李卓琳,穆春生,吳春英
(1.上海市城市化生態(tài)過程與生態(tài)恢復(fù)重點(diǎn)實(shí)驗(yàn)室, 華東師范大學(xué)生態(tài)與環(huán)境科學(xué)學(xué)院,上海 200241; 2.植被生態(tài)科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 東北師范大學(xué)草地科學(xué)研究所,吉林 長春 130024; 3.延邊州草原管理站,吉林 延吉 133001)
氣候變化對(duì)草原多年生克隆植物無性繁殖的影響
李卓琳1,穆春生2,吳春英3
(1.上海市城市化生態(tài)過程與生態(tài)恢復(fù)重點(diǎn)實(shí)驗(yàn)室, 華東師范大學(xué)生態(tài)與環(huán)境科學(xué)學(xué)院,上海 200241; 2.植被生態(tài)科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 東北師范大學(xué)草地科學(xué)研究所,吉林 長春 130024; 3.延邊州草原管理站,吉林 延吉 133001)
氣候變化是多因子的綜合體,常相伴發(fā)生,其對(duì)地球上各生態(tài)系統(tǒng)中的植物、動(dòng)物、微生物等均有不同程度的影響??寺≈参?,是一類兼具有性和無性兩種繁殖方式的植物,由于其長期以來對(duì)環(huán)境的適應(yīng),很多克隆植物已放棄或較少地進(jìn)行有性繁殖,導(dǎo)致其無性繁殖能力在某種程度上可以直接反映地上生產(chǎn)力,所以克隆植物無性繁殖如何響應(yīng)氣候變化成為當(dāng)前重要的課題。因此,本文從氣候變化的幾個(gè)主要因子出發(fā),綜述其對(duì)多年生克隆植物無性繁殖的影響,結(jié)果發(fā)現(xiàn),絕大部分文獻(xiàn)指出CO2升高和氮沉降均促進(jìn)子株的輸出,而降水量的減少抑制或不影響子株的輸出,此外,增溫時(shí)間不同對(duì)子株的影響也有很大差異。到目前為止,雖然氣候變化中各因子對(duì)克隆植物無性繁殖的研究已有大量報(bào)道,但關(guān)于它們之間交互作用的研究較少。而且可能由于地下取樣困難等原因,針對(duì)CO2濃度升高、增溫、氮沉降等氣候變化對(duì)地下芽庫影響的文獻(xiàn)則更少。所以應(yīng)加強(qiáng)各氣候因子之間的交互作用對(duì)克隆植物影響的研究工作,因?yàn)樗粌H可以進(jìn)一步豐富克隆植物生態(tài)學(xué)與全球變化生態(tài)學(xué)的交叉研究內(nèi)容,而且可以為未來草地管理提供一定的實(shí)踐依據(jù)。
CO2;增溫;降水格局;氮沉降;無性繁殖
眾所周知,植物種群更新的完成依賴于植物的繁殖過程。而在多年生草地上,克隆植物占據(jù)較大比例,且這部分植物由于其有性繁殖能力薄弱,加之幼苗建植困難,絕大部分克隆植物將更多的能量分配給無性繁殖,甚至有一些克隆植物已放棄有性繁殖。所以草地上多年生克隆植物的無性繁殖能力可以很好地預(yù)示其生產(chǎn)力的變化。此外,與非克隆植物相比,克隆植物具有生存力、占據(jù)新的空間能力、克隆整合能力強(qiáng)等特點(diǎn),所以它在退化草原恢復(fù)中也扮演著重要角色[1]。
目前,CO2作為最主要的人為溫室氣體,已由工業(yè)革命前期的270 μmol·mol-1增加到現(xiàn)在的380 μmol·mol-1,預(yù)計(jì)到21世紀(jì)末將會(huì)倍增[2]。全球表面溫度增加也已經(jīng)成為毋庸置疑的事實(shí)[3-6],而且在大陸生態(tài)系統(tǒng)夜間溫度增加的幅度可能大于白天。隨著溫度的變化,降水格局也將發(fā)生改變,主要表現(xiàn)為降水總量及降水分布發(fā)生變化,并且以單次降水量增加以及降水間隔時(shí)間延長為特征的降水事件頻發(fā),即發(fā)生極端暴雨的幾率增加[7-8]。單次降水量的增加只會(huì)導(dǎo)致無效水增加,降水間隔時(shí)間的延長則意味著干旱期的延長,這會(huì)使部分地區(qū)的干燥系數(shù)增加,土壤水分減少,進(jìn)而加重中國半干旱及干旱區(qū)域的干旱化[9]。此外,在干旱和半干旱地區(qū),氮是繼降水量之后限制植物生產(chǎn)力最主要的因子[10],氮沉降也已成為當(dāng)今備受關(guān)注的全球性環(huán)境問題之一[11]。
