何清平,劉佐濂,楊 汝
廣州大學(xué)物理與電子工程學(xué)院,廣東廣州 510006
【物理與應(yīng)用物理/PhysicsandAppliedPhysics】
分?jǐn)?shù)階模擬電容和模擬電感的設(shè)計(jì)
何清平,劉佐濂,楊 汝
廣州大學(xué)物理與電子工程學(xué)院,廣東廣州 510006
基于波特圖頻域近似算法和阻容分抗電路設(shè)計(jì)出分?jǐn)?shù)階模擬電容,利用廣義阻抗變換電路把α(0<α<1)階模擬電容轉(zhuǎn)換為α階模擬電感,把分?jǐn)?shù)階模擬電容的階次擴(kuò)展至0~2階.采用Multisim軟件對(duì)分?jǐn)?shù)階模擬電感、分?jǐn)?shù)階LC串聯(lián)電路仿真,結(jié)果與理論分析基本一致.
電子電路;分?jǐn)?shù)階電路;LC串聯(lián)電路;模擬電感;模擬電容;阻抗變換
長期以來,電容和電感被公認(rèn)是基于整數(shù)階微積分建立電路分析的.然而,大量研究表明,電容和電感本質(zhì)上是分?jǐn)?shù)階的,基于分?jǐn)?shù)階微積分建立電容和電感的數(shù)學(xué)模型更能準(zhǔn)確反映實(shí)際電容和電感的電學(xué)特性[1-4].Westerlund等[2]通過實(shí)驗(yàn)測定出不同電介質(zhì)下分?jǐn)?shù)階電容的階數(shù);Jesus等[3]已制造出具有0.59和0.42階的分?jǐn)?shù)階電容;Machado等[4]指出基于趨膚效應(yīng)可制造出任意階次的電感元件.王發(fā)強(qiáng)等[5-6]使用阻容分抗電路設(shè)計(jì)出分?jǐn)?shù)階模擬電容,用于分?jǐn)?shù)階Lorenz、Chen、Liu和多翼等混沌系統(tǒng)的電路實(shí)現(xiàn)[7-11],進(jìn)一步證實(shí)電路系統(tǒng)的分?jǐn)?shù)階特性.分?jǐn)?shù)階LC串并聯(lián)電路[12-13]、LCL型電路[14]和濾波電路[15-16]均已有系統(tǒng)的理論研究.本研究在缺乏分?jǐn)?shù)階元件的情況下,基于頻域近似算法和阻容分抗電路,設(shè)計(jì)0~2階的分?jǐn)?shù)階模擬電容和模擬電感,可為研究分?jǐn)?shù)階電路特性,拓展分?jǐn)?shù)階電路的工程應(yīng)用提供替代元件.
1.1分?jǐn)?shù)階微積分的定義
分?jǐn)?shù)階微積分是研究任意階次微分、積分算子的特性及應(yīng)用的數(shù)學(xué)分析方法[17].其中,Caputo定義的分?jǐn)?shù)階微積分,其初值條件是整數(shù)階的,具有清晰的物理意義,常用于解決工程應(yīng)用和物理問題.
Caputo積分的定義式[17]為
(1)
Caputo微分的定義式[17]為
(2)
Caputo微積分定義的Laplace變換為[17]
(3)
(4)
其中,L[·]為拉普拉斯變換;s為復(fù)頻率;F[s]是變量為s的函數(shù);k≥0且為整數(shù),n=?α」+1.
式(3)和式(4)表明,Caputo定義的微積分的Laplace變換簡單,只需得到函數(shù)f(t)的整數(shù)階導(dǎo)數(shù)的初值(f(k)(0),k=0,1, …,n-1)即可,極大地降低了分?jǐn)?shù)階微積分方程的求解難度,更具工程實(shí)用性.
