亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

        2017-09-15 05:55:57FENGFengxiangWANGDingchengWUQunying
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:理學(xué)院群英電子科技

        FENG Feng-xiang,WANG Ding-cheng,WU Qun-ying

        (1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

        (2.College of Science,Guilin University of Technology,Guilin 541004,China)

        COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES

        FENG Feng-xiang1,2,WANG Ding-cheng1,WU Qun-ying2

        (1.School of Mathematical Science,University of Electronic Science and Technology of China, Chengdu 611731,China)

        (2.College of Science,Guilin University of Technology,Guilin 541004,China)

        In this article,we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent(m-NSD)random variables.By using Kolmogorov-type exponential inequality for m-NSD random variables,we obtain complete convergence theorems for arrays of rowwise m-NSD random variables,which generalize those on complete convergence theorem previously obtained by Hu et al.(1998)and Sung et al.(2005)from independent distributed case to m-NSD arrays.Our results also extend the corresponding results of Chen et al.(2008),Hu et al.(2009),Qiu et al.(2011)and Wang et al.(2014).

        Kolmogorov-type exponential inequality;complete convergence;m-NSD random variables

        1 Introduction

        We f i rst introduce some concepts of dependent random variables.The concept of negatively associated(abbreviated to NA in the following)random variables was introduced by Joag-Dev and Proschan[1].

        Def i nition 1.1A f i nite family of random variables{Xi;1≤i≤n}is said to be NA if for every pair of disjoint subsets A,B?{1,2,···,n},

        whenever f and g are coordinatewise nondecreasing functions such that this covariance exists. An inf i nite family of random variables is NA if every f i nite subfamily is NA.

        Def i nition 1.2(see[2])A function φ:Rn→R is called superadditive if φ(x∨y)+ φ(x∧y)≥φ(x)+φ(y)for all x,y∈Rn,where∨is for componentwise maximum and∧is for componentwise minimum.

        The concept of negatively superadditive-dependent(abbreviated to NSD in the following)random variables was introduced by Hu[3]as follows.

        Def i nition 1.3A random vector X=(X1,X2,···,Xn)is said to be NSD if

        Hu[3]gave an example illustrating that NSD does not imply NA.Christof i des and Vaggelatou[4]indicated that NA implies NSD.

        Hu et al.[5]introduced the concept of m-negatively associated random variables as follows.

        Def i nition 1.4 Let m≥1 be a f i xed integer.A sequence of random variables{Xn;n≥1}is said to be m-negatively associated(abbreviated to m-NA in the following)if for any n≥2 and i1,···,insuch thatm for all 1≤k 6=j≤n,we have that Xi1,···,Xinare NA.

        The concept of m-NA random variables is a natural extension from NA random variables (wherein m=1).

        Similarly,we can def i ne m-NSD random variables.

        Def i nition 1.5Let m≥1 be a f i xed integer.A sequence of random variables {Xn;n≥1}is said to be m-negatively superadditive-dependent(abbreviated to m-NSD in the following)if for any n≥2 and i1,···,insuch that|ik-ij|≥m for all 1≤k 6=j≤n, we have that(Xi1,···,Xin)is NSD.

        Hsu and Robbins[6]introduced the concept of complete convergence of a sequence of random variables.Hu et al.[7]proposed the following general complete convergence of rowwise independent arrays of random variables.

        Theorem ALet{Xni;1≤i≤kn,n≥1}be an array of rowwise independent random variables and{cn}be a sequence of positive real numbers.Suppose that for every ε>0 and some δ>0,

        The proof of Hu et al.[7]is mistakenly based on the fact that the assumptions of Theorem A imply convergence in probability of the corresponding partial sums.Hu and Volodin[8]and Hu et al.[9]presented counterexamples to this proof.They mentioned that whether Theorem A was true remained open.Since then many authors attempted to solve this problem.Hu et al.[9]and Kuczmaszewska[10]gave partial solution to this question. Sung et al.[11]completely solved this problem by using a symmetrization procedure and Kruglov et al.[12]obtained the complete convergence for maximum partial sums by using a submartingale approach.

        Recently,Chen et al.[13]extended Theorem A to the case of arrays of rowwise NA random variables and obtained the complete convergence for maximum partial sums.Hu et al.[5]obtained complete convergence for maximum partial sums similar to Theorem A for arrays of rowwise m-NA random variables.Qiu et al.[14]obtained similar result for arrays of rowwise ND random variables.Wand et al.[15]extended and improved Theorem A for NSD arrays.Qiu[16]obtained similar result for weighted sums of NA random variables. The main purpose of this article is to generalize and improve Theorem A for the case of arrays of rowwise m-NSD random variables.

