亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

        2017-09-15 05:55:57ZOUMinCHENRongsanLIUAnping
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:陳榮卡蒂方程解

        ZOU Min,CHEN Rong-san,LIU An-ping

        (School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

        OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

        ZOU Min,CHEN Rong-san,LIU An-ping

        (School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

        In this paper,we mainly deal with the oscillation problems of nonlinear impulsive hyperbolic equation with functional arguments.By using integral averaging method and a generalized Riccati technique,a sufficient condition for oscillation of the solutions of nonlinear impulsive hyperbolic equation with functional arguments is obtained.We can make better use of some existing conclusions about oscillation of the solutions of impulsive ordinary dif f erential equations with delay.

        oscillation;impulsive;delay;hyperbolic equation;Riccati inequality

        1 Introduction

        The theories of nonlinear partial functional di ff erential equations are applied in many fi elds.In recent years the research of oscillation to impulsive partial di ff erential systems caught more and more attention.In this paper,we study the oscillation properties of the solutions to impulsive delay hyperbolic equation

        The following is the boundary conditionwhere G is a bounded domain of Rnwith the smooth boundary?G and n is the unit exterior normal vector to?G.

        Following are the basic hypothesis

        (H1)r(t)∈C([0,+∞);(0,+∞)),a(t),bi(t)∈PC([0,+∞);[0,+∞)),i=1,2,···,n.j=1,2,···,m,where PC denotes the class of functions which are piecewise continuous in t with discontinuities of the fi rst kind only at t=tk,k=1,2,···.

        (H2)τi(t)∈C([0,+∞);R)=+∞,i=1,2,···,n.

        (H3)h(u),hi(u)∈C(R,R),uh(u)≥0,uh′(u)≥0,≥0,i=1,2,···,n;φj(s)∈C(R,R),=const.>0 for s 6=0.αk,βk=const.>-1,0<t1<t2<···<tk<

        We introduce the notations

        De fi nition 1.1The solution u(x,t)of the problems(1.1)-(1.4)is said to be nonoscillatory in domain Ω if it is either eventually positive or eventually negative.Otherwise,it is called oscillatory.

        Def i nition 1.2We say that functions Hi,i=1,2,belong to a function class H,if Hi∈C(D;[0,+∞)),i=1,2,satisfy

        1.Hi(t,s)=0,i=1,2 for t=s, 2.Hi(t,s)>0,i=1,2 for t>s,

        where D={(t,s):0<s≤t<+∞}.Moreover,the partial derivatives?H1/?s and?H2/?s exist on D such that

        where h1,h2∈Cloc(D;R).

        In recent years,there was much research activity concerning the oscillation theory of nonlinear hyperbolic equations with functional arguments by employing Riccati technique. Riccati techniques were used to obtain various oscillation results.Recently,Shoukaku and Yoshida[2]derived oscillation criteria by using oscillation criteria of Riccati inequality.In this work,we study the hyperbolic equation with impulsive.

        2 Main Results

        Theorem 2.1If for each T≥0,there exist(H1,H2)∈H and a,b,c∈R such that T≤a<c<b and

        then every solution of the problems(1.1)-(1.4)oscillates in Ω,where

        ProofSuppose to the contrary that there is a nonoscillatory solution u(x,t)of the problems(1.1)-(1.4).Without loss of generality we may assume that u(x,t)>0 in G× [t0,+∞)for some t0>0 because the case where u(x,t)<0 can be treated similarly.Since (H2)holds,we see that u(x,τi(t))>0(i=1,2,···n)in G×[t1,+∞)for some t1≥t0.

        (1)For t≥t1,t 6=tk,k=1,2,···,integrating(1)with respect to x over G,we obtain

        that is

        Thus we obtain that the functions U(t)is a eventually positive solution of the impulsive dif f erential inequality

        Multiplying(2.4)by H2(t,s)and integrating over[c,t]for t∈[c,b),we have

        which contradicts condition(2.1).

        [1]Lakshmikantham V,Bainov D,Simeonov P S.Theory of impulsive dif f erential equations[M].Singapore:World Scientif i c,1989.

        [2]Yutaka Shoukaku,Norio Yoshida.Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method[J].Appl.Math.Comput.,2010,217:143-151.

