亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        改性PVDF膜抗污染性進(jìn)展探究

        2017-09-12 06:43:52賀慧妮代鶴峰
        當(dāng)代化工 2017年8期
        關(guān)鍵詞:兩親性抗污染親水性

        房 平,賀慧妮,代鶴峰

        ?

        改性PVDF膜抗污染性進(jìn)展探究

        房 平,賀慧妮,代鶴峰

        (西安工程大學(xué), 陜西 西安 710048)

        聚偏氟乙烯以其優(yōu)異的力學(xué)性質(zhì)和化學(xué)性質(zhì)在膜分離技術(shù)中被廣泛應(yīng)用,其表面的極強(qiáng)疏水性,導(dǎo)致在水處理過(guò)程中極易受到污染且恢復(fù)率很低。所以膜的改善親水性具有十分重要的意義。根據(jù)不同的改性粒子分類(lèi),結(jié)合主要的改性方法,將國(guó)內(nèi)外近幾年對(duì)PVDF改性效果較好的納米粒子和兩親性共聚物進(jìn)行綜述和性能對(duì)比,著重從滲透性和抗污性比較了各種粒子的改性效果。最后對(duì)PVDF膜親水性改善進(jìn)行總結(jié)和展望。

        聚偏氟乙烯;抗污染性;納米粒子;兩親性共聚物

        在膜技術(shù)材料常用的聚合物中,由于聚偏二氟乙烯(PVDF)膜優(yōu)異的化學(xué)性,良好的機(jī)械強(qiáng)度和耐老化性,已廣泛應(yīng)用于許多領(lǐng)域[1,2]。但PVDF膜的疏水性使疏水性污染物會(huì)吸附到膜表面和表面孔隙中,這都導(dǎo)致嚴(yán)重的污染問(wèn)題,甚至縮短膜的使用壽命[3-7],所以增加PVDF膜的親水性具有非常重要的實(shí)際意義[8]。近幾年的關(guān)于PVDF膜改性方法有很多[9]。一般使用共混和接枝的方法,效果較好的改性膜通常是幾種改性方式聯(lián)合使用。膜的結(jié)構(gòu)特點(diǎn),比如孔的形態(tài)、孔隙率、表面化學(xué)結(jié)構(gòu)與組成等決定了改性膜的親水性、滲透性和抗污染性等性能[10]。親水性主要由接觸角表征,接觸角越小,親水性越好,滲透性越高;抗污染性能主要由蛋白質(zhì)靜態(tài)吸附、通量恢復(fù)率(FRR)和不可逆污染物的量聯(lián)合表征。本文主要是基于這幾個(gè)指標(biāo)通過(guò)某些粒子對(duì)PVDF改性膜的性能進(jìn)行對(duì)比總結(jié)。

        1 共混法與其他方法聯(lián)合改性

        1.1 氧化石墨烯(GO)對(duì)PVDF膜的相關(guān)改性

        氧化石墨烯(GO)因含有大量的活性含氧基團(tuán)如-COOH等,而具備優(yōu)良的親水性和其高的水分散性[11],這恰好與PVDF材料和其他易團(tuán)聚粒子形成互補(bǔ)。

        Jang等[12]和Zhao等[13]采用不同的方法制備出PVDF / GO混合膜,在水通量和抗污染性方面都有不錯(cuò)的效果。Wu等[14]將GO添加到凝膠浴里。與純膜相比,改性膜的接觸角降低,孔隙率略有增加,改性膜的純水通量為467.75 L·m-2·h-1,對(duì)BSA的截留率增加了38.99%,其中不可逆污染占19.5%,其FRR達(dá)85.7%。而純膜不可逆污染占56.8%