在全球變化日趨嚴(yán)重的情況下,探究多年生克隆植物無性繁殖的變化規(guī)律,對(duì)種群生態(tài)學(xué)、全球變化下的退化生態(tài)學(xué)以及農(nóng)牧業(yè)生產(chǎn)實(shí)踐等具有重要意義。至今,國內(nèi)外已開展了大量的關(guān)于全球變化對(duì)植物個(gè)體、種群、群落乃至整個(gè)生態(tài)系統(tǒng)的研究[12-13],且研究結(jié)果差異較大。綜合氣候變化對(duì)種群水平的研究文獻(xiàn)發(fā)現(xiàn),對(duì)個(gè)體光合作用和植被蓋度及生產(chǎn)力的研究較多,而對(duì)克隆植物繁殖的關(guān)注度相對(duì)較少(圖1),想要完善克隆植物應(yīng)對(duì)全球氣候變化的生活史對(duì)策,其繁殖是關(guān)鍵。因此,有必要對(duì)草地多年生克隆植物無性繁殖如何響應(yīng)全球氣候變化的研究進(jìn)展作一綜述評(píng)價(jià)。
有關(guān)全球氣候變化對(duì)植物影響的研究中,國內(nèi)外學(xué)者采用不同的試驗(yàn)生態(tài)學(xué)方法,這其中包括野外控制試驗(yàn)、溫室模擬試驗(yàn)和模型模擬等(表1)。目前增溫手段主要有紅外加熱,其增溫幅度基本在1~3 ℃之間[14-17];利用氣候室模擬,增溫的幅度在2~10 ℃不等[18-19];開頂式氣室,增溫幅度也在1 ℃左右[20]。而對(duì)CO2模擬多采用氣候室和開頂式氣室,由于費(fèi)用較大,一般模擬周期也較短[21-23]。模擬增雨或減雨多采用防雨棚或塑料板裝置截留自然降水然后人工施加給增雨區(qū)域,或根據(jù)自然地理降水分布而采樣,亦可根據(jù)歷年來的降水?dāng)?shù)據(jù)及其植被的變化分析[24-26]。模擬氮沉降的則以施加10 g·(m2·a)-1硝酸銨的居多[17,27]。這些直接模擬的方法可以檢驗(yàn)很多科學(xué)假設(shè),但這種試驗(yàn)?zāi)M的環(huán)境與植物所接觸的真正環(huán)境是有差異的,所以這種方法仍有一定的局限性,而利用計(jì)算機(jī)模擬建模,可以提供一些宏觀的規(guī)律性問題[28-29],但細(xì)致的機(jī)理性問題的解決仍需要反復(fù)試驗(yàn)。
克隆生長是指在自然條件下通過營養(yǎng)生長產(chǎn)生具有潛在獨(dú)立性的個(gè)體的過程[30]??寺≈参锏姆敝撤绞揭话惴譃橛行苑敝澈蜔o性繁殖兩種,對(duì)應(yīng)有種子庫和芽庫兩個(gè)概念,在以一年生植物為主的草地或頻繁經(jīng)歷擾動(dòng)的生態(tài)系統(tǒng)中,種子庫占據(jù)主要地位,但在多年生草地生態(tài)系統(tǒng),由于其種子萌發(fā)或者幼苗建成困難,且地上部通常只存活一年,而地下的構(gòu)件可存活多年,所以地上植被的生產(chǎn)力和種群的更新主要依賴于地下芽庫而非種子庫[31]。芽庫的概念最早由Harper[32]于1977年提出,是指與植物多年生器官相聯(lián)系的分生組織的地下種群,如根莖、球莖、塊莖、鱗莖等器官上的芽。而后得到進(jìn)一步的補(bǔ)充[33-34]。以“bud bank”為檢索詞,可以查到自2013年以來關(guān)于芽庫的研究有16 700多篇報(bào)道,可見,近幾年來研究者對(duì)芽庫方面的關(guān)注已逐漸增加。目前芽庫的重要性已經(jīng)在很多生境中得到證實(shí),例如在北美中部較濕潤的草地生態(tài)系統(tǒng),幾乎地上所有個(gè)體的更新均來自地下芽庫而非種子庫[35],澳大利亞西南部的很多木本植物也是如此[36]。所以地下芽庫的動(dòng)態(tài)與地上生產(chǎn)力密切相關(guān)[37],芽庫的重要性也逐漸得到體現(xiàn)。
圖1 氣候變化主要因子對(duì)植物光合、生長和無性繁殖的影響Fig. 1 Effect of climate change on photosynthetic rate, growth and propagation of clonal plants
注:紅色箭頭代表促進(jìn)作用,藍(lán)色箭頭代表抑制作用,黑色箭頭代表相關(guān)文獻(xiàn)研究結(jié)果差異較大。
Note: Red, blue and black arrows represent positive, negative and complex influence on plants, respectively.
