亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ESTIMATION OF GROWTH OF MEROMORPHIC SOLUTIONS OF SECOND ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

        2017-09-15 05:56:08ZHANGJianjunYUANWenjun
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:張建軍廣州大學(xué)二階

        ZHANG Jian-jun,YUAN Wen-jun

        (1.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        (2.School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China)

        ESTIMATION OF GROWTH OF MEROMORPHIC SOLUTIONS OF SECOND ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

        ZHANG Jian-jun1,YUAN Wen-jun2

        (1.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        (2.School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China)

        In this paper,we investigate the growth order of meromorphic solution of algebraic dif f erential equations.By using normal family theory,we give an estimation of the growth order of meromorphic solutions of certain class of second order algebraic dif f erential equations,which depend on the degrees of rational function coefficients of the equations,and generalize a result by Liao Liangwen and Yang Chungchun(2001).

        algebraic dif f erential equations;meromorphic functions;growth order

        1 Introduction

        Let f(z)be a function meromorphic in the complex plane C.We assume that the reader is familiar with the standard notations and results in Nevanlinna’s value distribution theory of meromorphic functions(see e.g.[1-3]).We denote the order of f(z)by ρ(f).

        As one knows,it was one of the important topics to research the algebraic dif f erential equation of Malmquist type.In 1913,Malmquist[4]gave a result for the f i rst order algebraic dif f erential equations.In 1933,Yosida[5]proved the Malmquist’s theorem by using the Nevanlinna theory.In 1970s,Laine[6],Yang[7]and Hille[8]gave a generalization of Malmquist’s theorem.Later,Steinmetz[9],Rieth[10]and He-Laine[11]all gave corresponding generalizations of Malmquist’s theorem for the f i rst order algebraic dif f erential equations. In 1980,Gackstatter and Laine[12]gave a generalized result of Malmquist’s theorem for some certain type of higher order algebraic dif f erential equations.However,Malmquist type theorem for an arbitrary second order algebraic dif f erential equation remains open.For a second

        order algebraic dif f erential equation

        where R is a rational function in z,f and f′,a classical and unsolved conjecture is the following.

        Conjecture 1.1(see[3])If equation(1.1)has a transcendental meromorphic solution, then the equation can be reduced into the form

        where Li(z,f)(i=0,1,2)are rational functions in their variables.

        In 2011,Gao,Zhang and Li[13]studied the problem of growth order of solutions of a type of non-linear algebraic dif f erential equations.In 2001,Liao and Yang[14]considered the f i nite order of growth of the meromorphic solutions of equation(1.2)and obtained the following result.

        Theorem ALet f be a meromorphic solution of equation(1.2).Further assume that L2(z,f)6≡0 in equation(1.2)and has the form

        where ai(z),bj(z)(s≤i≤n,r≤j≤m)are rational functions.If m-n<1 or r-s>1, then ρ(f)<∞.

        RemarkThe conditions m-n<1 and r-s>1 in Theorem A cannot be omitted simultaneously.Liao and Yang[14]gave a simple example to show it.

        The paper is organized into 3 sections.After introduction some basic concepts and lemmas will be given in Section 2.In Section 3,we will give the main results.

        2 Preliminaries

        Let D be a domain in C.We say that a family F of meromorphic functions in D is normal,if each sequence{fn}?F contains a subsequence which converges locally uniformly by spherical distance to a meromorphic function g(z)in D(g(z)is permitted to be identically inf i nity).In this paper,we denote the spherical derivative of meromorphic function f(z)by f](z),where

        and def i ne

        For convenience,we still assume thatrewrite equation(1.2)into

        where M(z,f)=Q(z,f)L1(z,f),N(z,f)=Q(z,f)L0(z,f),P,Q are de fi ned as in Theorem A.

        We denote the largest number of the degrees at inf i nity of all the rational function coefficients in variable z concerning L(z,f)by degz,∞L(z,f).Denoting

        where P(z,f),Q(z,f)are two polynomials in f with rational function coefficients,M(z,f) and N(z,f)are rational functions in variable z and f.

        The following lemmas will be needed in the proof of our results.Lemma 2.1 is a result of Zalcman concerning normal families.

        Lemma 2.1(see[15])Let F be a family of meromorphic functions on the unit disc,α is a real number.Then F is not normal on the unit disc if and only if there exist,for each -1<α<1,

        a)a number r,0<r<1;

        b)a sequence points{wk},|wk|<r; c)a sequence{fk}k∈N?F;

        d)a positive sequence{ρk},ρk→0

        The next lemma is a generalization of the Lemma 2 in[16]of Yuan et al.

        Lemma 2.2Let f(z)be meromorphic in the complex plane,ρ:=ρ(f)>2,then for any positive constants ε>0 and 0<λ<,there exist points zk→∞(k→∞),such that

        ProofSuppose that the conclusion of Lemma 2.2 is not true,then there exist a positive number M>0,such that for arbitrary z∈C,we have

        Thus we obtain an estimation of Ahlfors-Shimizu characteristic function

        Therefore,the order of f(z)can be estimated as ρ≤2+,namely,λ≥This is a contradiction with the choice of λ.