        單一的GO改性有一定的局限性,而且受到材料本身缺陷的限制,加入其它粒子或者其他方式能在一定程度上提高性能。Safarpour等[15]將rGO/TiO2納米復(fù)合材料和PVDF鑄膜液共混。與PVDF純膜相比,改性膜的接觸角略有降低,純水通量提高23.1%~69.2%,對(duì)BSA的截留率保持在90%以上,且純膜的FRR只有30%,而改性膜的FRR為67%~92%。當(dāng)rGO與TiO2采用合適比時(shí),親水性、純水通量和抗污能力表現(xiàn)出最好的協(xié)同作用。Xu[16]等在鑄膜液中添加GO/TiO2納米復(fù)合材料后,水通量提高到487.8 L·m-2·h-1,對(duì) BSA的截留率,從77.1%提高到92.5%。作者發(fā)現(xiàn)經(jīng)水力與UV照射對(duì)膜進(jìn)行清洗后,膜有更好的抗污染性和自清潔能力。Zhao[17]等人討論了PVDF / GO復(fù)合膜在MBR中應(yīng)用的實(shí)際效益。純膜與復(fù)合膜對(duì)污水處理二者效果相當(dāng),重要的是純膜的清洗周期是復(fù)合膜的3倍。且復(fù)合膜不可逆污染阻力僅占0.78%,遠(yuǎn)遠(yuǎn)小于純膜的3.95%。表1具體總結(jié)和對(duì)比了GO對(duì)PVDF膜不同的改性結(jié)果。

        1.2 TiO2對(duì)PVDF膜的相關(guān)改性

        納米顆粒TiO2由于其極高的親水性和穩(wěn)定性而引起廣泛關(guān)注[18-22],但是TiO2高表面能和強(qiáng)范德華力,使TiO2納米顆粒易于聚集,降低了膜的性能[18,21]。所以使TiO2納米顆粒更好的分散于膜基質(zhì)中以提高膜性能變的十分重要。

        Moghadam等[19]將TiO2納米顆粒分散在PVDF基質(zhì)中,復(fù)合膜的水通量為100 L·m-2·h-1·bar-1,是純膜的2倍,對(duì)BSA和EPS的截留率都提高30%左右,改性膜的FRR高達(dá)71.2%。Teow等[20]將PVDF通過(guò)Fenton反應(yīng)羥基化后,以含TiO2的水溶液為凝膠浴,制備PVDF-OH/TiO2改性膜,與純PVDF膜相比,改性膜的孔隙率和平均孔徑略有減少,且純膜和改性膜的截留率相當(dāng),但改性膜的FRR為87.32%,高于純膜的值。Zeng等[21]將TiO2-HNTs納米復(fù)合材料與PVDF鑄膜液共混。相比純膜,改性膜的水通量提高了264.8%,與此同時(shí)對(duì)BSA的截留略有下降。但改性膜的靜態(tài)蛋白質(zhì)降低了159%。作者進(jìn)行過(guò)濾清洗三次循環(huán)后,改性膜的FRR任可達(dá)76.9%。將Qin 等[22]將TiO2和PVA層都結(jié)合到PVDF膜表面。膜的水通量提高了10.3%,對(duì)BSA的截留率從44.7%提高到86.5%。作者在二次過(guò)濾后,通量恢復(fù)率從純膜的20%提高到改性膜的86.4%,且改性膜的不可逆污染物含量(11.5%)遠(yuǎn)低于純膜的值(80%)。表1具體總結(jié)和對(duì)比了TiO2對(duì)PVDF膜不同改性的結(jié)果。

        1.3 SiO2對(duì)PVDF膜的相關(guān)改性

        SiO2同TiO2一樣是無(wú)機(jī)納米材料,具有大的比表面積、易于制備和永久親水性的優(yōu)點(diǎn),納米結(jié)構(gòu)表面可以有效減少相同的納米級(jí)污染物對(duì)膜的錨定位點(diǎn)數(shù)和物理錨定效應(yīng)[23]。