表1 模擬氣候變化的主要處理手段Table 1 Main treatment methods that mimic climatechange
3.1 溫度對(duì)多年生克隆植物無性繁殖的影響
增溫對(duì)植物的影響一般取決于環(huán)境溫度是否達(dá)到或超過植物生長的最適溫度,這對(duì)于植物的光合系統(tǒng)等生理指標(biāo)如此,對(duì)于克隆植物的無性繁殖亦是如此。對(duì)稱和不對(duì)稱增溫對(duì)植物生長發(fā)育的影響也不完全一致[38-39]。Hoover等[40]發(fā)現(xiàn)夏季增溫對(duì)美國中部草原的影響并不顯著,Wang等[41]得出,雖然夏季增溫增加了羊草(Leymuschinensis)地下總芽數(shù)、根莖數(shù)量和長度,但減少了子株的輸出。而夜間增溫與全天增溫有完全不一樣的結(jié)果,夏季夜間增溫促進(jìn)了羊草的無性繁殖和生物量[18],這支持了Wan等[42]的野外夜間增溫研究。這種結(jié)果的差異可能是白天增溫超過了其適宜的生長溫度,造成了脅迫,植株雖然促進(jìn)了芽的生長但是為規(guī)避高溫環(huán)境而不輸出為子株。這也證明了前人提出的對(duì)稱和不對(duì)稱增溫產(chǎn)生不同結(jié)果的觀點(diǎn)。此外,不同季節(jié)增溫以及針對(duì)不同物種都可能產(chǎn)生不同的結(jié)果,例如,春季增溫減少毛竹(Quercuspubescene)的芽和地上生物量[43],但對(duì)無芒雀麥(Bromusinermis)的影響較小[44]。因此增溫的時(shí)間、增溫的幅度、作用的物種或群落不同,得到的結(jié)果也完全不同。
3.2 CO2濃度增加對(duì)多年生克隆植物無性繁殖的影響
單獨(dú)CO2濃度升高對(duì)植物影響的研究也有報(bào)道[45-46]。在草原生態(tài)系統(tǒng),CO2濃度的升高均提高了瑞士草原、新西蘭草原、堪薩斯高草草原以及科羅拉多矮草草原的生產(chǎn)力[47]。但以往的大部分研究都是CO2濃度升高促進(jìn)植物的光合作用進(jìn)而增加植物的地上生物量[47-49],而對(duì)于很多克隆植物而言,更合適的對(duì)策是通過芽庫產(chǎn)生更多的克隆分株來增加地上生產(chǎn)力。例如,CO2濃度的升高促進(jìn)毒漆藤(Toxiccodendronradican)以及C3草本植物虉草(Phalarisarundinacea)根莖的延長及生物量的累積[50],增強(qiáng)無性繁殖能力,CO2濃度升高也促進(jìn)蘆葦(Phragmitesaustralis)地下芽和子株的生長[51]。很多試驗(yàn)表明,植物生長在溫暖地區(qū)對(duì)CO2的響應(yīng)要強(qiáng)于較冷地區(qū)[52],且在營養(yǎng)受限的條件下CO2的作用才會(huì)得到更好的體現(xiàn),但是這一論題后來被Poorter等[53]推翻,他們公開發(fā)表的數(shù)據(jù)表明CO2在高營養(yǎng)的條件下才可以更好地發(fā)揮作用。李卓琳等[54]的研究顯示,在低氮條件下CO2濃度升高雖然促進(jìn)了羊草地下芽的生長,但是并沒有促進(jìn)子株的輸出,而只有在高氮條件才顯著增加了子株的數(shù)量。Pettersson和McDanold[55]也認(rèn)為CO2濃度升高對(duì)植物光合作用的影響取決于氮的供應(yīng)水平,同時(shí)也源于植株整體的源庫關(guān)系調(diào)節(jié)。此外,Li等[56]得出CO2在干旱時(shí)對(duì)羊草生長的促進(jìn)作用強(qiáng)于降水充沛處理,但這些研究主要是針對(duì)植物的生長或生理對(duì)CO2濃度升高及其它因子交互作用的響應(yīng)。關(guān)于克隆生長則很少,但無性繁殖的研究在評(píng)估未來氣候變化對(duì)多年生克隆植物生產(chǎn)力等方面有很重要的意義。
3.3 水分對(duì)多年生克隆植物無性繁殖的影響