1.2分?jǐn)?shù)階微積分的頻域近似算法
分?jǐn)?shù)階微積分運(yùn)算的求解,工程上常用波特圖頻域近似算法[18-19],先對(duì)分?jǐn)?shù)階微積分進(jìn)行時(shí)域-頻域轉(zhuǎn)換,再在頻域中應(yīng)用分段線近似法進(jìn)行計(jì)算.由式(3)可知,階次為α(0<α<1)的分?jǐn)?shù)階積分的傳遞函數(shù)為H(s)=1/sα, 用單極點(diǎn)分?jǐn)?shù)冪表示為H(s)=1/(1+s/pT)α, 其波特圖為一條斜率為-20αdB/dec的直線.如圖1,在工程計(jì)算中,通常用斜率為0和-20dB的線段組成的鋸齒線來近似,把分?jǐn)?shù)階函數(shù)轉(zhuǎn)化為求解系統(tǒng)的零極點(diǎn)對(duì)的問題[18].
圖1 1/(1+s/pT)α的波特圖及其鋸齒線逼近[18]Fig.1 Bode plot of 1/(1+s/pT)α and its approximation with zigzag straight lines[18]
假設(shè)最大角頻率為ωmax的頻率范圍內(nèi),工程實(shí)際所要求動(dòng)力學(xué)系統(tǒng)變量的計(jì)算誤差不超過y(y為正值,單位:dB),工作頻段限制為N個(gè),取0<α<1, 則1/sα的近似傳遞函數(shù)[19]為
(5)
2.1α(0<α<1)階模擬電容的設(shè)計(jì)
分?jǐn)?shù)階模擬電容可采用樹型、鏈型和混合型的阻容分抗電路進(jìn)行模擬[6].在復(fù)頻域中,電容量為C0、 階次為α的分?jǐn)?shù)階電容的傳遞函數(shù)為F(s)=1/(C0sα). 對(duì)鏈型阻容分抗電路,其兩端之間的復(fù)頻域表達(dá)式為[6]
(6)
根據(jù)工程需求,選定α、ωmax、pT和y的值并代入式(5)計(jì)算,得到分?jǐn)?shù)階傳遞函數(shù)H(s)=1/sα(α=0.1~0.9)的頻域近似表達(dá)式.設(shè)分?jǐn)?shù)階模擬電容的值為C0、 階次為α, 對(duì)比式(5)和式(6)的參數(shù),計(jì)算得R1,R2, …,Rn和C1,C2, …,Cn的值.
2.2分?jǐn)?shù)階模擬電感的設(shè)計(jì)及階次擴(kuò)展
圖2是由運(yùn)算放大器組成的一種廣義阻抗變換器(generalimpedanceconverter,GIC)電路[20],它既能模擬電容,也能模擬電感,電路所呈現(xiàn)的阻抗性質(zhì)由Z1~Z4及ZL所選擇的電容或電阻來決定.
圖2 一種GIC電路[20]Fig.2 A general impedance converter circuit[20]
若運(yùn)算放大器是理想的,則該電路輸入阻抗為
(7)
3.1β(0<β<1)階模擬接地電感的設(shè)計(jì)
根據(jù)式(7)和圖2的GIC電路,可把β階的分?jǐn)?shù)階電容回轉(zhuǎn)為β階的模擬接地電感.圖3是基于運(yùn)放LF351D設(shè)計(jì)的GIC電路,取R1=R2=R3=RL=1kΩ,C4為β階電容量為1μF的分?jǐn)?shù)階電容,可得到β階電感量為1H的模擬接地電感,取不同的電阻值可得到不同的模擬電感值.分?jǐn)?shù)階電容C4采用文獻(xiàn)[8]的參數(shù)ωmax=100rad/s、pT=0.01rad/s、y=2dB,由式(5)和式(6)計(jì)算出β階次、電容值為1μF時(shí)鏈型分抗電路的阻容元件參數(shù).