        Wang[24]等人將中空二氧化硅微球(HSiO2)與鑄膜液共混,利用HSiO2特殊的中腔結(jié)構(gòu),構(gòu)建階梯式滲透通道,從而降低PVDF膜中水分子的傳質(zhì)阻力,且改性膜的FRR也提高了74.1%。Qin[25]等人用三乙酸甘油酯改性的SiO2納米粒子與PVDF粉末共混。相比原膜,改性膜的機(jī)械性能提高,雖然改性膜的孔隙率只增加了27.4%,但水通量卻提高了276%。對(duì)BSA截留測(cè)試顯示,改性膜的 FRR為93.8%,遠(yuǎn)高于原膜的11.7%,且改性膜的不可逆污染物僅有6.3%。Li等[26]首次用非溶劑相轉(zhuǎn)化法合成PVDF/SiO2@GO納米混合膜?;旌夏さ谋砻孚呌诠饣?,接觸角明顯下降,對(duì)BSA蛋白的靜態(tài)吸收能力明顯降低。 Pan[27]等制備Ag/SiO2-PVDF膜,相比原膜,改性膜的水通量明顯提高,對(duì)BSA的截留率略有降低,接觸角下降了57.8%。經(jīng)倆次循環(huán)過(guò)濾后, FRR由原膜的36.2%提高到改性膜的50.2%,且可逆污染量由63.8%下降到54.2%。并且改性膜有一定的抗菌性。Zhao[28]等將SA和SiO2-NH2納米顆粒組成的組裝層以改性PVDF膜的表面,疊加六層組裝層后,表面粗糙度基本與純膜一致,但表面接觸角降至6°,純水通量從95 L·m-2·h-1提高到153 L·m-2·h-1,對(duì)BSA的截留率提高了50%,蛋白質(zhì)靜態(tài)吸附的量幾乎為0。膜經(jīng)二次循環(huán)測(cè)試,改性膜的 FRR高達(dá)99%。表1具體總結(jié)和對(duì)比了SiO2對(duì)PVDF膜不同改性的結(jié)果。

        1.4 兩親聚合物對(duì)PVDF膜的相關(guān)改性

        與均聚物相比,將兩親共聚物與主體膜材料共混制備的PVDF膜發(fā)生脫離現(xiàn)象的概率更小。在非溶劑誘導(dǎo)相分離(NIPS)期間,兩親共聚物的親水鏈分離集中在膜表面上以使界面能最小化,疏水鏈段與PVDF鏈的纏結(jié)可將親水鏈段緊密固定在膜表面上[2,29]。

        Zhao[30]等將EW-326加入鑄膜液中,制造仿蚊眼結(jié)構(gòu)且具有規(guī)則納米級(jí)凸起的新型聚PVDF超濾膜。仿生膜的粗糙度明顯增加,接觸角增加到133°對(duì)BSA的截留率有所降低卻也保持在80%以上。將BSA與SA的混合液作為污染液時(shí),仿生膜依然有80%的FRR值,高于原膜的值(56%)。Ma[31]等人制備了PEGMA-MMA兩親性共聚物,在基本相同的純水滲透性條件下(約300 L·m-2·h-1·atm-1),越高的O/C比,膜的親水性越差。作者將PEG側(cè)鏈的長(zhǎng)度、PEGMA / MMA、共聚物與PVDF的比率單體比例對(duì)膜抗污染性能的影響分別做了討論,發(fā)現(xiàn)前倆者對(duì)于改善防污性能更有效。 Sun等[32]利用相同的原理,得出類(lèi)似的結(jié)論,相比未改性膜,高鏈段比的VA / TFE共聚物制備出的共混膜,接觸角無(wú)明顯變化。作者發(fā)現(xiàn)BSA分子對(duì)共混膜的附著量很低,當(dāng)采用合適的混合比時(shí),共混膜在60 min內(nèi)保持其初始水通量的70%,并且在反沖之后,水通量幾乎完全恢復(fù)。Wang[33]等將SiO2-g-PDMS納米顆粒與PVDF粉末共混,制備出的共混膜接觸角下降到15°,水通量增加了76.9%,對(duì)BSA的截留略有減低,但仍保持80%以上,且通量恢復(fù)率達(dá)90%以上。Liu[34]等合成PMMA-b-PEG-b-PMMA兩親嵌段式共聚物。相比原膜,改性膜水通量提高了137.5%,對(duì)BSA的截留率保持在80%以上。且原膜的FRR僅58%,而改性膜高達(dá)90%以上,膜表面和孔道內(nèi)形成親水層是使改性膜的抗污染性顯著提高的主要原因。表1具體總結(jié)和對(duì)比了兩親性物質(zhì)對(duì)PVDF膜不同改性的結(jié)果。