水分是限制草原生產(chǎn)力的最主要因子[57],因此草原生產(chǎn)力不論在自然狀態(tài)還是在人為干擾的情景下,都受降水梯度變化的極大影響[57-58]。多數(shù)研究表明,年平均降水量(MAP)與草地植物地上凈初級(jí)生產(chǎn)力(ANPP)呈典型的正相關(guān)關(guān)系,這在近年對(duì)我國北方溫帶草原的74個(gè)樣地以及內(nèi)蒙古針茅(Stipacapillata)草原的研究上也取得了同樣的結(jié)果[59-61]。但在降水量相近的年份之間草原群落生物量差異顯著,說明降水量在一年中的分布變化比年降水總量對(duì)草原植被的影響更為重要[62],后來Swemmer等[63]進(jìn)一步研究證實(shí),決定降水分布的3個(gè)因素(生長季內(nèi)的平均單次降水量、降水次數(shù)和平均降水間隔時(shí)間)對(duì)于水分狀況不同的草原的影響程度各不相同,對(duì)于半干旱區(qū)草原來說,生長季內(nèi)的平均單次降水量和降水次數(shù)對(duì)ANPP的影響遠(yuǎn)大于生長季總降水量對(duì)ANPP的影響。研究表明,夏季降水量對(duì)多年生根莖型禾草羊草的影響要強(qiáng)于降水頻次,但在降水量低于目前降水量的40%時(shí),低降水量頻次不利于羊草的生長[54]。
和其它植物一樣,克隆植物應(yīng)對(duì)水分的變化時(shí)通常會(huì)發(fā)生相應(yīng)的生長和生理變化,地下芽庫也會(huì)隨著降水的增加而增加。在北美大草原上,地下芽庫隨著降水梯度變化[64]。但草原的生產(chǎn)力與前一年的降水關(guān)系密切,因?yàn)橐钅甏杭咀又甑妮敵鲋饕从谇耙荒昵锛镜难繋靸?chǔ)存,所以有研究認(rèn)為當(dāng)年的干旱對(duì)芽庫的影響并不顯著[65]。在干旱或者半干旱地區(qū),水分是控制地下芽庫的關(guān)鍵因子,且地下芽庫對(duì)水分的敏感性較強(qiáng),所以Knapp和Smith[57]認(rèn)為在沙漠和干旱草原上,低的地上凈初級(jí)生產(chǎn)力的變化主要是由分生組織限制引起的,阻礙了芽的輸出。Reichmann和Sala[66]在對(duì)奇瓦瓦沙漠北部刺果垂穗草(Boutelouaeriopoda)的研究中發(fā)現(xiàn),匍匐莖對(duì)降水的敏感度要強(qiáng)于莖上的活性芽,且降水量對(duì)次年的草地結(jié)構(gòu)組分影響很大,這主要源于匍匐莖密度的改變,而在濕潤草原,Koerner等[67]指出,在總降水量不變、單次降水量增大而降水頻次降低的條件下,與正常降水頻次下相比,草原地下芽庫和地上子株并沒有顯著性變化,所以也并未影響該草原的群落結(jié)構(gòu)和生態(tài)系統(tǒng)功能,這暗示著該草原的耐旱彈性較高。而當(dāng)降水量減少80%時(shí),該草原群落的根莖生物量和地下的芽的密度雖然也能保持穩(wěn)定,但降低了群落的物種豐富度,其中莎草和非禾本科的地下芽庫及地上植株的密度有所減少,禾本科則無顯著變化[68]。Ott等[44]通過溫室的盆栽試驗(yàn)也得出降水頻次的降低對(duì)無芒雀麥和藍(lán)莖冰草(Pascopyrumsmithii)的地下芽庫影響不顯著。
當(dāng)夏季增溫與干旱同時(shí)發(fā)生時(shí),Hoover等[40]的研究顯示增溫對(duì)該草原的影響并不顯著,但極端干旱顯著影響該草原群落的物種豐富度和群落組分,且非禾本科植物比禾本科植物更易受影響,這與van der Weide和Hartnett[68]的結(jié)果基本一致。在對(duì)春季增溫和干旱對(duì)毛竹(Phyllostachysheterocycla)的盆栽試驗(yàn)中也顯示增溫和干旱并不存在顯著的交互作用[43]。
3.4 氮沉降對(duì)多年生克隆植物無性繁殖的影響
在干旱和半干旱地區(qū),氮的輸入通常是以脈沖的形式進(jìn)入土壤[69]。植物所能吸收的氮素為有效氮,而土壤中的氮以有機(jī)態(tài)和無機(jī)態(tài)形式存在,植物對(duì)養(yǎng)分的吸收和利用都依賴于土壤水分,灌溉能顯著提高氮素的固定速率和氮的礦化速率,相反干旱可能會(huì)降低氮礦化速率,所以土壤的水分狀況在很大程度上決定著肥料的合理利用[70]。絕大部分研究贊同降水量增加與施氮之間的正相關(guān)關(guān)系,例如,申云霞和唐拴虎對(duì)冬小麥(Triticumaestivum)的研究中得出在較低的供水量條件下,要獲得理想產(chǎn)量必須降低施肥量,只有當(dāng)供水量增多時(shí),增加施肥量才能得到較高的產(chǎn)量[71];Asner等[72]也認(rèn)為氮沉降會(huì)增加生態(tài)系統(tǒng)的生產(chǎn)力,而在水分不足時(shí),生產(chǎn)力不會(huì)隨施氮的增加而增加;梁銀麗和康紹忠[73]研究施氮在不同土壤水分時(shí)對(duì)植物抗旱的作用,發(fā)現(xiàn)施氮對(duì)作物在土壤水分良好、輕度干旱和嚴(yán)重干旱下分別表現(xiàn)出正效應(yīng)、無明顯作用和負(fù)效應(yīng)。
表2 增溫、CO2、降水或氮沉降對(duì)芽庫的影響Table 2 Effects of warming, elevated CO2, precipitation or N deposition on bud bank
