亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A CLASS OF PROJECTIVELY FLAT SPHERICALLY SYMMETRIC FINSLER METRICS

        2017-09-15 05:56:03CHENYaliSONGWeidong
        數(shù)學雜志 2017年5期
        關鍵詞:亞力安徽師范大學射影

        CHEN Ya-li,SONG Wei-dong

        (1.School of Environmental Science and Engineering,Anhui Normal University,Wuhu 241000,China)

        (2.School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

        A CLASS OF PROJECTIVELY FLAT SPHERICALLY SYMMETRIC FINSLER METRICS

        CHEN Ya-li1,SONG Wei-dong2

        (1.School of Environmental Science and Engineering,Anhui Normal University,Wuhu 241000,China)

        (2.School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

        In this paper,we investigate the construction of projectively f l at Finsler metrics. By analysing the solution of the spherically symmetric projectively f l at equation,we construct new examples of projectively f l at Finsler metrics,and obtain the projective factor and f l ag curvature of spherically symmetric Finsler metrics to be projectively f l at.

        projectively f l at;Finsler metric;spherically symmetric;projective factor;f l ag curvature

        1 Introduction

        It is an important problem in Finsler geometry to study and characterize projectively fl at Finsler metrics on an open domain in Rm.Hilbert’s 4th problem is to characterize the distance functions on an open subset in Rmsuch that straight lines are geodesics[5]. Regular distance functions with straight geodesics are projectively fl at Finsler metrics.A Finsler metric F=F(x,y)on an open subset U?Rmis projectively fl at if and only if it satis fi es the following equation

        In Finsler geometry,the fl ag curvature K(P,y)is an analogue of the sectional curvature in Riemannian geometry.It is known that every projective Finsler metric is of scalar curvature,namely,the fl ag curvature K(P,y)=K(y)is a scalar function of tangent vectors y.Shen discussed the classi fi cation problem on projective Finsler metrics of constant fl ag curvature[14].The second author provided the projective factor of a class of projectively fl at general(α,β)-metrics[12]and studied a necessary and sufficient condition for a class of Finsler metric to be projectively fl at[13].Li proved the locally projectively fl at Finsler metrics with constant fl ag curvature K are totally determined by their behaviors at theorigin by solving some nonlinear PDEs.The classif i cations when K=0,K=-1,K=1 are given in an algebraic way[15].

        For a Finsler metric F=F(x,y)on a manifold M,the geodesics c=c(t)of F in local coordinates(xi)are characterized by

        where(xi(t))are the coordinates of c(t)and Gi=Gi(x,y)are def i ned by

        For a tangent plane P?TpM and a non-zero vector y∈TpM,the f l ag curvature K(P,y)is def i ned by

        where P=span{y,u}.It is known that if F is projectively f l at,the spray coefficients of F are in the form Gi=Pyiwhere

        then F is of scalar curvature with f l ag curvature

        On the other hand,the study of spherically symmetric Finsler metrics attracted a lot of attention.Many known Finsler metrics are spherically symmetric[1,4,7,14,15,17].A Finsler metric F is said to be spherically symmetric(orthogonally invariant in an alternative terminology in[6])if F satisf i es

        for all A∈O(m),equivalently,if the orthogonal group O(m)acts as isometrics of F.Such metrics were f i rst introduced by Rutz[16].

        It was pointed out in[6]that a Finsler metric F on Bm(μ)is a spherically symmetric if and only if there is a function φ:[0,μ)×R→R such that

        where(x,y)∈TRm(μ){0}.The spherically symmetric Finsler metric of form(1.3)can be rewritten as the following form[8]

        Spherically symmetric Finsler metrics are the simplest and most important general (α,β)-metrics[4].Mo,Zhou and Zhu classif i ed the projective spherically symmetric Finsler metrics with constant f l ag curvature in[2,9,10].A lot of spherically symmetric Finsler metrics with nice curvature properties were investigated by Mo,Huang and et al.[3,6-11].

        An important example of projectively f l at Finsler metric was given by Berwald.It can be written as

        on the unit ball?Rm,where y∈TxBm?Rm.It could also be expressed as

        where

        Inspired by the Berwald metric,we try to f i nd the solution of the projectively f l at eq.(1.1) in the following forms

        where

        Through caculations,we have the following conclusions.

        Theorem 1.1 Let φ(t,s)be a function def i ned by

        and f0(t)is a dif f erentiable function which satisf i es

        where b,C1,C2are constants and φ1is an any continuous function,φ0is a polynomial function of N degree wheredenotes the j-order derivative for φ0(t),φ(t,s)needs to satisfy φ-sφs>0,when m=2.Moreover,the additional equality holds

        when m≥3.Then the following spherically symmetric Finsler metric on Bm(μ)

        is projectively fl at.

        and its f l ag curvature K is given by

        2 The Solutions of the Hamel Equation

        In this section,we will construct a lot of projectively fl at Finsler metrics which contains the Berwald metric.From[8],we know that

        Consider the spherically symmetric Finsler metricwhere φ=φ(t,s)is given by φ(t,s)=By a direct caculation,we get

