陳盈盈,蔣輝
(南京航空航天大學(xué)數(shù)學(xué)系,江蘇南京210016)
帶復(fù)合泊松跳擴(kuò)散模型的點(diǎn)波動(dòng)率門限估計(jì)量的漸近性質(zhì)
陳盈盈,蔣輝
(南京航空航天大學(xué)數(shù)學(xué)系,江蘇南京210016)
本文研究了帶復(fù)合泊松跳擴(kuò)散模型的點(diǎn)波動(dòng)率門限估計(jì)量的漸近性質(zhì).利用門限方法和核函數(shù)技術(shù),構(gòu)造并證明了此模型點(diǎn)波動(dòng)率估計(jì)量的漸近正態(tài)性.同時(shí),應(yīng)用G¨artner-Ellis定理及大偏差中的Delta方法,得到了估計(jì)量的中偏差原理.
復(fù)合泊松過程;點(diǎn)波動(dòng)率;漸近正態(tài)性;門限方法;中偏差原理
波動(dòng)率是度量金融市場(chǎng)風(fēng)險(xiǎn)的常用指標(biāo),對(duì)波動(dòng)率的估計(jì)和預(yù)測(cè)是近幾十年來金融研究領(lǐng)域的重要課題之一.一個(gè)時(shí)刻點(diǎn)處的波動(dòng)率常被稱為點(diǎn)波動(dòng)率(spot volatility),其是套頭交易,期權(quán)定價(jià),風(fēng)險(xiǎn)分析和資產(chǎn)組合管理等金融活動(dòng)中需要考慮的重要因素.隨著電子化交易的普及和信息存儲(chǔ)技術(shù)的發(fā)展,以高精度時(shí)間“分”,“秒”為刻度來存儲(chǔ)信息的高頻環(huán)境逐步建立.高頻數(shù)據(jù)可以迅速有效地捕捉市場(chǎng)信息,比低頻數(shù)據(jù)更能反映金融市場(chǎng)的真實(shí)狀況,為準(zhǔn)確估計(jì)點(diǎn)波動(dòng)率提供了途徑.
關(guān)于點(diǎn)波動(dòng)率的研究,Foster和Nelson[8]首次證明了卷樣點(diǎn)波動(dòng)率估計(jì)量的漸近正態(tài)性.但文中出現(xiàn)的條件和結(jié)果都十分抽象,故Andreou和Ghysels[1]對(duì)文中出現(xiàn)的估計(jì)量進(jìn)行了進(jìn)一步研究.之后,Fan和Wang[7]在資產(chǎn)過程軌道連續(xù)情況下,構(gòu)建了點(diǎn)波動(dòng)率的核密度估計(jì)量并得到了其漸近正態(tài)性.關(guān)于點(diǎn)波動(dòng)率估計(jì)量的研究,亦可參見Zu和Boswijk[12].
近年來,大量金融理論和實(shí)證表明,資產(chǎn)價(jià)格中常包含跳,且跳的存在和類型對(duì)波動(dòng)率估計(jì)量具有顯著影響(夏登峰等[14]).在資產(chǎn)價(jià)格過程有復(fù)合泊松跳的情形下,利用Mancini[10]中門限方法,我們將Fan和Wang[7]提出的估計(jì)量進(jìn)行推廣和改進(jìn),即剔除帶跳部分對(duì)估計(jì)量的影響.同時(shí)證明了所構(gòu)造估計(jì)量的漸近正態(tài)性與中偏差原理,并給出了速率函數(shù)的精確表達(dá)式.此外,關(guān)于積分波動(dòng)率估計(jì)量的大偏差與中偏差原理,可以參見Djellout等[5,6], Hui[9]及Mancini[11].
本文的結(jié)構(gòu)如下:在第二章中,對(duì)模型進(jìn)行介紹,構(gòu)造了點(diǎn)波動(dòng)率的門限估計(jì)量并闡述了本文的主要結(jié)論.第三章給出了主要結(jié)論的證明.
給定概率空間(Ω,F,(F)t,P),令資產(chǎn)價(jià)格過程X服從跳擴(kuò)散過程(見文獻(xiàn)[3])
通過在時(shí)間點(diǎn){ti=i/n,i=1,2,···,n}處對(duì)X進(jìn)行的等距觀測(cè),Fan和Wang[7]構(gòu)造了Γt的核密度估計(jì)量
其中I(t,bn)={i:ti∈[t-bn,t+bn]},K(x)是支集為[-1,1]的核函數(shù),bn是帶寬.若L 6=0,可以得到過程X的二次變差為
其中ΔXs=Xs-Xs-為過程X在s點(diǎn)的振幅.為了估計(jì)Γt,需要獲得過程X的連續(xù)部分Xc:
故而最主要的問題是如何將過程X的跳與連續(xù)部分區(qū)分開來.利用Mancini[10]及Fan和Wang[7]中的思想,定義如下核估計(jì)量
定理1令過程X滿足(2.1)式,且條件(A1)-(A4)成立.則對(duì)于任意的t∈[0,1],有
推論1在定理1的條件下,可以推出
假定{λn,n≥0}為一列正實(shí)數(shù)且滿足
下面給出門限估計(jì)量?Γt的中偏差原理.
