亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        AN EXPLICIT FORMULA FOR THE FOURTH MOMENT OF TWO-TERM EXPONENTIAL SUMS

        2017-09-15 05:56:56AIXiaochuanCHENHuaZHANGSilan
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:陳華理學(xué)院數(shù)論

        AI Xiao-chuan,CHEN Hua,ZHANG Si-lan

        (1.Department of Applied Mathematics,School of Science,Naval University of Engineering, Wuhan 430033,China)

        (2.School of Science,Hubei University of Technology,Wuhan 430068,China)

        (3.College of Science,Huazhong Agricultural University,Wuhan 430070,China)

        AN EXPLICIT FORMULA FOR THE FOURTH MOMENT OF TWO-TERM EXPONENTIAL SUMS

        AI Xiao-chuan1,CHEN Hua2,ZHANG Si-lan3

        (1.Department of Applied Mathematics,School of Science,Naval University of Engineering, Wuhan 430033,China)

        (2.School of Science,Hubei University of Technology,Wuhan 430068,China)

        (3.College of Science,Huazhong Agricultural University,Wuhan 430070,China)

        The fourth power mean of two-term exponential sums is studied in this paper. By elementary and algebraic methods,an explicit computation formula and a transform formula are proposed,which extend the original research results and discover the essential relation between fourth moment and congruence equations.

        two-term exponential sums;mixed exponential mean;fourth power mean;transform formula

        1 Introduction

        For integers m,n,q,k with q≥3,k≥2,we def i ne a two-term exponential sums

        or(p,m)=1,where θ=2/3 for k=3 and θ=3/4 for k>3.Afterwards,Hua[9]showed that θ=1/2 for all k≥2 by using Weil’s estimate for exponential sums over f i nite f i elds.Till now,many improvements for(1.2)were made by Loxton,Vaughan and Smith[5,6,11]. Carlitz[7,8]studied the computation problem of the two-term exponential C(m,n,k;p) over fi nite fi elds and obtained the computational formulas for k=3 and k=p+1.As to the two-term exponential sums with Dirichlet character C(m,n,k,χ,q)= Xu[13],Liu[3],Chen[14,15],Ai[16]and Calderon[1]also acquired a lot of research results.More,about the three-term exponential sums,there were also some interesting results[17-19].

        Though the single value of C(m,n,k;q)is irregular,the high power means that value of C(m,n,k;q)owns graceful arithmetical properties and it in turn becomes an interesting focus for many attentions.In 2010,Liu[4]acquired the computational formula of the fourth mean value,i.e.,when p is an odd prime with(n,p)=1,then

        In 2011,Wang,Zhang[12]studied the computation problem of the fourth moment of two-term mixed exponential sums with elementary algebraic method.They proved that when p is a prime and(n,p)=1,then

        When p is a prime,(n,p)=1 and(3,p-1)=1,then p

        Unfortunately,though Liu,Wang got the explicit formulas ofwith k≥1,k=-1,1,2,3(mod(p-1)),the result under the condition k≥1,k≡5(mod(p-1)) was not solved.In this paper,this computation problem will be solved and the explicit formulas will be given.Moreover we shall give a transform formula and a lower bound formula for the fourth moment of two-term exponential sums.The main results are the following two theorems.

        Theorem 1.1 Let p be a prime with p≥5,(5,p-1)=1,n be an integer with (n,p)=1,then for k≥1,k≡5(mod(p-1)),we have

        Theorem 1.2 Let p be a prime with p≥3,(k,p-1)=1,n be an integer with (n,p)=1,then we have

        2 Preliminaries

        To prove the main results,necessary lemmas are listed and proved as below.

        Lemma 2.1 For arbitrary integers a,b,c,let p be an odd prime with(a,p)=1 and denote N1as the number of the solutions of the congruence equation ax2+bx+c≡0(mod p), then

        Proof From Theorem 3.5.1 in ref.[10],we immediately get the result.

        Lemma 2.2 Let p be an odd prime,N2denote the number of the solutions of the congruence equation c2-c+1≡0(modp),then

        And if p≡1,-5(mod12),1,p are not solutions.

        Proof Since(1,p)=1,by Lemma 2.1,we have

        In conclusion,we have

        And straight forward calculation shows that 1,p are not solutions.

        Proof See Theorem 7.8.2 in ref.[10].

        Lemma 2.4Let p be an odd prime,k be an odd positive integer anddenote the number of the solutions of the congruence equation

        where a,c are integers with 2≤a,c≤p-1,then we have Nk,p≥2p-5.