此外,施氮對(duì)植被生產(chǎn)力的影響取決于植被所處生態(tài)系統(tǒng)的氮飽和度。松嫩平原就是一個(gè)氮匱乏的地區(qū),羊草的生長通常受土壤中氮的限制,所以施氮能顯著增加該平原單一羊草種群的產(chǎn)量和無性繁殖的數(shù)量[74]。Tomlinson和Oconnor[75]認(rèn)為土壤中的N可能是芽休眠或萌發(fā)的誘發(fā)因素。而氮素營養(yǎng)的添加也可以促進(jìn)根莖[76]、球莖及匍匐莖的產(chǎn)生[77],擴(kuò)充芽庫;顯著增加子株尤其是分蘗子株的數(shù)量,因?yàn)槭┑獌?yōu)先促進(jìn)植物基部的分蘗節(jié)芽形成子株[78]。然而Dalgleish等[79]認(rèn)為施氮雖然促進(jìn)了S.heterolepis芽庫的擴(kuò)充以及芽向子株的輸出,但對(duì)子株個(gè)體的大小沒有影響。此外,氮素添加對(duì)不同類型、不同科的克隆植物也可能產(chǎn)生不同的影響,例如在北美草地,施氮增加了游擊型克隆植物的生長而減少了密集型克隆植物的生長[80],這可能導(dǎo)致該地區(qū)的密集型克隆植物逐漸被替代;在高寒草甸草原,施氮延遲了禾本科植物的第1次開花時(shí)間并減少其繁殖分配,但在非禾本科植物中卻產(chǎn)生相反的結(jié)果[81]??傮w看來,不同物種及不同地區(qū)對(duì)氮沉降的響應(yīng)程度不同。在我國東北草甸草原的研究中發(fā)現(xiàn),適度的營養(yǎng)對(duì)芽庫的建成和萌發(fā)是有利的,氮素的供應(yīng)增加了羊草的無性繁殖能力,提高地上和地下生物量[82]。
表2就增溫、CO2升高、氮沉降或降水變化對(duì)克隆植物無性繁殖的一些研究結(jié)果做了簡單總結(jié)。但正如前文介紹,氮沉降是伴隨降水以脈沖的形式進(jìn)入土壤,所以氮沉降的作用與降水的關(guān)系密不可分,溫度雖然可能促進(jìn)植物的生長但是增溫會(huì)引發(fā)干旱,此外,以CO2為主體的溫室效應(yīng)引發(fā)了全球變暖,所以單獨(dú)研究某一因子的作用并不能很好的預(yù)測未來的氣候變化產(chǎn)生的影響,現(xiàn)已有一部分氣候變化中二因素或三因素交互對(duì)植物影響的研究(表3)。
表3 增溫、CO2、降水和氮沉降的交互作用對(duì)植物種群或群落的影響Table 3 Effects of warming, elevated CO2, rainfall and nitrogen deposition on plant population or community
氣候變化并不是完全單獨(dú)直接作用于植物,往往是由于各種微氣候因子發(fā)生變化的綜合作用,它們對(duì)植物生長發(fā)育、種群動(dòng)態(tài)、群落組分乃至整個(gè)生態(tài)系統(tǒng)的影響并不是某一單獨(dú)因子可以決定的[52-55,70-73],正因?yàn)楦饕蜃又g的交互作用,所以極大地增加了人們預(yù)測氣候變化背景下植物動(dòng)態(tài)的難度。綜合文獻(xiàn)發(fā)現(xiàn),關(guān)于CO2濃度升高、增溫、干旱和氮沉降之間交互作用的研究較少[83],而且可能由于地下取樣困難等原因,關(guān)于研究CO2濃度升高、增溫、氮沉降等氣候變化對(duì)地下芽庫影響的文獻(xiàn)更少,仍需要做大量的研究。但實(shí)際上絕大部分植物都是克隆植物,尤其是草本植物,無性繁殖是它們的主要繁殖方式,所以對(duì)于主要依賴地下芽庫完成植被更新的植物而言,關(guān)于無性繁殖應(yīng)對(duì)環(huán)境變化的研究需要進(jìn)一步實(shí)行,為未來應(yīng)對(duì)氣候變化以及草地管理提供一定的科學(xué)依據(jù)。
References:
[1] 張文軍,周啟星,魏巍.克隆植物修復(fù)退化生態(tài)系統(tǒng)的機(jī)制.草地學(xué)報(bào),2016,24(3):485-490. Zhang W J,Zhou Q X,Wei W.Mechanisms of restoration of degraded ecosystem by clonal plants.Acta Agrestia Sinica,2016,24(3):485-490.(in Chinese)
[2] Houghton J T,Ding Y,Griggs D J,Noguer M.Climate Change 2001:The Scientific Basis.Cambridge:Cambridge University Press,2001.