圖3 β階電容回轉(zhuǎn)為β階電感的GIC電路Fig.3 A GIC circuit to transform β-order capacitor into β-order inductor
3.2β階模擬接地電感的仿真驗(yàn)證
用正弦電壓ui=sin(wt)激勵(lì)時(shí),流過β階電感的電流相位比電壓超前βπ/2. 用Multisim軟件對(duì)圖3的電路進(jìn)行仿真,得到β階模擬接地電感的正弦電壓激勵(lì)的電流波形,在虛擬示波器上顯示的波形如圖4.波形①為電感兩端的電壓波形,波形②、③和④分別對(duì)應(yīng)階次β為0.4、0.8和1.0,電感值為1H時(shí)的電感電流,電壓和電流的轉(zhuǎn)換關(guān)系為每500mV表示1mA.可見,電感電流與電壓的相位關(guān)系與理論分析基本一致.
圖4 分?jǐn)?shù)階電感的正弦電壓激勵(lì)響應(yīng)①量程為20 mV/Div; ② 量程比①放大250倍;③量程比①放大100倍;④ 量程比①放大50倍Fig.4 The sine wave response of the fractional order inductor
3.3LβCα串聯(lián)電路仿真
為驗(yàn)證所設(shè)計(jì)分?jǐn)?shù)階模擬電容和模擬電感的正確性,對(duì)分?jǐn)?shù)階LβCα串聯(lián)電路進(jìn)行仿真.使用Multisim分析自帶的波特儀對(duì)串聯(lián)電路的幅頻特性,得到分?jǐn)?shù)階串聯(lián)電路的諧振頻率,再與理論計(jì)算得到的諧振頻率ωres對(duì)比.ωres的計(jì)算公式為[12]
(8)
選取分?jǐn)?shù)階模擬電容和模擬電感的諧振參數(shù)時(shí),應(yīng)確保諧振頻率位于其正常工作頻域內(nèi).由式(8)可得,當(dāng)α=0.4,β=0.8,Cα=1μF,Lβ=5kH時(shí),fres=ωres/(2π)=10.80Hz,與圖5(a)仿真得到的諧振頻率基本一致;當(dāng)α=0.8,β=0.4,Cα=1μF,Lβ=6kH時(shí),fres=ωres/(2π)=13.78Hz,與圖5(b)中仿真得到的諧振頻率基本一致.可見,電路仿真得到的諧振頻率與理論計(jì)算得到的基本一致,證明所設(shè)計(jì)的分?jǐn)?shù)階模擬電容和模擬電感有效可行.
圖5 分?jǐn)?shù)階LβCα串聯(lián)電路仿真的波特圖Fig.5 Simulation Bode plot of fractional order LβCα serial circuit
基于分?jǐn)?shù)階微積分的基本概念,總結(jié)了頻域近似算法的基本原理,將其與鏈型阻容分抗電路的傳遞函數(shù)進(jìn)行對(duì)比,得到分?jǐn)?shù)階模擬電容的等效電路參數(shù),設(shè)計(jì)出α(0<α<1)階的模擬電容;利用GIC電路,把α階的模擬電容轉(zhuǎn)換為α階的模擬電感,把分?jǐn)?shù)階模擬電容的階次擴(kuò)展至0~2階.為驗(yàn)證設(shè)計(jì)的正確性,采用Multisim軟件對(duì)階次為0~1的分?jǐn)?shù)階模擬電感進(jìn)行仿真,通過比較電感電壓和電感電流的相位關(guān)系,驗(yàn)證了分?jǐn)?shù)階電感的正確性;同時(shí),對(duì)分?jǐn)?shù)階LC串聯(lián)電路仿真得到的諧振頻率與理論計(jì)算結(jié)果基本一致,進(jìn)一步驗(yàn)證了分?jǐn)?shù)階模擬電容和模擬電感設(shè)計(jì)的正確性.所設(shè)計(jì)的分?jǐn)?shù)階模擬電容和模擬電感可用于分?jǐn)?shù)階混沌電路、濾波電路和諧振電路等場合,為研究分?jǐn)?shù)階電路的工程應(yīng)用提供參考.
