廖 雁, 喬 圓, 南 方, 郭寶璐, 梁月琴, 范彥英
(山西醫(yī)科大學基礎醫(yī)學院藥理教研室,山西 太原 030001)
氯沙坦通過激活AMPK抑制LPS誘導的小鼠海馬GFAP表達*
廖 雁, 喬 圓, 南 方, 郭寶璐, 梁月琴, 范彥英△
(山西醫(yī)科大學基礎醫(yī)學院藥理教研室,山西 太原 030001)
目的: 探討氯沙坦對脂多糖(LPS)誘導的星形膠質細胞活化標志物膠質纖維酸性蛋白(GFAP)表達的影響,以及其機制是否與激活腺苷酸活化蛋白激酶(AMPK)有關。方法: 將成年雄性昆明小鼠分為正常對照組、LPS模型組、氯沙坦給藥組及氯沙坦與compound C合用組。側腦室注射相同劑量LPS (24 μg/d,每天1次,共2次),以建立中樞神經(jīng)炎癥損傷模型;氯沙坦(0.5、1 或5 mg·kg-1·d-1)于LPS注射前14 d開始連續(xù)每日腹腔注射給藥;AMPK抑制劑Compound C (10 mg·kg-1·d-1)于LPS注射前2 d開始連續(xù)每日腹腔注射給藥。在LPS末次注射后的第3天取各組小鼠的海馬腦區(qū)組織,利用Western blot法檢測GFAP、AMPK、p-AMPK、哺乳動物雷帕霉素靶蛋白(mTOR)和p-mTOR的蛋白水平。結果: 2次LPS注射后可顯著誘導GFAP在海馬腦區(qū)的表達(P<0.01),而氯沙坦可濃度依賴地抑制LPS誘導的GFAP表達,當氯沙坦劑量為5 mg·kg-1·d-1時可顯著抑制GFAP表達(P<0.05),同時,在該劑量下,氯沙坦顯著提高了AMPK的磷酸化水平(P<0.01),但對mTOR的磷酸化水平無明顯調節(jié)作用;而AMPK抑制劑Compound C可顯著逆轉氯沙坦對GFAP表達及AMPK磷酸化的調節(jié)作用(P<0.05)。結論: 氯沙坦可抑制LPS誘導的海馬GFAP表達,該作用可能與其激活AMPK有關,但并不依賴于mTOR信號通路。
氯沙坦; 脂多糖; 膠質纖維酸性蛋白; 腺苷酸活化蛋白激酶
星形膠質細胞作為中樞神經(jīng)系統(tǒng)的重要組成部分,可誘導神經(jīng)元突觸的形成,并參與對突觸功能、神經(jīng)元能量供應及神經(jīng)遞質釋放的調控過程[1-3],在保持血腦屏障完整和調節(jié)腦血流量中發(fā)揮重要作用[4]。在感染、創(chuàng)傷、神經(jīng)退行性疾病等病理條件下,星形膠質細胞被激活,表現(xiàn)為星形膠質細胞胞體肥大,突起增粗、延長,細胞數(shù)目增多,膠質纖維酸性蛋白(glial fibrillary acidic protein,GFAP)表達增加[5-7]。盡管活化的星形膠質細胞可通過提高谷氨酸攝取、增加糖原儲存、清除自由基、釋放營養(yǎng)因子等途徑發(fā)揮神經(jīng)保護作用[8],但是過度激活的星形膠質細胞往往會產(chǎn)生大量的炎癥因子而損傷神經(jīng)元及抑制軸突的再生和重建[9]。因此,抑制星形膠質細胞過度激活對防治中樞神經(jīng)系統(tǒng)的疾病有重要意義。
血管緊張素II受體阻滯劑(angiotensin II receptor blockers,ARBs),也稱為AT1受體拮抗劑,是一類常用的抗高血壓藥物。近年來,越來越多的研究發(fā)現(xiàn),ARBs對許多中樞神經(jīng)系統(tǒng)疾病,如腦中風、腦外傷、阿爾茲海默病和帕金森病等都具有一定的保護作用[10-12]。最近,Ongali等[13]發(fā)現(xiàn)在APP轉基因阿爾茨海默病老年小鼠模型上,連續(xù)3個月每日給予ARBs類藥物氯沙坦(10 mg·kg-1·d-1)可明顯抑制星形膠質細胞活化標志物GFAP的表達。但是,ARBs類藥物短期給藥對星形膠質細胞活化的調節(jié)作用及機制尚不清楚。
腺苷酸活化蛋白激酶[adenosine 5’-monophosphate (AMP)-activated protein kinase,AMPK]是一種絲/蘇氨酸蛋白激酶。它是生物能量代謝調節(jié)的關鍵分子,也被稱為“細胞能量調節(jié)器”,可表達于神經(jīng)元和星形膠質細胞中[14]。研究發(fā)現(xiàn),AMPK信號通路在神經(jīng)元增殖、遷移和突觸傳遞等方面具有重要的作用[15-16]。Maixner等[17]發(fā)現(xiàn),利用siRNA干擾AMPK表達或條件性敲除星形膠質細胞AMPK基因,可見脊髓損傷區(qū)域GFAP表達增加,提示AMPK對GFAP的表達具有調節(jié)作用。另有研究發(fā)現(xiàn),ARBs類藥物能誘導下丘腦及大腦皮層AMPK的活化[18-19]。然而,ARBs是否通過激活AMPK及其下游哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)來抑制星形膠質細胞的活化尚不清楚。