定理2令過程X滿足(2.1)式,σt非隨機(jī)且μt≡μ∈R.若
在這一節(jié)中,將給出本文主要結(jié)論的證明.
定理1的證明對(duì)任意右連左極過程Z,令ΔiZ=Zti-Zti-1.由Mancini[10]的定理3.1,當(dāng)n充分大時(shí),對(duì)每一個(gè)i=1,2,···,n,有從而可以得到
首先,由L′evy連續(xù)模定理知sup{|Wti-Wti-1|,i=1,···,n}=Op(n-1/2log1/2n),根據(jù)條件(A1)及(A2)即得
由Fan和Wang[7]中定理1,本文中定理1得證.
首先,來計(jì)算?Γt的對(duì)數(shù)矩生成函數(shù),即對(duì)任意的θ∈R,令
Z
根據(jù)上述的分析,若要證明(3.5)式,只需證
因此結(jié)合(3.16)式即得H2=θ2λ(K)σ4t.由此引理1得證.
定理2的證明根據(jù)G¨artner-Ellis定理,定理2可以由引理1直接得到.
[1]Andreou,Elena,Ghysels,et al.Rolling-sample volatility estimators:some new theoretical,simulation and empirical results[J].Cirano Working Papers,2000,20(3):363-376.
[2]Andersen T G,Diebold F X.Roughing it up:including jump components in the measurement, modeling,and forecasting of return volatility[J].Rev.Econ.Stat.,2005,89(4):701-720.
[3]Back K.Asset pricing for general processes[J].J.Math.Econ.,1991,20(4):371-395.
[4]Barndorf f-Nielsen O E,Shephard N.Econometrics of testing for jumps in f i nancial economics using bipower variation[J].J.Finan.Econ.,2006,1:1-30.
[5]Djellout H,Guillin A,Wu L.Large and moderate deviations for estimators of quadratic variational processes of dif f usions[J].Stat.Infer.Stoch.Proc.,1999,2(3):195-225.
[6]Djellout H,Samoura Y.Large and moderate deviations of realized covolatility[J].Stat.Prob.Lett., 2014,86(1):30-37.
[7]Fan J,Wang Y.Spot volatility estimation for high-frequency data[J].Stat.Inter.,2008,1(2):279-288.
[8]Foster D P,Nelson D B.10-continuous record asymptotics for rolling sample variance estimators[J]. Econ.,1996,64(1):291-329.
[9]Jiang H.Moderate deviations for estimators of quadratic variational process of dif f usion with compound Poisson jumps[J].Stat.Prob.Lett.,2010,80(17-18):1297-1305.
[10]Mancini C.Non-parametric threshold estimation for models with stochastic dif f usion coefficient and jumps[J].Scandinavian J.Stat.,2009,36(2):270-296.
[11]Mancini C.Large deviation principle for an estimator of the dif f usion coefficient in a jump-dif f usion process[J].Stat.Prob.Lett.,2008,78(7):86-879.
[12]Zu Y,Boswijk H P.Estimating spot volatility with high-frequency f i nancial data[J].J.Econ.,2014, 181(2):117-135.
[13]Gao F,Zhao X.Delta method in large deviations and moderate deviations for estimators[J].Ann. Stat.,2011,39(2):1211-1240.
[14]夏登峰,費(fèi)為銀,劉宏建.跳擴(kuò)散過程下的保險(xiǎn)商償債率模型研究[J].數(shù)學(xué)雜志,2011,31(3):554-558.
ASYMPTOTIC PROPERTIES FOR SPOT VOLATILITY ESTIMATION OF DIFFUSIONS WITH COMPOUND POISSON JUMPS
CHEN Ying-ying,JIANG Hui
(Department of Mathematics,Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China)
In this paper,we study the asymptotic behaviors for the threshold spot volatility estimator of the dif f usion process with compound Poisson jumps.By the method of threshold criterion,we construct a kernel estimator for the volatility and study its asymptotic normality. Applying G¨artner-Ellis theorem,we obtain the moderate deviations.
compound Poisson process;spot volatility;asymptotic normality;threshold criterion;moderate deviations
O211.4
A
0255-7797(2017)05-1029-11
2015-12-22接收日期:2016-02-25
國(guó)家自然科學(xué)基金資助(11101210);中央高?;究蒲袠I(yè)務(wù)費(fèi)(NS2015074).
陳盈盈(1992-),女,浙江溫州,碩士,主要研究方向:隨機(jī)過程統(tǒng)計(jì).
2010 MR Subject Classif i cation:60F10;60H07;62F12