        2 Main Results

        Theorem 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables and{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

        From Theorem 2.1,we can obviously obtain the following corollary.

        Corollary 2.1Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables.If conditions(i)and(ii)of Theorem 2.1 and

        Theorem 2.2Let{Xni;1≤i≤kn,n≥1}be an array of rowwise m-NSD random variables with EXni=0 and EX2ni<∞for 1≤i≤kn,n≥1.Let{cn}be a sequence of positive real numbers.Assume that for every ε>0 and some δ>0,

        Remark 1Corollary 2.1 shows that the main results of Hu et al.[7]and Sung et al. [11]remain true for m-NSD random variables.We generalize the corresponding complete convergence theorems from the independent case to m-NSD arrays without adding any extra conditions.

        Remark 2In Theorem 2.2,we only need conditions(i)and(ii)of Corollary 2.1. Condition(iii)of Corollary 2.1 is not needed.Therefore Theorem 2.2 extends and improves the corresponding results of Hu et al.[7]and Sung et al.[11].In addition,our results also extend the corresponding results of Chen et al.[13],Hu et al.[5],Qiu et al.[14]and Wang et al.[15].When m=1,from Theorem 2.1 and Theorem 2.2,we can obtain the results of Theorem 3.3 and Theorem 3.2 of Wand et al.[15],respectively.We mention that Theorem 2.1 of this paper not only extends the results of Wand et al.[15]but also we have a simpler proof.More precisely,we only divide the sum into two parts in our proof instead of into four parts as was in the paper of Wand et al.[15].

        Throughout this paper,C denotes a positive constant which may dif f er from one place to another.

        3 Proofs of Main Results

        In order to prove our results,we need the following lemmas.

        Lemma 3.1(cf.Wand et al.[15],Lemma 2.4)Let{Xn;n≥1}be a sequence of NSD random variables with EXn=0 and EX2n<∞,n≥1.Let

        Then for all x>0,a>0,

        Lemma 3.2 Let{Xn;n≥1}be a sequence of m-NSD random variables with EXn=0 and EX2n<∞,n≥1.LetTherefore by Lemma 3.2,the conclusion holds.

        Proof of Theorem 2.1Let Yni=δI{Xni>δ}+XniI{|Xni|≤δ}-δI{Xni<-δ} and Y′ni=δI{Xni>δ}-δI{Xni<-δ}and 1≤i≤kn,n≥1.{Yni,1≤i≤kn,n≥1} is an array of rowwise m-NSD random variables.Note that

        [1]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Stat., 1983,11:286-295.

        [2]Kemperman J H B.On the FKG-inequalities for measures on a partially ordered space[J].Proc. Akad.Wetenschappen,Ser.A.,1997,80:313-331.

        [3]Hu T Z.Negatively superadditive dependence of random variables with applications[J].Chinese J. Appl.Prob.Stat.,2000,16:133-144.

        [4]Christof i des T C,Vaggelatou E.A connection between supermodular ordering and positive/negative association[J].J.Multi.Anal.,2004,88:138-151.

        [5]Hu T C,Chiang C Y,Taylor R L.On complete convergence for arrays of rowwise m-negatively associated random variables[J].Nonl.Anal.,2009,71:1075-1081.

        [6]Hsu P,Robbins H.Complete convergence and the law of large numbers[J].Proc.Natl.Acad.Sci. USA.,1947,33:25-31.

        [7]Hu T C,Szynal D,Volodin A.A note on complete convergence for arrays[J].Stat.Prob.Lett.,1998, 38:27-31.

        [8]Hu T C,Volodin A.Addendum to“A note on complete convergence for arrays”[J].Stat.Prob. Lett.,2000,47:209-211.

        [9]Hu T C,Ord′o?nez Cabrera M,Sung S H,Volodin A.Complete convergence for arrays of rowwise independent random variables[J].Commun.Korean Math.Soc.,2003,18:375-383.

        [10]Kuczmaszewska A.On some conditions for complete convergence for arrays[J].Stat.Prob.Lett., 2004,66:399-405.