        Proof It is obviously to show that a≡c(mod p)is fi t for equation(2.1),now we consider the case c≡a(mod p).

        After substituting c≡a(mod p)into the left part of formula(2.1),we have

        Again,c≡a(mod p)is substituted into the right part of(2.1).Since k is an odd integer,then

        Therefore

        So c≡a(mod p)is also fi t for equation(2.1).

        Moreover a≡c(mod p)and a≡c(mod p)have the same solution(a,c)=(p-1,p-1). Hence Nk,p≥2p-5.

        Lemma 2.5Let p be a prime with p>3 and N3denote the number of the solutions of the congruence equation

        where a,c are integers with 2≤a,c≤p-1,then we have

        Proof Case 1For a fi xed c,2≤c≤p-1,if c2-c+1 6≡0(mod p),from Lemma 2.1, the number of the solutions of equation(2.2)is

        where 3 satis fi es 3·3≡1(mod p).If a≡1(mod p)satis fi es equation(2.2),then c≡1(mod p);If a≡0(mod p)satis fi es equation(2.2),then c2-c+1≡0(mod p),that contradicts.

        Case 2 For a fi xed c,2≤c≤p-1,if c2-c+1≡0(mod p),then equation(2.2)is (c2+1)a≡0(mod p),namely ca≡0(mod p),therefore congruence equation(2.2)has nosolution.So we have

        By using Lemma 2.3,we have

        Lemma 2.6 Let p be a prime,p>5 and N5,pdenote the number of the solutions of the congruence equation

        where a,c are integers with 2≤a,c≤p-1,then we have

        Proof By using factorization method,we know that equation(2.3)equivalents to

        Noting that p is a prime with p>5 and 2≤a,c≤p-1,we have

        where||denotes the number of the elements of the set.

        (a)It is obviously that S1∩S2={(p-1,p-1)}and thus|S1∩S2|=1.

        Now we can see that the case is similar to case(b).Therefore we have if p≡1(mod4),then |S2∩S3|=2;if p≡-1(mod4),then|S2∩S3|=0.So

        Lemma 2.7Let p be an odd prime with(n,p)=1 and(k,p-1)=1,then we have

        With the condition(n,p)=1 and from the trigonometric identity,

        3 Proof of the Theorems

        First we prove Theorem 1.1.

        Proof By Lemma 2.7,we have

        From Lemma 2.6,we have

        This proves Theorem 1.1.

        Finally we complete the proof of Theorem 1.2.

        Proof By Lemma 2.7 and Lemma 2.4,we have

        [1]Calderon C,Develasco M J,Zarate M J.An explicit formula for the fourth moment of certain exponential sums[J].Acta Math.Hungar,2011,130(3):203-222.

        [2]Darvenport H,Heibronn H.On an exponential sum[J].Proc.London Math.Soc.,1936,41:49-53.

        [3]Liu H N.Mean value of mixed exponential sums[J].Proc.Amer.Math.Soc.,2008,136(4):1193-1203.

        [4]Liu H N.Mean value of some exponential sums and applications to Kloosterman sums[J].J.Math. Anal.Appl.,2010,361(4):205-223.

        [5]Loxton J H,Smith R A.On Hua’s estimate for exponential sums[J].J.London Math.Soc.,1982, 26(2):15-20.

        [6]Loxton J H,Vaughan R C.The estimate for complete exponential sums[J].Canada Math.Bull., 1995,26(4):442-454.

        [7]Carlitz L.Explicit evaluation of certain exponential sums[J].Math.Scand.,1979,44:5-16.

        [8]Carlitz L.Evaluation of some exponential sums over a f i nite f i eld[J].Math.Nachr.,1980,96:319-339.

        [9]Hua L K.On exponential sums[M].Peking,N.S.:Sci.Record,1957.

        [10]Hua L K.Introduction to number theory[M].Beijing:Sci.Press,1979.

        [11]Smith R A.On n-dimensional Kloosterman sums[J].J.Number Theory,1979,11:324-343.

        [12]Wang T T,Zhang W P.Mean value of the mixed fourth and sixth exponential sums[J].China Sci., 2011,41(3):265-270.

        [13]Xu Z F,Zhang T P,Zhang W P.On the mean value of the two-term exponential sums with Dirichlet characters[J].J.Number Theory,2007,123(2):352-362.

        [14]Chen H,Chen J H,Cai G X,Ai X C,Zhang S L.Explicit formulas for the fourth moment of mixed exponential sums[J].J.Number Theory,2013,133(5):1484-1491.