        [3]Luo Zhiguo,Shen Jianhua.Oscillations of second linear dif f erential equations with impulses[J].Appl. Math.Lett.,2007,20:75-81.

        [4]Bainov D D,Minchev E.Oscillation of the solutions of impulsive parabolic equations[J].J.Comput. Appl.Math.,1996,69:207-214.

        [5]Liu Anping,Liu Ting,Zou Min.Oscillation of nonlinear impulsive parabolic dif f erential equations of neutral type[J].Rocky Mount.J.Math.,2011,41:833-850.

        [6]Chen Rongsan,Zou Min,Liu Anping.Comparison of several numerical schemes for scalar linear advaction equation[J].J.Math.,2015,35(4):977-982.

        里卡蒂方法研究帶泛函參數(shù)的非線性脈沖時(shí)滯雙曲方程的振動(dòng)性

        鄒敏,陳榮三,劉安平

        (中國地質(zhì)大學(xué)(武漢)數(shù)學(xué)與物理學(xué)院,湖北武漢430074)

        本文研究了帶泛函參數(shù)的非線性脈沖時(shí)滯雙曲方程的振動(dòng)性問題.利用積分平均法和里卡蒂方法得到了這類方程解的振動(dòng)性的一個(gè)充分條件,對非線性時(shí)滯雙曲方程解的震動(dòng)性進(jìn)行了推廣,能更好地利用一些現(xiàn)有的脈沖時(shí)滯常微分方程解的振動(dòng)性的結(jié)論.

        振動(dòng);脈沖;時(shí)滯;雙曲方程;Riccati不等式

        O175.27

        A

        0255-7797(2017)05-1007-06

        ?Received date:2015-11-25Accepted date:2016-03-04

        Supported by National Natural Science Foundation of China(11201436).

        Biography:Zou min(1981-),female,born at Xiantao,Hubei,lecturer,major in partial dif f erential equation.

        2010 MR Subject Classif i cation:58J45;35B05

        猜你喜歡
        陳榮卡蒂方程解
        陳榮:做一只奔跑、跳躍的“袋鼠”
        Navier-Stokes-Coriolis方程解的長時(shí)間存在性
        一類Choquard型方程解的存在性
        送給世界一棵卷心菜
        世界上最矮小夫妻
        中老年健康(2016年9期)2016-11-18 15:25:16
        送給世界一棵卷心菜
        灰太狼的陰謀
        一類Kirchhoff-Poisson方程解的存在性
        重慶暖男“暖化”法國美女
        258條評論追愛,重慶暖男搞定法國女神
        日本乱码一区二区三区在线观看| 国产一区二区三区白浆在线观看 | 日本一区人妻蜜桃臀中文字幕| 亚洲美女主播内射在线| 日韩av一区二区观看| 日韩乱码人妻无码系列中文字幕| 亚洲 欧美 国产 制服 动漫| 骚片av蜜桃精品一区| 疯狂做受xxxx高潮欧美日本| 正在播放国产多p交换视频| 日本a在线播放| 日韩精品免费在线视频| 国产av黄色一区二区| 日韩精品一区二区三区人妻在线| 蜜桃视频在线看一区二区三区| 国内精品久久久久伊人av| 狠狠躁夜夜躁人人爽天天不卡软件| 亚洲欧美中文在线观看4| AV熟妇导航网| 一区二区黄色素人黄色| 亚洲 另类 小说 国产精品| 无码人妻一区二区三区在线视频| 精品乱码卡1卡2卡3免费开放| 色综合久久加勒比高清88| 蜜桃伦理一区二区三区| 乳乱中文字幕熟女熟妇| 亚洲欧洲国产成人综合在线| 欧美老妇人与禽交| 精品久久久久久午夜| 日本在线免费一区二区三区| 国产精品一区二区三区四区亚洲| 草草影院发布页| 天天爽天天爽夜夜爽毛片 | 午夜爽爽爽男女免费观看影院| 亚洲综合色区另类av| 中文字幕亚洲乱码熟女一区二区| 亚洲日韩区在线电影| 国产精品三级国产精品高| 中文字幕免费人成在线网站| 亚洲精品无码专区| 国产AV无码专区亚洲AⅤ|