        Plugging(2.2),(2.3),(2.4)into(2.1),the following equation is deduced,

        It is equivalent to

        When j=0,from the f i rst equation of(2.7),we get

        Similarity,taking j=1 and j=2,we obtain

        If k=j+2,the f i rst equation of(2.7)is equivalent to

        It is easy to see the recurrence fomula on φk(t)and φ′k(t),

        If k=odd,k≥3,then by(2.11),

        If k=even,k≥4,we have

        Case 1 k=odd≥5,setting l=2n+1,by the second equation of(2.7),

        then it follows from(2.1),(2.12),(2.13),(2.14),

        Case 2 k=even≥4,setting l=2n+2,by the second equation of(2.7),

        then it follows from(2.1),(2.12),(2.13),(2.16),

        The case l∈{1,2,3}is similar.Through the above analysis,we obtain the following.

        Multiplying g-ron the both sides of(2.24),then

        From(2.25),we obtain the following equationsSubstituting the fourth equation of(2.34)into the third equation of it,we have f4(t)=0. From(2.30),we obtain

        Dif f erentiating(2.35),we get

        Substituting(2.35),(2.36)into the f i rst equation of(2.34),we obtain that f0(t)satisf i es

        Solving(2.37),we have

        Plugging(2.39)into(2.32),we obtain

        If r=4,f′0(t)=0,from(2.30),

        Thus f0(t)and f2(t)can’t be constants at the same time,so in this case,r 6=4,together with(2.39),(2.40),(2.41),we know that f2(t)needs to satisfy the following

        Through(2.42),we get that f0(t)needs to satisfy

        From the f i rst equation of(2.43),

        where C1is a constant.But the f0(t)in(2.44)doesn’t satisfy the second equation of(2.43) only if r=1,thus we can get the following proposition.

        and f0(t)=C1(-1+2t),where b,C1are constants.

        Case 3 r 6=2,f4(t)6=0.In this case,from the f i rst equation of(2.30),

        Dif f erentiating(2.45),we have

        From(2.32),we get

        Dif f erentiating(2.48),we obtain

        Plugging(2.33)into(2.31),we have

        Thus from(2.50),no matter r=1 or not,

        Combining the fourth equation of(2.33)and(2.51),we obtain that f0(t)satisf i es

        Solving the f i rst equation of(2.52),we get

        Solving the second equation of(2.52),we know

        If r=1,C3=C6=0,two equations of(2.52)have the same solutions.Thus we have the following proposition.

        and f0(t)=are constants.

        3 Proof of Theorems

        φ(t,s)in Propositions 2.2,2.3,2.4 can’t ensure that F=|y|is a Finsler metric.In order to obtain projectively fl at Finsler metric,φ(t,s)in Propositions 2.2-2.4 needs to satisfy the necessary and sufficient condition for Fto be a Finsler metric for any α and β with kβxkα<b0given by Yu and Zhu[4].In particular,considering F=|y|=|y|φ(t,s),then F is a Finsler metric if and only if the positive function φ satis fi es

        when m≥3 or

        when m=2.

        Proof of Theorem 1.1 Combine Proposition 2.2,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

        Proof of Theorem 1.2 Combine Proposition 2.3,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

        Proof of Theorem 1.3 Combine Proposition 2.4,(3.1),(3.2)and the fundamental property of the projectively f l at equation(2.1).

        Proof of Theorem 1.4 Suppose that

        Direct computations yield that

        where we use of(3.3).By(3.3),(3.4),we get the following lemma.

        Lemma 3.1 Let f=f(r,t,s)be a function on a domain U?R3.Then

        Note that siand riare positively homogeneous of degree 0 and 1.Hence

        and we get

        Thus from(3.7),(3.8),we have F0=Fxiyi=r2(φs+sφt),

        Dif f erentiating(3.9),we know

        From(3.7),(3.10),we obtain

        Thus using(3.9),(3.11),we have

        Theorem 1.4 can be achieved.

        [1]Chern S S,Shen Z M.Riemann-Finsler geometry[M].Hackensack,NJ:World Sci.Publ.Co.Pvt. Ltd.,2005.

        [2]Mo Xiaohuan,Zhou Linfeng.The curvatures of spherically symmetric Finsler metrics in Rn[J]. Trans.Res.Board 91st Ann.Meet.,2012,139:94-103.

        [3]Huang Libing,Mo Xiaohuan.On spherically symmetric Finsler metrics of scalar curvature[J].J. Geom.Phy.,2012,62(11):2279-2287.

        [4]Yu Changtao,Zhu Hongmei.On a new class of Finsler metrics[J].Dif f.Geom.Appl.,2011,29(2):244-254.

        [5]Hilert D.Mathematical problems[J].Bull.Amer.Math.Soc.,2001,37:407-436.Reprinted from Bull.Amer.Math.Soc.,1902,8:437-439.

        [6]Huang Libing,Mo Xiaohuan.Projectively f l at Finsler metrics with orthogonal invariance[J].Ann. Polon.Math.,2013,107:259-270.