        [15]Chen H,Ai X C,Cai G X.A note on mean value of mixed exponential sums[J].J.Number Theory, 2014,144(11):234-243.

        [16]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the fourth moment of certain two-term exponential sums[J].J.Comp.Model.New Tech.,2014,18(12A):232-239.

        [17]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the fourth moment of three-term exponential sums[A].2014 International Joint Conference on Applied Mathematics,Statistics and Public Administration(IJAMSPA 2014)[C].Changsha:ISBN:978-1-60595-187-4.

        [18]Ai X C,Chen J H,Zhang S L,Chen H.Researching the relation between the three-term exponential sums and the system of the congruence equations[J].J.Math.,2013,33(3):535-540.

        [19]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the mean value of high gauss sums.J. Math.,2015,35(4):941-944.

        二項(xiàng)指數(shù)和四次混合均值的計(jì)算

        艾小川1,陳華2,張四蘭3

        (1.海軍工程大學(xué)理學(xué)院應(yīng)用數(shù)學(xué)系,湖北武漢430033)
        (2.湖北工業(yè)大學(xué)理學(xué)院,湖北武漢430068)
        (3.華中農(nóng)業(yè)大學(xué)理學(xué)院,湖北武漢430070)

        本文研究了二項(xiàng)指數(shù)和四次均值的計(jì)算問(wèn)題.利用初等數(shù)論及代數(shù)數(shù)論的方法獲得了一個(gè)精確的計(jì)算公式以及一個(gè)轉(zhuǎn)換公式,推廣了已有的結(jié)果,揭示了均值計(jì)算與同余方程組的本質(zhì)聯(lián)系.

        二項(xiàng)指數(shù)和;混合均值;四次均值;轉(zhuǎn)換公式

        O156.2

        A

        0255-7797(2017)05-0945-11

        ?Received date:2015-09-06Accepted date:2015-11-25

        Supported by National Natural Science Foundation of China(61502156); NSF Grants of Naval University of Engineering(HGDQNSQJJ15001);NSF Grants of Hubei Province (2014CFB189).

        Biography:Ai Xiaochuan(1978-),female,born at Nanjing,Jiangsu,lector,major in number theory and cryptography.

        Chen Hua.

        2010 MR Subject Classif i cation:11T23;11T24

        猜你喜歡
        陳華理學(xué)院數(shù)論
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        一類(lèi)涉及數(shù)論知識(shí)的組合題的常見(jiàn)解法
        陳華莎、楊艷作品
        幾類(lèi)遞推數(shù)列的數(shù)論性質(zhì)
        陳華
        賴(lài)彬文
        數(shù)論中的升冪引理及其應(yīng)用
        西安航空學(xué)院專(zhuān)業(yè)介紹
        ———理學(xué)院
        沒(méi)有一只鳥(niǎo)會(huì)死在尋食的路上
        91国产精品自拍视频| 日本55丰满熟妇厨房伦| 精品一区二区av天堂| 亚洲国产精品午夜一区| 精品亚洲一区二区三区四区五| 精品久久久久久成人av| 波多野结衣亚洲一区二区三区| 久久久诱惑一区二区三区| 日本一区二区三级在线| 国产97在线 | 日韩| 亚洲精品久久久久久| 久久99久久99精品免视看国产成人| 国产精品毛片一区二区三区| 亚洲熟女综合色一区二区三区 | 先锋五月婷婷丁香草草| 十八岁以下禁止观看黄下载链接| 无码高潮久久一级一级喷水 | 亚洲毛片αv无线播放一区| 亚洲国产精品成人av| 人妻精品视频一区二区三区| 亚洲三级香港三级久久| 伊人久久精品无码二区麻豆| 色欲av亚洲一区无码少妇| 91日本在线精品高清观看| 女女同女同一区二区三区| 精品国产av一区二区三区| 国产激情视频白浆免费| 久久伊人网久久伊人网| 粉嫩国产av一区二区三区| 亚洲中文字幕在线观看| 亚洲AV综合久久九九| 精品国产精品久久一区免费| 亚洲狠狠婷婷综合久久久久| 亚洲视频一区| 国产三级视频在线观看视主播| 手机免费高清在线观看av| 久热国产vs视频在线观看| 久久AV中文一区二区三区 | XXXXBBBB欧美| 国产精品日本一区二区三区在线| 亚洲第一狼人天堂网亚洲av|