        [11]Sung S H,Hu T C,Volodin A I.More on complete convergence for arrays[J].Stat.Prob.Lett., 2005,71:303-311.

        [12]Kruglov V M,Volodin A I,Hu T C.On complete convergence for arrays[J].Stat.Prob.Lett.,2006, 76:1631-1640.

        [13]Chen PY,Hu T C,Liu X,Volodin A.On complete convergence for arrays of row-wise negatively associated random variables[J].The.Prob.Appl.,2008,52(2):323-328.

        [14]Qiu Dehua,Chang Kuangchao,Antonini R G,Volodin A.On the strong rates of convergence for arrays of rowwise negatively dependent random variables[J].Stoch.Anal.Appl.,2011,29:375-385.

        [15]Wang Xuejun,Deng Xin,Zheng Lulu,Hu Shuhe.Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J].Stat.J.Theo.Appl. Stat.,2014,48(4):834-850.

        [16]Qiu Dehua.Complete convergence for arrays of rowwise NA random variables[J].J.Math.,2013, 33(1):138-146.

        行m-NSD隨機(jī)變量陣列的完全收斂性

        馮鳳香1,2,王定成1,吳群英2

        (1.電子科技大學(xué)數(shù)學(xué)科學(xué)學(xué)院,四川成都611731)
        (2.桂林理工大學(xué)理學(xué)院,廣西桂林541004)

        本文研究了行m-NSD隨機(jī)變量陣列的完全收斂性問題.主要利用m-NSD隨機(jī)變量的Kolmogorov型指數(shù)不等式,獲得了行m-NSD隨機(jī)變量陣列的完全收斂性定理,將Hu等(1998)and Sung等(2005)的結(jié)果從獨立情形推廣到了m-NSD隨機(jī)變量陣列.本文的結(jié)論同樣推廣了Chen等(2008), Hu等(2009),Qiu等(2011)和Wang等(2014)的結(jié)果.

        Kolmogorov型指數(shù)不等式;完全收斂性;m-NSD隨機(jī)變量

        O211.4

        A

        0255-7797(2017)05-0889-09

        ?Received date:2015-08-11Accepted date:2016-04-08

        Supported by National Natural Science Foundation of China(71271042; 11361019);Research Project of Guangxi High Institution(YB2014150).

        Biography:Feng Fengxiang(1975-),female,born at Guilin,Guangxi,associate professor,major in probability and statistics.

        2010 MR Subject Classif i cation:60F15;60E05

        猜你喜歡
        理學(xué)院群英電子科技
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        西安展天電子科技有限公司
        寶雞市普瑞思電子科技有限公司
        2009,新武器群英薈
        2S1廣州弘傲電子科技有限公司
        213B廣州市碼尼電子科技有限公司
        Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        211366 Temozolomide chemotherapy based on MGMT protein expression for patients with malignant gliomas:a report of 40 case
        亚洲熟女精品中文字幕| 国产精品免费久久久久影院仙踪林| 国产成人亚洲不卡在线观看| 亚洲AVAv电影AV天堂18禁| 国产一区二区亚洲一区| 亚洲中国精品精华液| 全球av集中精品导航福利| 99久久久无码国产精品免费砚床| 国产69口爆吞精在线视频喝尿| 久久中文字幕av一区二区不卡 | 国产精彩视频| 亚洲精品色播一区二区| 大尺度免费观看av网站| 国产天美传媒性色av| 任你躁欧美一级在线精品免费| 国产成人亚洲综合二区| 一区二区三区在线视频观看| 午夜理论片yy6080私人影院| 富婆如狼似虎找黑人老外| 亚洲中文字幕无线乱码va| 国产免费二区三区视频| 亚洲av无码久久精品狠狠爱浪潮| 欧美亚洲国产另类在线观看| 蜜桃色av一区二区三区麻豆| 本道天堂成在人线av无码免费| 久久99精品国产99久久6尤物| 波多野结衣国产一区二区三区| 日本午夜一区二区视频| 蜜桃av在线免费网站| 精品无码无人网站免费视频 | 久久黄色视频| 国产精品一区二区久久乐下载| 国产爆乳乱码女大生Av| 日本一区二区午夜视频| 国产精品久久国产精品99 gif| 内射精品无码中文字幕| 国产精品一区二区午夜久久| 国产av一区二区日夜精品剧情 | 第九色区Aⅴ天堂| 国产91久久麻豆黄片| 另类老妇奶性生bbwbbw|