本研究擬在腦室注射脂多糖(lipopolysaccharide,LPS)建立的中樞神經(jīng)炎癥損傷模型上,觀察ARBs類藥物氯沙坦對星形膠質細胞活化標志物GFAP表達的影響,并探討其機制是否與激活AMPK及其下游通路有關。
1動物
健康昆明雄性小鼠,8~10周齡,體重(30±2)g,購自山西醫(yī)科大學動物實驗中心。所有的動物實驗均遵照國家實驗動物飼養(yǎng)和使用指南,動物飼養(yǎng)在溫度控制的環(huán)境(22±1)oC下,12 h明暗循環(huán),自由飲食和飲水。
2實驗方法
2.1小鼠LPS中樞神經(jīng)炎癥模型的制備 將小鼠放于玻璃盒內后通予2.5%異氟烷進行全身誘導麻醉,麻醉后將小鼠固定于手術臺上并持續(xù)通予1.5%異氟烷來維持小鼠的麻醉狀態(tài),側腦室注射24 μg LPS (6 μL)1次或相同劑量注射2次(每天1次)以建立中樞神經(jīng)炎癥損傷模型,對照組則注射相同體積的生理鹽水。
2.2分組和給藥方法將動物分為正常對照(control)組、LPS模型組、氯沙坦給藥組及氯沙坦與Compound C合用給藥組。連續(xù)2 d側腦室注射LPS (24 μg/d)以建立中樞神經(jīng)炎癥損傷模型;氯沙坦(0.5、1 或5 mg·kg-1·d-1)于LPS注射前14 d開始連續(xù)每日腹腔注射給藥,在LPS刺激當日,氯沙坦于LPS注射前1 h給予;AMPK抑制劑Compound C (10 mg·kg-1·d-1)于LPS注射前2 d開始連續(xù)每日腹腔注射給藥,并于氯沙坦給藥前30 min給予。實驗中氯沙坦和Compound C均給藥至取材當日。在末次LPS注射后第3天,對各組小鼠取海馬腦區(qū)組織,液氮速凍,存于-80 ℃?zhèn)溆谩?/p>
2.3蛋白的提取和Westernblot檢測在海馬組織中加入RIPA裂解液和蛋白酶抑制劑,提取總蛋白,并采用BCA 法進行蛋白定量。用12% SDS-PAGE 分離蛋白并轉印至硝酸纖維素膜用5% BSA 室溫封閉90 min,加入抗GFAP (1∶250;博士德)、p-AMPK (1∶1 000;CST)、AMPK (1∶1 000;CST)、p-mTOR (1∶1 000;Abcam)、mTOR (1∶1 000;Abcam)和GAPDH (1∶10 000;Bioworld)抗體4 ℃孵育過夜。次日,反復洗膜后加入IgG-HRP 抗體(1∶3 000;博士德)室溫輕搖孵育1 h,并用ECL 化學發(fā)光法檢測,結果用AlphaView SA 軟件分析并以GAPDH為內參照統(tǒng)計GFAP蛋白表達水平,以p-AMPK/AMPK和p-mTOR/mTOR比值反映AMPK和mTOR的磷酸化水平。
3統(tǒng)計學處理
用SPSS 19.0軟件進行統(tǒng)計分析。數(shù)據(jù)用均數(shù)±標準誤(mean±SEM)表示。單因素方差分析結合Bonferroni post-hoc test進行3組以上數(shù)據(jù)間差異的分析。以P<0.05為差異有統(tǒng)計學意義。
1LPS誘導小鼠海馬GFAP表達
與對照組相比,LPS (24 μg/d)注射2 次能顯著誘導(LPS末次注射后第3天)海馬組織表達GFAP(P<0.01),而LPS注射 1次誘導GFAP表達不明顯,見圖1。因此后續(xù)實驗均采用2次注射LPS的方法制備中樞神經(jīng)炎癥損傷模型。
2氯沙坦對小鼠海馬GFAP表達的調節(jié)作用
氯沙坦于LPS注射前14 d開始連續(xù)每日給藥可濃度依賴性地下調LPS誘導的GFAP表達,其中在0.5 mg·kg-1·d-1和1 mg·kg-1·d-1劑量下,氯沙坦有下調LPS誘導的GFAP表達的趨勢,但差異無統(tǒng)計學意義,而5 mg·kg-1·d-1的氯沙坦處理可顯著抑制LPS誘導的GFAP表達(P<0.05),見圖2A。
Figure 1. LPS induced GFAP protein expression in the mouse hippocampus. Mean±SEM.n=6.**P<0.01vscontrol group.