[3] Liu B,Xu M,Henderson M,Qi Y,Li Y.Taking China’s temperature:Daily range,warming trends,and regional variations,1955-2000.Journal of Climate,2004,17:4453-4462.
[4] Easterling D R,Horton B,Jones P D,Peterson T C,Karl T R,Parker D E,Salinger M J,Razuvayev V,Plummer N,Jamson P,Folland C K.Maximum and minimum temperature trends for the globe.Science,1997,277:364-367.
[5] Alward R D,Detling J K,Milchunas D G.Grassland vegetation changes and nocturnal global warming.Science,1999,283:229-231.
[6] Solomon S D,Qin D,Manning M,Chen Z,Marquis M.Climate Change 2007:The Physical Science Basis.Working Group Ⅰ Contribution to the Fourth Assessment Report of the IPCC.Computational Geometry,2007,18(2):95-123.
[7] Min S K,Zhang X,Zwiers F W,Hegeri G C.Human contribution to more-intense precipitation extremes.Nature,2011,470:378-381.
[8] Smith M D.An ecological perspective on extreme climatic events:A synthetic definition and framework to guide future research.Journal of Ecology,2011,99:656-663.
[9] 李新周,劉曉東,馬柱國.近百年來全球主要干旱區(qū)的干旱化特征分析.干旱區(qū)研究,2004,21(2):97-103. Li X Z,Liu X D,Ma Z G.Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years.Arid Zone Research,2004,21(2):97-103.(in Chinese)
[10] Hooper D U,Johnson L.Nitrogen limitation in dryland ecosystems:Responses to geographical and temporal variation in precipitation.Biogeochemistry,1999,46:247-293.
[11] Holland E A,Dentener F J,Braswell B H,Sulzman J M.Contemporary and pre-industrial global reactive nitrogen budgets,in new perspectives on nitrogen cycling in the temperate and tropical americas.Biogeochemistry,1999,46:7-43.
[12] Allen E B,Rao L E,Steers R J,Bytnerowicz A,Fenn M E.Impacts of atmospheric nitrogen deposition on vegetation and soils in joshua tree national park.Las Vegas,Nevada,USA:University of Nevada Press,2009:78-100.
[13] Rao L E,Parker D R,Bytnerowicz A,Allen E B.Nitrogen mineralization across an atmospheric nitrogen deposition gradient in southern california deserts.Journal of Arid Environments,2009,73:920-930.
[14] 武倩,韓國棟,王瑞珍,劉芳,秦潔.模擬增溫對(duì)草地植物、土壤和生態(tài)系統(tǒng)碳交換的影響.中國草地學(xué)報(bào),2016,38(4):105-114. Wu Q,Han G D,Wang R Z,Liu F,Qin J.Effects of simulated warming on grassland plants,soil and ecosystem carbon exchange.Chinese Journal of Grassland,2016,38(4):105-114.(in Chinese)
[15] 曹路,李春瑞,田青松,杜建材,王忠武,韓冰.內(nèi)蒙古荒漠草原植物遺傳多樣性對(duì)模擬增溫處理的響應(yīng).生態(tài)學(xué)報(bào),2016,36(21):6909-6918. Cao L,Li C R,Tian Q S,Du J C,Wang Z W,Han B.The response of genetic diversity in desert steppe plants to simulated warming in Inner Mongolia,China.Acta Ecologica Sinica,2016,36(21):6909-6918.(in Chinese)
[16] Cowles J M,Wragg P D,Wright A J,Powers J S,Tilman D.Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.Global Change Biology,2016,22(2):741-749.
[17] Gao S,Wang J F,Zhang Z J,Dong G,Guo J X.Seed production,mass,germinability,and subsequent seedling growth responses to parental warming environment inLeymuschinensis.Crop & Pasture Science,2012,63:87-94.
[18] Li Z L,Lin J X,Zhang T Y,Zhang N,Mu C S,Wang J F.Effects of summer nocturnal warming on biomass production ofLeymuschinensisin the songnen grassland of China:From bud bank and photosynthetic compensation.Journal of Agronomy and Crop Science,2014,200:66-76.
[19] Kuster T M,WilkinsonA,Hill P W,Jones D L,Bardgett R D.Warming alters competition for organic and inorganic nitrogen between co-existing grassland plant species.Plant and Soil,2016,406(1):117-129.
[20] 付剛,孫維,李少偉,何永濤,沈振西.藏北高原不同海拔高寒草甸群落地上部分碳氮含量對(duì)模擬增溫的響應(yīng).生態(tài)環(huán)境學(xué)報(bào),2015,24(7):1093-1097. Fu G,Sun W,Li S W,He Y T,Shen Z X.Response of community aboveground parts carbon and nitrogen content to experimental warming in an alpine meadow at three elevations in the northern Tibet.Ecology and Environment Sciences,2015,24(7):1093-1097. (in Chinese)
[21] Madhu M,Hatfield J L.Dynamics of plant root growth under increased atmospheric carbon dioxide.Agronomy Journal,2013,105(3):657.