        表1 改性PVDF膜性能對(duì)比

        2 其他物質(zhì)和方法對(duì)PVDF膜的防污改性

        接枝法、等離子體改性和兩性離子改性法等由于目的性強(qiáng),效果明顯被被學(xué)者采用,但是同時(shí)操作過(guò)程復(fù)雜且要求較高,所以廣泛程度不高。

        Lü等[35]將PU與PVDF共混制備改性膜,相比純膜,接觸角下降為40°,純水通量是原膜的5.46倍(148.1 L·m-2·h-1)。純膜和改性膜對(duì)BSA的截留率都高達(dá)90%以上,但改性膜對(duì)蛋白質(zhì)的吸附量明顯下降,通量恢復(fù)率也從58.7%提高到93%左右。Shen等[36]采用接枝共聚的方法,制備基于羧基甜菜堿的兩性離子PVDF膜 ,改性PVDF膜接觸角略降低,但對(duì)BSA的截留率高達(dá)96.3%,其中不可逆污染物僅占1.8%。經(jīng)過(guò)倆次循環(huán)過(guò)濾后,通量恢復(fù)率FRR可達(dá)98.12%。Okuji等[37]采用離子輻射法對(duì)PVDF膜進(jìn)行表面改性,蛋白質(zhì)吸附量顯著降低。Venault[38]等通過(guò)介質(zhì)阻止放電(GDBD)將兩性離子TMA / SA接枝在PVDF膜表面,測(cè)試表明當(dāng)膜表面帶有適量的負(fù)電荷時(shí),膜的接觸角下降到60°。當(dāng)TMA:SA=1:1時(shí),改性膜相對(duì)于純膜的BSA吸附量為32%,且未檢測(cè)出大腸桿菌的生長(zhǎng)。在經(jīng)三個(gè)循環(huán)過(guò)濾測(cè)試后,改性膜不可逆污染物僅11%,遠(yuǎn)低于原膜的值(42%)。其它學(xué)者也在兩性離子方面做了相關(guān)研究[39-45],都取得了不錯(cuò)的效果。

        3 結(jié)束語(yǔ)

        基于PVDF的優(yōu)異性,未來(lái)會(huì)成為水處理過(guò)程中分離膜的主要材料之一,但是其表面極高的表面能導(dǎo)致PVDF膜材料表面有極強(qiáng)的疏水性,這成為它發(fā)展的瓶頸,對(duì)其進(jìn)行親水性改性變的十分重要。現(xiàn)總結(jié)如下:

        (1)本文綜述了GO、TiO2、SiO2納米粒子和兩親性物質(zhì)對(duì)PVDF膜的相關(guān)改性。

        (2)納米粒子增強(qiáng)了膜的機(jī)械性能,但有分散不均的缺陷。

        (3)兩親性物質(zhì)中親水段向膜表面聚集,形成親水性的表面,疏水段穩(wěn)定的與PVDF分子共存交聯(lián),并固定親水段于膜的表面。相比通過(guò)納米粒子來(lái)改善PVDF膜,兩親性物質(zhì)與PVDF相容性好,且能穩(wěn)定的存在于膜基質(zhì)中,在很長(zhǎng)一段時(shí)間里保持性質(zhì)不變。