圖1LPS誘導小鼠海馬GFAP表達
3AMPK在氯沙坦調節(jié)LPS誘導的GFAP表達中的作用
LPS末次注射后第3天,海馬AMPK磷酸化水平與對照組相比并沒有明顯改變,然而,氯沙坦于LPS注射前14 d開始連續(xù)每日給藥可濃度依賴性地上調p-AMPK的蛋白水平,而氯沙坦給藥劑量為5 mg·kg-1·d-1時,p-AMPK的蛋白水平顯著增加(P<0.01),見圖2B。
Figure 2. The effects of losartan on GFAP protein expression (A) and AMPK phosphorylation (B) in the mouse hippocampus. Mean±SEM.n=6.**P<0.01vscontrol group;#P<0.05vsLPS group.
圖2氯沙坦對小鼠海馬GFAP表達及AMPK磷酸化水平的調節(jié)作用
給予AMPK的選擇性抑制劑Compound C可顯著逆轉5 mg·kg-1·d-1的氯沙坦對LPS誘導的 GFAP表達的下調作用(P<0.05),見圖3A。與此同時,Compound C也明顯抑制了5 mg·kg-1·d-1氯沙坦誘導的AMPK磷酸化(P<0.01),見圖3B。
4氯沙坦預處理對小鼠海馬mTOR磷酸化水平的調節(jié)作用
mTOR是AMPK的下游靶點之一,因此我們進一步檢測了氯沙坦于LPS注射前14 d開始連續(xù)每日給藥對mTOR磷酸化水平的影響。結果發(fā)現(xiàn),與對照組相比,LPS和氯沙坦處理(5 mg/kg)對mTOR磷酸化無明顯調節(jié)作用,見圖4。
Figure 3. The effects of losartan treatment and Compound C (CC) on GFAP expression (A) and AMPK phosphorylation (B) in the mouse hippocampus. Mean±SEM.n=6~7.**P<0.01vscontrol group;#P<0.05vsLPS group;△P<0.05,△△P<0.01vslosartan group.
圖3氯沙坦處理和CompoundC對小鼠海馬GFAP蛋白表達及AMPK磷酸化的調節(jié)作用
Figure 4. The effects of losartan treatment on mTOR phosphory-lation in the mouse hippocampus. Mean±SEM.n=6.