[22] de Souza A P,Arundale R A,Dohleman F G,Long S P,Buckeridge M S.Will the exceptional productivity ofMiscanthusxgiganteusincrease further under rising atmospheric CO2.Agricultural and Forest Meteorology,2013,171:82-92.
[23] Leakedy A D,Bishop K A,Ainsworth E A.A multi-biome gap in understanding of crop and ecosystem responses to elevatd CO2.Current Opinion in Plant Biology,2012,15:228-236.
[24] Zhang B C,Cao J J,Bai Y F,Zhou X,Ning Z,Yang S,Hu L.Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow.Climate Change,2013,118:197-212.
[25] Padilla F M,Aarts B H J,Roijendijk Y O A,Caluwe H D,Mommer L,Visser E J W.Root plasticity maintains growth of temperate grassland species under pulsed water supply.Plant and Soil,2013,369:1-10.
[26] Cleland E E,Collins S L,Dickson T L,Farre E C,Gross K L,Gherardi L A,Hallett L M,Hobbs R J,Hsu J S,Turnbull L,Suding K N.Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation.Ecology,2013,94(8):1687-1696.
[27] Gan J S,Esmaile M M,Sattarian A.Role of soil fertilization and cutting on tillering and yield components ofSorghumhalepense.International Journal of Agronomy and Plant Production,2013,4(5):994-997.
[28] Luo Y Q,Hui D F,Zhang D Q.Elevated CO2stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis.Ecology,2013,87(1):53-63.
[29] Ainsworth E A,Long S P.What have we learned from 15 years of free-air CO2enrichment (face) a meta-analytic review of the responses of photosynthesis,canopy properties and plant production to rising CO2.New Phytologist,2005,165:351-372.
[30] 董鳴.克隆植物生態(tài)學(xué).科學(xué)出版社,2011,7.
[31] Benson E J,Hartnett D C,Mann K H.Belowground bud banks and meristem limitation in tallgrass prairieplant populations.American Journal of Botany,2004,91:416-421.
[32] Harper J L.Population Biology of Plants.New York,USA:Academic Press,1977.
[33] Klime? L.Bud banks and their role in vegetative regeneration——A literature review and proposal for simple classification and assessment.Perspectives in Plant Ecology,Evolution and Systematics,2007,8(3):115-129.
[34] 趙凌平,王占彬,程積民.草地生態(tài)系統(tǒng)芽庫研究進(jìn)展.草業(yè)學(xué)報(bào),2015,24(7):172-179. Zhao L P,Wang Z B,Cheng J M.Review of bud banks in grassland ecosystems.Acta Prataculturae Sinica,2015,24(7):172-179.(in Chinese)
[35] Benson E J,Hartnett D C.The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie.Plant Ecology,2006,187:163-178.
[36] Meney K,Dixon K,Pate J.Reproductive potential of obligate seeder and resprouter herbaceous perennial monocots (Restionaceae,Anarthriaceae,Ecdeiocoleaceae) from South-western Western Australia.Australian Journal of Botany,1997,45:771-782.
[37] Ni J.Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China.Plant Ecology,2004,174(2):217-234.
[38] Bunce J.Acclimation of photosynthesis to temperature inArabidopsisthalianaandBrassicaoleracea.Photosynthetica,2008,46:517-524.
[39] Kim S H,Gitz D C,Sicher R C,Baker J T,Timlin D J,Reddy V R.Temperature dependence of growth,development,and photosynthesis in maize under elevated CO2.Environmental and Experimental Botany,2007,61:224-236.
[40] Hoover D L,Knapp A K,Smith M D.Resistance and resilience of a grassland ecosystem to climate extremes.Ecology,2014,95(5):2646-2656.
[41] Wang J F,Gao S,Lin J,Mu Y G,Mu C S.Summer warming effects on biomass production and clonal growth ofLeymuschinensis.Crop and Pasture Science,2010,61:670-676.
[42] Wan S,Xia J,Liu W,Niu S.Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration.Ecology,2009,90:2700-2710.
[43] Wellstein C,Cianfaglione K.Impact of extreme drought and warming on survival and growth characteristics of different provenences of juvenileQuercuspubesceneWilld.Folia Geobotanica,2014,49:31-47.
[44] Ott J P,Butler J L,Rong Y P,Xu L.Greater bud outgrowth ofBromusinermisthanPascopyrumsmithiiunder multiple environmental conditions.Journal of Plant Ecology,2016:DOI:10.1093/jpe/rtw045.
[45] Long S P,Ainsworth E A,Rogers A,Ort D R.Rising atmospheric carbon dioxide:Plants face the future.Annual Review Plant Biology,2004,55:591-628.
[46] Luo Y,Hui D,Zhang D.Elevated CO2stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis.Ecology,2006,87:53-63.
[47] Morgan J A,Lecain D R,Mosier A R,Milchunas D G.Elevated CO2enhances water relations and productivity and affects gas exchange in C3and C4grasses of the Colorado shortgrass steppe.Global Change Biology,2001,7:451-466.