/
:
[1] 王發(fā)強(qiáng),馬西奎.電感電流連續(xù)模式下 Boost 變換器的分?jǐn)?shù)階建模與仿真分析[J].物理學(xué)報(bào),2011,60(7):89-96. Wang Faqiang, Ma Xikui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation[J]. Acta Physica Sinica,2011,60(7):89-96.(in Chinese)
[2] Westerlund S, Ekstam L. Capacitor theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(5):826-839.
[3] Jesus I S, Machado J A T. Development of fractional order capacitors based on electrolyte processes[J]. Nonlinear Dynamics,2009,56(1):45-55.
[4] Machado J A T, Galhano A M S F. Fractional order inductive phenomena based on the skin effect[J]. Nonlinear Dynamics,2011,68(1/2):107-115.
[5] 王發(fā)強(qiáng),劉崇新.分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實(shí)驗(yàn)的研究[J].物理學(xué)報(bào),2006,55(8):3922-3927. Wang Faqiang, Liu Chongxin. Study on the critical chaotic system with fractional order and circuit experiment[J]. Acta Physica Sinica,2006,55(8):3922-3927.(in Chinese)
[6] 劉崇新.分?jǐn)?shù)階混沌電路理論及應(yīng)用[M].西安:西安交通大學(xué)出版社,2011:118-128. Liu Chongxin. Theory and application of Fractional order chaotic circuit[M]. Xi’an: Xi’an Jiaotong University Press,2011:118-128.(in Chinese)
[7] 賈紅艷,陳增強(qiáng),薛 薇.分?jǐn)?shù)階Lorenz系統(tǒng)的分析及電路實(shí)現(xiàn)[J].物理學(xué)報(bào),2013,62(14):140503. Jia Hongyan, Chen Zengqiang, Xue Wei. Analysis and circuit implementation for the fractional order Lorenz system[J]. Acta Physica Sinica,2013,62(14):140503.(in Chinese)
[8] 陳 恒,雷騰飛,王 震,等.分?jǐn)?shù)階Chen混沌系統(tǒng)的動(dòng)力學(xué)分析與電路實(shí)現(xiàn)[J].河北師范大學(xué)學(xué)報(bào)自然科學(xué)版,2015,39(3):208-215. Chen Heng, Lei Tengfei, Wang Zhen, et al. Dynamics analysis and circuit implementation for the fractional order Chen chaotic system[J]. Journal of Hebei Normal University Natural Science Edition,2015,39(3):208-215.(in Chinese)
[9] 陳向榮,劉崇新,王發(fā)強(qiáng),等.分?jǐn)?shù)階Liu混沌系統(tǒng)及其電路實(shí)驗(yàn)的研究與控制[J].物理學(xué)報(bào),2008,57(3):1416-1422. Chen Xiangrong, Liu Chongxin, Wang Faqiang, et al. Study on the fractional order Liu chaotic system with circuit experiment and its control[J]. Acta Physica Sinica,2008,57(3):1416-1422.(in Chinese)
[10] 楊志宏,張彩霞,屈雙惠,等.異分?jǐn)?shù)階 chen 系統(tǒng)的動(dòng)力學(xué)特性及其多元電路實(shí)現(xiàn)[J].江西師范大學(xué)學(xué)報(bào)自然科學(xué)版,2017,41(2):133-139. Yang Zhihong, Zhang Caixia, Qu Shuanghui, et al. The dynamic properties of the heterogeneous fractional order Chen system and its plural circuit implementation[J]. Journal of Jiangxi Normal University Natural Science,2017,41(2):133-139. (in Chinese)
[11] 賈紅艷,王慶合.異結(jié)構(gòu)分?jǐn)?shù)階四翼混沌系統(tǒng)的同步及電路實(shí)現(xiàn)[J]. 天津科技大學(xué)學(xué)報(bào),2017,32(1):62-67. Jia Hongyan,Wang Qinghe.Synchronization of four-wing fractional-order chaotic system with different structures and its circuit implementation[J]. Journal of Tianjin University of Science & Technology,2017,32(1):62-67.(in Chinese)
[12] Radwan A G, Salama K N. Passive and active elements using fractional circuit[J]. IEEE Transactions on Circuit and Systems,2011,58(10):2388-2397.