        Lemma 2.3(see[17])Let f(z)be holomorphic in the complex plane,σ>-1.If f](z)=O(rσ),then T(r,f)=O(rσ+1).

        The result of Lemma 2.4 is more sharper than Lemma 2.2 when f(z)is an entire function.

        Lemma 2.4Let f(z)be holomorphic in the complex plane,ρ:=ρ(f)>1,then for any positive constants ε>0 and 0<λ<(ρ-1)ε,there exist points zk→∞,as k→∞, such that

        ProofSuppose that the conclusion of Lemma 2.4 is not true,then there exist a positive number M>0,such that for arbitrary z∈C,we havenamely,.By Lemma 2.3,we have

        Therefore the order of f(z)can be estimated as ρ≤1+λε,namely,λ≥(ρ-1)ε.This is a contradiction with the choice of λ.

        3 Main Results

        We are now giving our main results as follows.

        Theorem 3.1Let f be a meromorphic solution of equation(2.1).Further assume that6≡0 in equation(2.1),M(z,f)6≡0,N(z,f)6≡0 are birational functions and have following forms

        where cj1(z)(t1≤j1≤q1),dj2(z)(t2≤j2≤q2),ej3(z)(t3≤j3≤q3)and uj4(z)(t4≤j4≤q4)are rational functions,ct1(z)6≡0,dt2(z)6≡0,et3(z)6≡0 and ut4(z)6≡0,then

        By Lemma 2.2 we know that forthere exist points zk→∞,as k→∞,such that

        This implies that the family{f(zk+z)}k∈Nis not normal at z=0.Then by Lemma 2.1, there exist a sequence{βk}and a positive sequence{ρk}such that

        and gk(ζ):=converges locally uniformly to a nonconstant meromorphic function g(ζ).In particular,we may choose βkand ρk,such that

        According to(3.1),(3.2)and(3.3),we can get the following conclusion.

        For positive constant α and any constant 0≤λ<we have

        Substituting βk+ρkζ for z in(2.1),we have

        Case 2 r-s>1.We choose α such that 0<α<minand assume that

        Then there exist a sequence{βk}and a positive sequence{ρk}satisfying

        such that hk(ζ)=ρ-αkf(βk+ρkζ)converges locally uniformly to a nonconstant meromorphic function h(ζ).By similar argument as in Case 1,we can obtain

        Hence h is a constant,which is a contradiction.Thus we have completed the proof of Theorem 3.1.

        Similarly,from the proof of Theorem 3.1 and Lemma 2.4,we have

        Corollary 3.2Let f be an entire solution of equation(2.1).Further assume that≡0 in equation(2.1),M(z,f)6≡0,N(z,f)6≡0 are birational functions and have the forms

        where cj1(z)(t1≤j1≤q1),dj2(z)(t2≤j2≤q2),ej3(z)(t3≤j3≤q3)and uj4(z)(t4≤j4≤q4)are rational functions,ct1(z)6≡0,dt2(z)6≡0,et3(z)6≡0,ut4(z)6≡0,then

        -s>1

        .

        Remark In Theorem 3.1 and Corollary 3.2,if m-n<1,M(z,f)≡0 and N(z,f)6≡0, then for arbitrary 0<α<minthe results of Theorem 3.1 and Corollary 3.2 are also true.Similarly,if m-n<1,M(z,f)6≡0 and N(z,f)≡0,then we may choose any 0<α<min{}.If r-s>1,M(z,f)≡0 and N(z,f)6≡0,then we may choose any 0<α<min{,1}.If r-s>1,M(z,f)6≡0 and N(z,f)≡0,then we may choose any 0<α<min{,1}.If M(z,f)=N(z,f)≡0,m-n<1 or r-s>1, then we may choose any 0<α<1.

        ExampleThere exists the entire function f(z)=ezn(n≥1)such that it is of order n and satis fi es the following second-order di ff erential equation

        where degz,∞a=2(n-1)and 0<α<1,then the order of any meromorphic solution f of equation(3.6)can be estimated as ρ(f)≤2+and the order of any entire solution f of equation(3.6)can be estimated as ρ(f)by Theorem 3.1 and Corollary 3.2,respectively.In particular,the estimation of growth order of entire solution is sharp when n=1.

        [1]Cherry W,Ye Z.Nevanlinna’s theory of value distribution[M].Monogr.Math.,Berlin:Springer-Verlag,2001.

        [2]Hayman W K.Meromorphic functions[M].Oxford:Clarendon Press,1964.

        [3]Laine I.Nevanlinna theory and complex dif f erential equations[M].Berlin,New York:Walter de Gruyter,1993.

        [4]Malmquist J.Sur les fonctions`a un nombre f i ni des branches d′ef i nies par les′equations dif f′erentielles du premier ordre[J].Acta Math.,1913,36:297-343.

        [5]Yosida K.A generalisation of Malmquist’s theorem[J].J.Math.,1932,9:253-256.

        [6]Laine I.On the behavior of the solutions of some f i rst order dif f erential equations[J].Ann.Acad. Sci.Fenn.Ser.A,1971,497:1-26.