        (4)在改性方法中,共混法改性操作簡(jiǎn)單,適合工業(yè)化,但是要想PVDF膜既擁有穩(wěn)定的化學(xué)性質(zhì),又在水通量和截留率方面達(dá)到折衷效應(yīng),進(jìn)而達(dá)到一個(gè)理想的狀態(tài),必須與接枝共聚等方法相結(jié)合。

        [1]Kang G D, Cao Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review[J]. Journal of Membrane Science, 2014, 463(1):145-165.

        [2] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011, 375(1-2): 1-27.

        [3] Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities[J]. Journal of Materials Chemistry, 2010, 20(22):4567-4586.

        [4]Rana D, Matsuura T. Surface Modifications for Antifouling Membranes[J]. Chemical Reviews, 2010, 110(4):2448-71.

        [5] Yuliwati E, Ismail A F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment[J]. Desalination, 2011, 273(1): 226-234.

        [6] Zhou R, Ren P F, Yang H C, et al. Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition[J]. Journal of Membrane Science, 2014, 466: 18-25.

        [7]Nishigochi S, Ishigami T, Maruyama T, et al. Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2491-2497.

        [8] Cui Z, Drioli E, Lee Y M. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science, 2014, 39(1):164-198.

        [9] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. Fuel & Energy Abstracts, 2011, 375(1):1-27.

        [10]Ji J, Liu F, Hashim N A, et al. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation[J]. Reactive & Functional Polymers, 2015, 86:134-153.

        [11]Kanrar S, Debnath S, De P, et al. Preparation, characterization and evaluation of fluoride adsorption efficiency from water of iron-aluminium oxide-graphene oxide composite material[J]. Chemical Engineering Journal, 2016, 306: 269-279.

        [12]Jang W, Yun J, Jeon K, et al. PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications[J]. RSC Advances, 2015, 5(58): 46711-46717.

        [13]Zhao C, Xu X, Chen J, et al. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes[J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 349-354.

        [14]Wu T, Zhou B, Zhu T, et al. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation[J]. RSC Advances, 2015, 5(11): 7880-7889.

        [15]Safarpour M, Khataee A, Vatanpour V. Effect of reduced graphene oxide/TiO2nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes[J]. Separation and Purification Technology, 2015, 140: 32-42.

        [16] Xu Z, Wu T, Shi J, et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2for water treatment[J]. Journal of Membrane Science, 2016, 520: 281-293.

        [17]Zhao C, Xu X, Chen J, et al. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system[J]. Desalination, 2014, 340: 59-66.

        [18]Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes[J]. Journal of Membrane Science, 2011, 378(1): 73-84.

        [19]Moghadam M T, Lesage G, Mohammadi T, et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV‐coupled ultrafiltration[J]. Journal of Applied Polymer Science, 2015, 132(21).

        [20]Teow Y H, Latif A A, Lim J K, et al. Hydroxyl functionalized PVDF–TiO2 ultrafiltration membrane and its antifouling properties[J]. Journal of Applied Polymer Science, 2015, 132(21).

        [21]Zeng G, He Y, Yu Z, et al. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO 2-HNTs nanocomposites[J]. Applied Surface Science, 2016, 371: 624-632.

        [22]Qin A, Li X, Zhao X, et al. Engineering a highly hydrophilic PVDF membrane via binding TiO2nanoparticles and a PVA layer onto a membrane surface[J]. ACS applied materials & interfaces, 2015, 7(16): 8427-8436.

        [23]Pendergast M T M, Hoek E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6): 1946-1971.

        [24]Wang H, Zhao X, He C. Innovative permeation and antifouling properties of PVDF ultrafiltration membrane with stepped hollow SiO2microspheres in membrane matrix[J]. Materials Letters, 2016, 182: 376-379.

