 100: 80–93.
[53] SUN F R, YAO Y D, CHEN M Q, et al. Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat ef fi ciency [J]. Energy, 2017, 125: 795-804.
[54] 李兆敏, 張丁涌, 衣懷峰, 等. 多元熱流體在井筒中的流動與傳熱規(guī)律[J]. 中國石油大學學報: 自然科學版, 2012, 36(6): 79-83,88. [LI Z M, ZHANG D Y, YI H F, et al. Flow and heat transfer regulation of multi-thermal fl uids injection in wellbore [J]. Journal of China University of Petroleum, 2012, 36(6): 79-83, 88.]
[55] 程文龍, 韓冰冰. 基于實際氣體狀態(tài)方程的多元熱流體井筒傳熱模型[J]. 石油學報, 2015, 36(11): 1 402-1 410. [CHENG W L,HAN B B. Wellbore heat transfer model based on real gas state equation [J]. Acta Petrolei Sinica, 2015, 36(11): 1 402-1 410.]
[56] DONG X, LIU H, ZHANG Z, et al. The fl ow and heat transfer characteristics of multi-thermal fl uid in horizontal wellbore coupled with fl ow in heavy oil reservoirs[J]. Journal of Petroleum Science & Engineering, 2014, 122:56-68.
[57] 東曉虎, 劉慧卿, 侯吉瑞, 等. 非凝析氣與蒸汽混注水平井井筒流動傳熱特征[J]. 中國石油大學學報(自然科學版), 2016, 40(2):105-114. [DONG X H, LIU H Q, HOU J R, et al. Transient fl uid fl ow and heat transfer characteristics during co-injection of steam and non-condensing gases in horizontal wells [J]. Journal of China University of Petroleum, 2016, 40(2): 105-114.]
[58] 東曉虎. 海上稠油油藏多元熱流體開發(fā)機理及方式篩選研究[D]. 北京: 中國石油大學. 2014. [DONG X H. The development mechanism and method screening for offshore heavy oil reservoirs with multi-thermal fl uid [D]. Beijing: China University of Petroleum,2014.]
[59] 袁恩熙. 工程流體力學[M]. 北京: 石油工業(yè)出版社, 1982: 87-163. [YUAN E X. Engineering fl uid mechanics[M]. Beijing: Petroleum Industry Press, 1982: 87-163.]
[60] 郭潤生, 何福城. 逸度及活度[M]. 北京: 高等教育出版社, 1965: 15-30. [GUO R S, HE F C. Fugacity and activity[M]. Beijing:Higher Education Press, 1965: 15-30.]
[61] 陳宏芳, 杜建華. 高等工程熱力學[M]. 北京: 清華大學出版社, 2003: 160-168. [CHEN H F, DU J H. Advanced engineering thermodynamics[M]. Beijing: Tsinghua University Press, 2003: 160-168.]
[62] 陳則韶. 高等工程熱力學[M]. 北京: 高等教育出版社, 2008:153-180. [CHEN Z S. Advanced engineering thermodynamics[M].Beijing: Higher Education Press, 2008:153-180.]
[63] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972,27(6):1 197-1 203.
[64] 童景山, 李敬. 流體熱物性的計算[M]. 北京: 中國石化出版社, 1996: 209-238. [TONG J S, LI J. The computational fl uid thermal properties[M]. Beijing: Sinopec Press, 1996: 209-238.]
[65] 韓曉紅. 狀態(tài)方程混合規(guī)則及混合制冷劑相平衡研究[D]. 杭州: 浙江大學, 2005. [HAN X H. Study of mixing rules for equation of state and phase equilibrium of mixed refrigerant[D]. Hangzhou: Zhejiang University, 2005.]
[66] 劉慧卿, 熱力采油原理與設計[M]. 北京: 石油工業(yè)出版社, 2013: 148-150. [LIU H Q. Principle and design of thermal oil recovery[M]. Beijing: Petroleum Industry Press, 2013: 148-150.]
[67] 黃世軍, 李秋, 程林松, 等. 多元熱流體注入沿程熱物性評價模型[J]. 西南石油大學學報: 自然科學版, 2015, 37(1): 91–97.[HUANG S J, LI Q, CHENG L S, et al. An evaluation model on along-pipe thermal parameters of multi-component heat fl uid injected in offshore reservoirs[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2015, 37(1): 91–97.]
[68] 陳明. 海上稠油熱采技術探索與實踐[M]. 北京: 石油工業(yè)出版社, 2012: 123-150. [CHEN M. Technical exploration and practice of offshore heavy oil thermal recovery[M]. Beijing: Petroleum Industry Press, 2012: 123-150.]
AbstractThermal transmission inside a concentric dual-tubing well (CDTW) with superheated multi-components thermal fl uid(SMTF) injection causes a rapid change of temperature and degree of superheating in each tube, which is different from saturated steam injection in CDTW. With consideration of the heat transmission between the integral joint tubing (IJT) and the annulis, a mathematical model is established based on mass, energy and momentum conservation equations. Type curves of superheated multi-components thermal fl uid fl ow in the IJT and annulis are obtained by using a fi nite difference method and an iteration technique. Then, the predicted results from the model are compared with fi eld data. The results show that the model is applicable to predict thermophysical properties of SMTF in CDTW with different injection parameters. Besides, the model is useful to optimize injection parameters during offshore steam-assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) processes.A small temperature difference between the IJT and annulis will lead to a large amount of heat fl ow, which causes a rapid change of temperature and degree of superheating in the CDTW. The fl ow of seawater has a signi fi cant in fl uence on the wellbore heat loss rate. Both the temperature and superheating degree decrease with an increasing content of non-condensing gas.
Keywordsoffshore heavy oil recovery; concentric dual-tubing well; superheated multi-components thermal fl uid; thermophysical properties distribution; turbulent fl ow of seawater
(編輯 馬桂霞)
Numerical simulation of superheated multi-components thermal fluid fl ow in offshore concentric dual-tubing wells
SUN Fengrui1,2, YAO Yuedong1,2, LI Xiangfang1, LI Jun1, LI He1, SUN Zheng1
1 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2016-12-09
中國海洋石油總公司海洋石油高效開發(fā)國家重點實驗室第三批開放基金課題“稠油熱采流動規(guī)律主要影響因素分析”(2015-YXKJ-001),國家自然基金項目(編號:51490654),國家科技重大專項(編號:2016ZX05039)和國家科技重大專項(編號:2016ZX05042)聯(lián)合資助
孫逢瑞, 姚約東, 李相方, 李駿, 李賀, 孫政.海上同心雙管注過熱型多元熱流體井筒傳熱數(shù)值模擬. 石油科學通報, 2017, 03:377-389
SUN Fengrui, YAO Yuedong, LI Xiangfang, LI Jun, LI He, SUN Zheng. Numerical simulation of superheated multi-components thermal fl uid fl ow in offshore concentric dual-tubing wells. Petroleum Science Bulletin, 2017, 03: 377-389. doi: 10.3969/j.issn.2096-1693.2017.03.035
10.3969/j.issn.2096-1693.2017.03.035