        [7]Yu Changtao.On dually f l at Randers metrics[J].Nonl.Anal.:The.Meth.Appl.,2014,95:146-155.

        [8]Huang Libing,Mo Xiaohuan.On some explicit constructions of dually f l at Finsler metrics[J].J. Math.Anal.Appl.,2013,405(2):565-573.

        [9]Zhou Linfeng.Projective spherically symmetric Finsler metrics with constant f l ag curvature in Rn[J]. Geom.Dedicata,2012,158(1):353-364.

        [10]Mo Xiaohuan,Zhu Hongmei.On a class of projectively f l at Finsler metrics of negative constant f l ag curvature[J].Intern.J.Math.,2012,23(8):84-85.

        [11]Guo Enli,Liu Huaifu,Mo Xiaohuan.On spherically symmetric Finsler metrics with isotropic Berwald curvature[J].Intern.J.Geom.Meth.Modern Phy.,2013,10(10):603-610.

        [12]Song Weidong,Wang Xingshang.A new class of Finsler metrics with scalar f l ag curvature[J].J. Math.Res.Appl.,2012,32(4):485-492.

        [13]Song Weidong,Zhu Jingyong.A class of projectively f l at Finsler metrics[J].J.Math.Res.Appl., 2013,33(6):737-744.

        [14]Shen Zhongmin.Projectively f l at Finsler metrics of constant f l ag curvature[J].Trans.Amer.Math. Soc.,2003,355(4):1713-1728.

        [15]Li Benling.On the classif i cation of projectively f l at Finsler metrics with constant f l ag curvature[J]. Adv.Math.,2014,257(2):266-284.

        [16]Rutz S.Symmetry in Finsler spaces[J].Contem.Math.,1996,196:289-300.

        [17]Chen Yali,Song Weidong.A class of dually f l at spherically symmetric Finsler metrics[J/OL].J. Math.,http://www.cnki.net/kcms/detail/42.1163.O1.20150409.1408.002.html.

        一類射影平坦的球對稱的芬斯勒度量

        陳亞力1,宋衛(wèi)東2

        (1.安徽師范大學環(huán)境科學與工程學院,安徽蕪湖241000)
        (2.安徽師范大學數(shù)學計算機科學學院,安徽蕪湖241000)

        本文研究了射影平坦芬斯勒度量的構造問題.通過分析射影平坦的球對稱的芬斯勒度量的方程的解,構造了一類新的射影平坦的芬斯勒度量,并得到了射影平坦的球對稱的芬斯勒度量的射影因子和旗曲率.

        射影平坦;芬斯勒度量;球對稱;射影因子;旗曲率

        O186.1

        A

        0255-7797(2017)05-0932-13

        ?Received date:2015-04-21Accepted date:2015-12-09

        Supported by the National Natural Science Foundation of China(11071005); the Research Culture Funds of Anhui Normal University(2016XJJ017).

        Biography:Chen Yali(1990-),femal,born at Wuhu,Anhui,master,major in dif f erential geometry and its applications.

        2010 MR Subject Classif i cation:53B40;53C60;58B20

        猜你喜歡
        亞力安徽師范大學射影
        《安徽師范大學學報》(人文社會科學版)第47卷總目次
        梁亞力
        梁亞力山水畫的文學性
        三參數(shù)射影平坦芬斯勒度量的構造
        Hemingway’s Marriage in Cat in the Rain
        亞力在吵誰?
        《安徽師范大學學報( 自然科學版) 》2016 年總目次
        基于已有控制資料的正射影像自動更新
        遙感信息(2015年3期)2015-12-13 07:26:50
        基于改進射影控制的柔性直流輸電廣域阻尼控制
        大比例尺真正射影像遮擋檢測和補償
        日本道免费一区日韩精品| 我爱我色成人网| 亚洲av综合色区无码一二三区| 手机看片福利盒子久久青| 国产亚洲三级在线视频| 在线日本国产成人免费精品| 国产色系视频在线观看| 亚洲精品国产成人| 精品少妇爆乳无码aⅴ区| 久久蜜桃一区二区三区| 国产青青草在线观看视频| 成人欧美一区二区三区| 在线综合网| 国产亚洲一区二区三区三州| 亚洲av无一区二区三区| 中文字幕乱码一区av久久不卡| 亚洲AV无码一区二区三区人| 国产精品久久一区性色a| 国产一区二区三区日韩在线观看| 亚洲无线码一区二区三区| 国产精品一区二区久久精品| 成人免费丝袜美腿视频| 中国男男女在线免费av| 69一区二三区好的精华| 久久频道毛片免费不卡片| 中文字幕视频二区三区| 国产在线高清理伦片a| 国产成人无码一区二区在线观看| 男女好痛好深好爽视频一区| 日本女同视频一区二区三区| 久久99国产精品久久| 亚洲av无码成人精品区在线观看 | 狠狠久久av一区二区三区| 国产免费牲交视频| 无码国产色欲xxxxx视频| 精品综合久久久久久99| 中文字幕人妻精品一区| 性生交片免费无码看人| 无码AV高潮喷水无码专区线| 日本五十路熟女在线视频| 国产青青草在线观看视频|