[13] 刁利杰,張小飛,陳帝伊.分?jǐn)?shù)階并聯(lián)RLαCβ電路[J].物理學(xué)報(bào),2014,63(3):038401. Diao Lijie, Zhang Xiaofei, Chen Diyi. Fractional-order multipleRLαCβcircuit[J]. Acta Physica Sinica,2014,63(3):038401.(in Chinese)
[14] 余戰(zhàn)波.分?jǐn)?shù)階T型LαCβ電路仿真研究[J].西南大學(xué)學(xué)報(bào)自然科學(xué)版,2015,37(2):141-147. Yu Zhanbo. Numerical simulation of a T-shaped fractionalLαCβcircuit[J]. Journal of Southwest University Natural Science Edition,2015,37(2):141-147.(in Chinese)
[15] Zhou Rui,Zhang Runfan,Chen Diyi. Fractional-order LβCα low-pass filter circuit[J]. Journal of Electrical Engineering & Technology,2015,10(4):1598-1610.
[16] Ahmadi P , Maundy B , Elwakil A S , et al. High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach[J]. IET Circuits Devices & Systems,2012,6(3):187-197.
[17] Podlubny I. Fractional differential equations[M]. New York, USA: Academic Press,1999:79-106
[18] Charef A, Sun H H, Tsao Y Y, et al. Fractal system as represented by singularity function[J]. IEEE Transactions on Automatic Control,1992,37(9):1465-1470.
[19] Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems[J]. Chaos Solitons & Fractals,2003,16(2):339-351.
[20] 燕奎臣,王曉輝,李 碩.回轉(zhuǎn)器及其應(yīng)用[J].儀表技術(shù)與傳感器,2000(5):36-39. Yan Kuichen, Wang Xiaohui, Li Shuo. Gyrator and its application[J]. Journal of Instrument Technique and Sensor,2000(5):36-39.(in Chinese)
【中文責(zé)編:英子;英文責(zé)編:子蘭】
Designofsimulatorforfractionalordercapacitorandinductor
HeQingping,LiuZuolian,andYangRu
SchoolofPhysicsandElectronicEngineering,GuangzhouUniversity,Guangzhou510006,GuangdongProvince,P.R.China
A fractional order simulant capacitor is designed based on the Potter frequency domain approximation algorithm and the impedance capacitance division circuit.By using a generalized impedance transformation circuit, theα(0<α<1) order simulant capacitor is converted to anαorder simulant inductor. The order of the fractional order simulant capacitor is extended from zero to second. The fractional order simulant inductance and fractional order LC series circuit are simulated by using Multisim software, and the results are in good agreement with the theoretical analysis ones.
electronic circuit; fractional order circuit; LC serial circuit; inductive simulator; capacitive simulator; impedance conversion
2017-01-06;Accepted:2017-05-21
Professor Yang Ru. E-mail: yangru@gzhu.edu.cn
TN 721.2
:Adoi:10.3724/SP.J.1249.2017.05516
Foundation:National Natural Science Foundation of China (51277035);Natural Science Foundation of Guangdong Province (2014A030313528)
:He Qingping, Liu Zuolian, Yang Ru. Design of simulator for fractional order capacitor and inductor[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5): 516-520.(in Chinese)
國家自然科學(xué)基金資助項(xiàng)目(51277035);廣東省自然科學(xué)基金資助項(xiàng)目(2014A030313528)
何清平(1978—),男,廣州大學(xué)實(shí)驗(yàn)師.研究方向:非線性電路理論及應(yīng)用.E-mail:jerryhqp@126.com
引文:何清平,劉佐濂,楊 汝.分?jǐn)?shù)階模擬電容和模擬電感的設(shè)計(jì)[J]. 深圳大學(xué)學(xué)報(bào)理工版,2017,34(5):516-520.