圖4氯沙坦處理對小鼠海馬mTOR磷酸化水平的調節(jié)作用
LPS是一種經(jīng)典的神經(jīng)炎癥誘導劑,可以誘導腦內星形膠質細胞的活化[20]。在本實驗中,為了排除外周炎癥的影響,將炎癥反應局限在腦內,我們采用了腦室注射LPS的方法。結果發(fā)現(xiàn)LPS (24 μg/d)連續(xù)注射2 次能顯著增加海馬腦區(qū) GFAP的表達。在此基礎上,我們的研究發(fā)現(xiàn)連續(xù)數(shù)日的氯沙坦處理能顯著抑制LPS誘導的GFAP表達。
已有研究發(fā)現(xiàn),在APP轉基因阿爾茨海默病模型小鼠上,連續(xù)3個月給予氯沙坦(10 mg·kg-1·d-1)可顯著抑制星形膠質細胞的反應性增生,改善APP小鼠的空間參考記憶[13]。而本研究發(fā)現(xiàn),在LPS誘導的神經(jīng)炎癥模型上,氯沙坦于LPS注射前短期預防性給藥14 d并在LPS刺激后再連續(xù)每日給藥5 d,可濃度依賴地抑制海馬組織GFAP的表達,提示連續(xù)多日的氯沙坦給藥可抑制LPS誘導的星形膠質細胞的激活。
進一步,本研究發(fā)現(xiàn),氯沙坦于LPS注射前短期預防性給藥14 d并在LPS刺激后再連續(xù)每日給藥5 d可濃度依賴性地提高 LPS注射后第3天時海馬AMPK磷酸化水平,而AMPK的選擇性抑制劑Compound C可逆轉氯沙坦對GFAP表達的下調作用。相似地,最近的研究發(fā)現(xiàn),siRNA干擾AMPK表達或條件性敲除星形膠質細胞AMPK基因可顯著增加脊髓GFAP的表達[17]。因此,促進AMPK的激活可能是氯沙坦抑制星形膠質細胞活化的重要機制之一。但是,氯沙坦是否通過直接激活星形膠質細胞內的AMPK來抑制GFAP的表達仍有待研究。
mTOR是AMPK所調節(jié)的下游信號靶點之一,其活性可被活化的AMPK所抑制[21]。最近Li等[22]在離體培養(yǎng)的星形膠質細胞缺糖缺氧模型中發(fā)現(xiàn),抑制mTOR通路可減少星形膠質細胞的活化。然而,令人意外的是,盡管氯沙坦可激活AMPK,但對AMPK下游的mTOR活化并沒有顯著的調節(jié)作用。因此,氯沙坦抑制GFAP表達的機制并不依賴于mTOR信號通路。
綜上所述,氯沙坦可抑制LPS誘導的小鼠海馬GFAP表達,而這一作用與激活AMPK有關,但并不依賴于AMPK下游的mTOR信號通路。另外,已有研究證實氯沙坦等ARBs類藥物可以增強星形膠質細胞對神經(jīng)元的保護功能,如促進谷氨酸攝取等[23],加之該類藥物對神經(jīng)元尚有直接保護作用,因此氯沙坦作為臨床上常用的抗高血壓藥物,長期應用對中樞神經(jīng)系統(tǒng)疾病的預防和治療可能具有重要意義。然而,氯沙坦通過激活APMK抑制星形膠質細胞活化的下游分子機制有待進一步研究。
[1] Eroglu C, Barres BA. Regulation of synaptic connectivity by glia[J]. Nature, 2011, 468(7321):223-231.
[2] Pellerin L, Bouziersore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update[J]. Glia, 2007, 55(12):1251-1262.
[3] Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission[J]. Science, 2008, 322(5907):1551-1555.
[4] Liebner S, Czupalla CJ, Wolburg H. Current concepts of blood-brain barrier development[J]. Int J Dev Biol, 2011, 55(4-5):467-476.
[5] Dong Y, Benveniste EN. Immune function of astrocytes[J]. Glia, 2001, 36(2):180-190.
[6] Laird MD, Vender JR, Dhandapani KM. Opposing roles for reactive astrocytes following traumatic brain injury[J]. Neurosignals, 2008, 16(2-3):154-164.
[7] Choudhury GR, Ryou MG, Poteet E, et al. Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke[J]. Brain Res, 2014, 1551(11):45-58.
[8] Abeysinghe HCS, Phillips EL, Chin-Cheng H, et al. Modulating astrocyte transition after stroke to promote brain rescue and functional recovery: emerging targets include Rho kinase[J]. Int J Mol Sci, 2016, 17(3):288.
[9] Silver J, Miller JH. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2):146-156.
[10] Zhang TL, Fu JL, Geng Z, et al. The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region[J]. CNS Neurosci Ther, 2012, 18(12):981-987.
[11] Pratap R, Pillai KK, Khanam R, et al. Protective effect of irbesartan, an angiotensin II receptor antagonist, alone and in combination with aspirin on middle cerebral artery occlusion model of focal cerebral ischemia in rats[J]. Hum Exp Toxicol, 2011, 30(5):354-362.
[12] Benicky J, Sánchez-Lemus E, Honda M, et al. Angiotensin II AT1receptor blockade ameliorates brain inflammation[J]. Neuropsychopharmacology, 2011, 36(4):857-870.