        [25]Qin A, Wu X, Ma B, et al. Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2hybrid membrane through TIPS method[J]. Journal of Materials Science, 2014, 49(22): 7797-7808.

        [26]Li Z K, Lang W Z, Miao W, et al. Preparation and properties of PVDF/SiO2@ GO nanohybrid membranes via thermally induced phase separation method[J]. Journal of Membrane Science, 2016, 511: 151-161.

        [27]Pan Y, Yu Z, Shi H, et al. A novel antifouling and antibacterial surface‐functionalized PVDF ultrafiltration membrane via binding Ag/SiO2nanocomposites[J]. Journal of Chemical Technology and Biotechnology, 2016.

        [28]Zhao X, Xuan H, Chen Y, et al. Preparation and characterization of superior antifouling PVDF membrane with extremely ordered and hydrophilic surface layer[J]. Journal of Membrane Science, 2015, 494: 48-56.

        [29]Wang D M, Lai J Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation[J]. Current Opinion in Chemical Engineering, 2013, 2(2): 229-237.

        [30]Zhao X, Liu C. One-step fabricated bionic PVDF ultrafiltration membranes exhibiting innovative antifouling ability to the cake fouling[J]. Journal of Membrane Science, 2016, 515: 29-35.

        [31] Ma W, Rajabzadeh S, Shaikh A R, et al. Effect of type of poly (ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly (vinylidene fluoride)(PVDF) blend membranes[J]. Journal of Membrane Science, 2016, 514: 429-439.

        [32]Sun Y, Rajabzadeh S, Ma W, et al. Preparation of PVDF/poly (tetrafluoroethylene‐co‐vinyl alcohol) blend membranes with antifouling propensities via nonsolvent induced phase separation method[J]. Journal of Applied Polymer Science, 2016, 133(32).

        [33]Wang H, Zhao X, He C. Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles[J]. Separation & Purification Technology, 2016, 166:1-8.

        [34] Liu D, Li D, Du D, et al. Antifouling PVDF membrane with hydrophilic surface of terry pile-like structure[J]. Journal of Membrane Science, 2015, 493:243-251.

        [35]Lü X, Wang X, Guo L, et al. Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance[J]. Journal of Membrane Science, 2016, 520: 933-940.

        [36]Shen X, Gao Y, He Y, et al. Preparation and anti-fouling property of carboxybetaine-based zwitterionic PVDF membrane[J]. Separation Science and Technology, 2016, 51(7): 1189-1198.

        [37]Okuji S, Kitazawa H, Takeda Y. Time of flight-secondary ion mass spectrometry analysis of protein adsorption on a polyvinylidene difluoride surface modified by ion irradiation[J]. Colloids and Surfaces B: Biointerfaces, 2016, 148: 249-254.

        [38]Venault A, Wei T C, Shih H L, et al. Antifouling pseudo-zwitterionic poly (vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization[J]. Journal of Membrane Science, 2016.

        [39]Zhao X, Su Y, Liu Y, et al. Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles[J]. Journal of Membrane Science, 2015, 495: 226-234.

        [40]Carretier S, Chen L A, Venault A, et al. Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation[J]. Journal of Membrane Science, 2016, 510: 355-369.

        [41]Venault A, Huang W Y, Hsiao S W, et al. Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly (vinylidene fluoride) Membranes[J]. Langmuir, 2016, 32(16): 4113-4124.

        [42]Ma W, Rajabzadeh S, Matsuyama H. Preparation of antifouling poly (vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer[J]. Applied Surface Science, 2015, 357: 1388-1395.

        [43]Zhao X, He C. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface[J]. ACS applied materials & interfaces, 2015, 7(32): 17947-17953.

        [44]u K, Shen P, Li J, et al. Preparation of enduringly antifouling PVDF membrane with compatible zwitterionic copolymer via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2015, 132(7).