        [7]Yang Chungchun.A note on Malmquist’s theorem on f i rst order dif f erential equations[J].Yokohama Math.J.,1972,20(2):115-123.

        [8]Hille E.On some generalizations of the Malmquist theorem[J].Math.Scand.,1976,39:59-79.

        [9]Steinmetz N.Eigenschaften eindeutiger L¨osungen gew¨ohnlicher dif f erentialgleichungen in komplexen[D].Karlsruhe:Dissertation,1978.

        [10]Rieth J V.Untersuchungen gewisser Klassen gew¨ohnlicher dif f erentialgleichungen erster und zweiter ordnung im komplexen[D].Aachen:Doctoral Dissertation,Technische Hochschule,1986.

        [11]He Y Z,Laine I.The Hayman-Miles theorem and the dif f erential equation(y0)n=R(z,y)[J].Anal., 1990,10(4):387-396.

        [12]Gackstatter F,Laine I.Zur theorie der gew¨ohnlichen dif f erentialgleichungen im komplexen[J].Ann. Polon.Math.,1980,38:259-287.

        [13]Gao Lingyun,Zhang Yu,Li Haichou.Growth of solutions of complex non-linear algebraic dif f erential equations[J].J.Math.,2011,31(5):785-790.

        [14]Liao Liangwen,Yang Chungchun.On the growth of meromorphic and entire solutions of algebraic dif f erential equations[J].Ann.Mat.Pura Appl.,2001,IV(CLXXIV):149-158.

        [15]Zalcman L.Normal families:new perspectives[J].Bull.Amer.Math.Soc.,1998,35:215-230.

        [16]Yuan Wenjun,Xiao Bing,Zhang Jianjun.The general result of Gol’dberg’s theorem concerning the growth of meromorphic solutions of algebraic dif f erential equations[J].Compu.Math.Appl.,2009, 58:1788-1791.

        [17]Clunie J,Hayman W K.The spherical derivative of integral and meromorphic functions[J].Comment.Math.Helv.,1966,40(1):117-148.

        二階代數(shù)微分方程亞純解的增長性估計(jì)

        張建軍1,袁文俊2

        (1.江蘇第二師范學(xué)院數(shù)學(xué)與信息技術(shù)學(xué)院,江蘇南京210013)
        (2.廣州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,廣東廣州510006)

        本文研究了代數(shù)微分方程亞純解的增長級(jí).運(yùn)用正規(guī)族理論,給出了某類二階代數(shù)微分方程亞純解的增長級(jí)的一個(gè)估計(jì),該估計(jì)依賴于方程的有理函數(shù)系數(shù).推廣了2001年廖良文與楊重駿的一個(gè)結(jié)果.

        代數(shù)微分方程;亞純解;增長級(jí)

        O174.5

        A

        0255-7797(2017)05-0925-07

        ?Received date:2016-08-19Accepted date:2016-08-31

        Supported by Natural Science Foundation of Jiangsu Province(BK20140767); Natural Science Foundation of the Jiangsu Higher Education Institutions(14KJB110004);Qing Lan Project of Jiangsu Province.

        Biography:Zhang Jianjun(1982-),male,born at Taixing,Jiangsu,associate professor,major in complex analysis.

        2010 MR Subject Classif i cation:34A34;30D35

        猜你喜歡
        張建軍廣州大學(xué)二階
        廣州大學(xué)作品選登
        Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
        頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
        一類二階迭代泛函微分方程的周期解
        A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
        一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
        二階線性微分方程的解法
        A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
        一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
        巧用反例在概率論教學(xué)中的作用
        日韩中文字幕欧美亚洲第一区| 日韩中文字幕在线观看一区| 风韵丰满熟妇啪啪区老熟熟女| av一区二区三区人妻少妇| 国内精品一区视频在线播放 | 国产精品涩涩涩一区二区三区免费 | 美女精品国产一区二区三区| 激情视频在线观看好大| 摸丰满大乳奶水www免费| 一二三四视频社区在线| 国产一级黄色录像| av在线不卡一区二区三区| 精品一二三四区中文字幕| 精品国产一区二区三区av片| 日韩免费一区二区三区在线| 久久精品av一区二区免费| 中文字幕亚洲熟女av| 欧美成人免费全部| 久久久AV无码精品免费| 精品久久精品久久精品| 亚洲精品电影院| 日韩欧美在线综合网| 欧美亚洲国产丝袜在线| 亚洲精品第四页中文字幕| 疯狂添女人下部视频免费| 久久韩国漫画无删减漫画歪歪漫画| 国产一区二区三区视频了| 青青草精品在线视频观看| 狠狠噜天天噜日日噜视频麻豆| 亚洲都市校园激情另类| 亚洲国产一区二区视频| 白丝爆浆18禁一区二区三区| 丝袜足控一区二区三区| 国产综合一区二区三区av| 亚洲综合av大全色婷婷| 中国老熟妇自拍hd发布| 偷拍网日本一区二区三区| 国产av天堂一区二区二区| 亚洲一区二区三区av无码| 亚洲成人777| 视频一区二区三区国产|