[13] Ongali B, Nicolakakis N, Tong XK, et al. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model[J]. Neurobiol Dis, 2014, 68:126-136.
[14] Mccullough LD, Zeng Z, Li H, et al. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke[J]. J Biol Chem, 2005, 280(21):20493-20502.
[15] Dhar SS, Wong-Riley MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochromecoxidase and NMDA glutamate receptor subunit genes[J]. J Neurosci, 2009, 29(2):483-492.
[16] Potter WB, O’Riordan KJ, Barnett D, et al. Metabolic regulation of neuronal plasticity by the energy sensor AMPK[J]. PLoS One, 2010, 5(2):e8996.
[17] Maixner DW, Yan X, Gao M, et al. Adenosine monophosphate-activated protein kinase regulates interleukin-1β expression and glial glutamate transporter function in rodents with neuropathic pain[J]. Anesthesiology, 2015, 122(6):1401-1413.
[18] Yoshida T, Semprunprieto L, Wainford RD, et al. Angiotensin II reduces food intake by altering orexigenic neuropeptide expression in the mouse hypothalamus[J]. Endocrinology, 2012, 153(153):1411-1420.
[19] Xu Y, Xu Y, Wang Y, et al. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation[J]. Brain Behav Immun, 2015, 50:298-313.
[20] Minghetti L, Walsh DT, Levi G, et al.Invivoexpression of cyclooxygenase-2 in rat brain following intraparenchymal injection of bacterial endotoxin and inflammatory cytokines[J]. J Neuropathol Exp Neurol, 1999, 58(11):1184-1191.
[21] Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003, 115(5):577-590.
[22] Li CY, Li X, Liu SF, et al. Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation[J]. Neurochem Int, 2015, 83-84:9-18.
[23] Wu X, Kihara T, Hongo H, et al. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion[J]. Br J Pharmacol, 2010, 161(1):33-50.
(責任編輯: 陳妙玲, 羅 森)
Losartan inhibits LPS-induced GFAP expression via AMPK activation in mouse hippocampus
LIAO Yan, QIAO Yuan, NAN Fang, GUO Bao-lu, LIANG Yue-qin, FAN Yan-ying
(Department of Pharmacology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China. E-mail: fyanying6@hotmail.com)
AIM: To investigate the effects of losartan on lipopolysaccharide (LPS)-induced glial fibrillary acidic protein (GFAP) expression, and to determine whether adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) activation is involved in the mechanism.METHODS: Adult male KM mice were divided into control group, LPS model group, losartan treatment group, and losartan and Compound C co-treatment group. To establish a model of central nervous system inflammation, the mice
daily intracerebroventricular injection of LPS (24 μg/d) for 2 d. Daily losartan administration (0.5, 1 or 5 mg·kg-1·d-1, ip) initiated at 14 d prior to LPS injection. Compound C (10 mg/kg, ip), a selective AMPK inhibitor, started to be injected daily at 2 d prior to LPS injection. The hippocampal tissues in each group were isolated at 3 d after the last LPS injection, and then the protein levels of GFAP, AMPK, p-AMPK, mammalian target of rapamycin (mTOR) and p-mTOR were determined by Western blot.RESULTS: Twice LPS injections significantly increased the expression of GFAP in the hippocampus (P<0.01). Losartan inhibited LPS-induced GFAP expression in a concentration-dependent way, and losartan at 5 mg·kg-1·d-1significantly inhibited GFAP expression and AMPK activation (P<0.05), but it had no obvious effect on mTOR activation. Furthermore, Compound C significantly reversed the effect of losartan treatment on LPS-induced GFAP expression and AMPK phosphorylation (P<0.05).CONCLUSION: Losartan inhibits LPS-induced GFAP expression in the mouse hippocampus, and AMPK activation but not mTOR, is involved in the mechanism.
Losartan; Lipopolysaccharide; Glial fibrillary acidic protein; Adenosine 5′-monophosphate-activated protein kinase
1000- 4718(2017)09- 1593- 05
2016- 12- 19 [
] 2017- 04- 13
國家自然科學基金資助項目(No. 81202520);山西省青年科技研究基金資助項目(No.2014021038-1);山西省重點學科建設經(jīng)費資助項目。
R363.2+1; R741
A
10.3969/j.issn.1000- 4718.2017.09.009
△通訊作者Tel: 0351-4135079; E-mail: fyanying6@hotmail.com