        [45]Shen X, Gao Y, He Y, et al. Preparation and anti-fouling property of carboxybetaine-based zwitterionic PVDF membrane[J]. Separation Science and Technology, 2016, 51(7): 1189-1198.

        Research Progress in Anti-fouling Property of Modified PVDF Membrane

        ,,

        (Xi'an Polytechnic University, Shaanxi Xi’an710048,China)

        PVDF membrane with excellent mechanical properties and chemical properties is widely used in membrane separation technology. Because of high hydrophobicity of the surface, PVDF membrane is easily polluted in the water treatment process and the recovery rate is very low. So improving the hydrophilicity of the membrane is of great significance. In this paper, according to different modification particles and main modification methods, properties of nano-particles and amphiphilic copolymers with good modification effect on PVDF in recent years were summarized and compared, and modification effect of different particles was analyzed from the aspects of the permeability and anti-fouling property. Finally, the improvement of hydrophilicity of PVDF membrane was summarized and forecasted.

        Polyvinylidene fluoride;Anti-fouling;Nano-particles;Amphiphilic copolymers

        TQ 325

        A

        1671-0460(2017)08-1636-05

        2016-12-27

        房平(1975-),男,吉林省吉林市人,副教授,博士,2011年畢業(yè)于西安建筑科技大學(xué)環(huán)境工程,水處理膜材料與技術(shù)。E-mail:469493@qq.com。

        猜你喜歡
        兩親性抗污染親水性
        雙負(fù)載抗生素親水性聚氨酯泡沫的制備與表征
        兩親性接枝淀粉/PVA混合物的上漿性能研究
        新型兩親性糖聚肽肝癌靶向診療一體化納米粒子的制備及體內(nèi)外實(shí)驗(yàn)研究
        六類(lèi)抗污染藥用植物環(huán)境改善應(yīng)用的分析比較
        抗污染中空纖維膜組件重點(diǎn)專(zhuān)利技術(shù)介紹
        科技視界(2016年16期)2016-06-29 17:00:45
        空氣中納秒脈沖均勻DBD增加聚合物的表面親水性
        含氟兩親性嵌段聚合物乳液的合成
        污染之下的美麗商機(jī)
        亞太區(qū)抗污染化妝品兩年內(nèi)上升40%
        水刺型空氣加濕器濾材的親水性改性研究
        一本久道高清视频在线观看| 日本久久久免费高清| 淫欲一区二区中文字幕| 亚洲熟女乱一区二区三区| 国内少妇毛片视频| 无码三级在线看中文字幕完整版| 亚洲高清有码在线观看| 在线观看国产激情免费视频| 人妻av中文字幕精品久久| 国产一区二区视频免费在线观看| 在线涩涩免费观看国产精品| 欧美成人激情在线| 国产美女高潮流的白浆久久| 日本av在线一区二区| 久久久精品456亚洲影院| 日韩丝袜亚洲国产欧美一区| 亚洲av成人无网码天堂| 色又黄又爽18禁免费网站现观看| 免费国产裸体美女视频全黄| 国产亚洲精品福利在线| 99久久精品人妻一区二区三区| 亚洲a∨无码精品色午夜| 日本亚洲欧美色视频在线播放| 热99re久久精品这里都是免费| 久草久热这里只有精品| 女女同恋一区二区在线观看| 欧美精品一区二区蜜臀亚洲| 国产精品网站夜色| 亚洲熟妇av一区二区三区hd | 久久亚洲精精品中文字幕早川悠里| 久久久精品人妻一区二区三区四区| 国产精品v欧美精品v日韩精品| 成人不卡国产福利电影在线看| 中文字幕人乱码中文字幕乱码在线| 艳妇臀荡乳欲伦69调教视频| 99久久精品国产一区二区蜜芽| 91精品人妻一区二区三区蜜臀| 亚洲精一区二区三av| 亚洲а∨天堂久久精品2021| 国产精品98视频全部国产| 黄色精品一区二区三区|