[48] Kakani V,Reddy K R.Temperature response of C4species big bluestem is modified by growing carbon dioxide concentration.Environmental and Experimental Botany,2007,61:281-290.
[49] Tobita H,Uemura A,Kitao M,Kitaoka S,Utsugi H.Interactive effects of elevated CO2,phosphorus deficiency,and soil drought on nodulation and nitrogenase activity inAlnushirsutaandAlnusmaximowiczii.Symbiosis,2010,50:59-69.
[50] Kinmonth S H, Kim S H. Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C3grass, phalaris arundinacea. Functional Plant Biology,2011,38:797-807.
[51] Zhang N,Lin J X,Yang Y H,Li Z L,Wang Y,Cheng L Y,Shi Y J,Zhang Y T,Wang J F,Mu C S.The tolerance of growth and clonal propagation ofPhragmitesaustralis(common reeds) subjected to lead contamination under elevated CO2conditions.RSC Advances,2015,5:55527-55535.
[52] Mooney H,Drake B G,Luxmoore R,Luxmoore R J,Oechel W C,Pitelka L F.Predicting ecosystem responses to elevated CO2concentrations.Bioscience,1991,41(2):96-104.
[53] Poorter H.Do slow-growing species and nutrient-stressed plants respond relatively strongly to elevated CO2.Global Change Biology,1998,4:693-697.
[54] 李卓琳.羊草生長發(fā)育對(duì)模擬主要全球氣候變化因子的響應(yīng).長春:東北師范大學(xué)博士學(xué)位論文,2014. Li Z L.Study on growth and development response ofLeymuschinensisto main global climate change factors.PhD Thesis.Changchun:Northeast Normal University,2014.(in Chinese)
[55] Pettersson R,McDonald A J S.Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2.Photosynthesis Research,1994,39:389-400.
[56] Li Z L,Zhang Y T,Yu D F,Zhang N,Lin J X,Zhang J W,Tang J H,Wang J F,Mu C S.The influence of precipitation regimes and elevated CO2on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grassLeymuschinensis.PLoS One,2014,9(8):e103633.
[57] Knapp A K,Smith M D.Variation among biomes in temporal dynamics of aboveground primary production.Science,2001,291:481-484.
[58] Bai Y,Wu J,Xing Q,Pan Q,Huang J,Yang D,Han X.Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Ecology,2008,89:2140-2153.
[59] Bai Y,Han X,Wu J,Chen Z,Li L.Ecosystems ability and compensatory effects in the Inner Mongolia grassland.Nature,2004,431:181-184.
[60] 韓國棟.降水量和氣溫對(duì)小針茅(StipaklemenziiRoshev.)草原植物群落初級(jí)生產(chǎn)力的影響.內(nèi)蒙古大學(xué)學(xué)報(bào):自然科學(xué)版,2002,33(1):83-88. Han G D.Influence of precipitation and air temperature on primary productivity ofStipaklemenziiplant community,Nei Mongol.Acta Scientiarum Naturalium Univeristatis Neimongal,2002,33(1):83-88.(in Chinese)
[61] 蔣德明,周全來,阿拉木薩,唐毅,押田敏雄.科爾沁沙地植被生產(chǎn)力對(duì)模擬增加降水和氮沉降的響應(yīng).生態(tài)學(xué)雜志,2011,30(6):1070-1074. Jiang D M,Zhou Q L,Alamusa,Tang Y,Toshi O.Responses of vegetation productivity in Horqin sand land to simulated increased precipitation and nitrogen deposition.Chinese Journal of Ecology,2011,30(6):1070-1074.(in Chinese)
[62] Knapp A K,Fay P A,Blair J M,Collins S L,Smith M D,Carlisle J D,Harper C W,Danner B T,Lett M S,Mccarron J K.Rainfall variability,carbon cycling,and plant species diversity in a mesic grassland.Science,2002,298:2202-2205.
[63] Swemmer A M,Knapp A K,Snyman H A.Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands.Journal of Ecology,2007,95:780-788.
[64] Niu S,Yang H,Zhang Z,Wu M,Lu Q,Li L,Han X.Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe.Ecosystems,2009,12:915-926.
[65] vander Weide B L,Hartnett D C,Carter D L.Belowground bud banks of tallgrass prairie are insensitive to multi-year,growing-season drought.Ecosphere,2014,5(8):1-17.
[66] Relchmann L G,Sala O E.Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem.Functional Ecology,2014,28:1292-1298.
[67] Koerner S E,Collins S L,Blair J M,Knapp A K,Smith M D.Rainfall variability has minimal effects on grassland recovery from repeated grazing.Journal of Vegetation Science,2014,25:36-44.
[68] vander Weide B L,Hartnett D C.Belowground bud bank response to grazing under severe,short-term drought.Oecologia,2015,178:795-806.
[69] 周曉兵,張?jiān)?干旱半干旱區(qū)氮沉降生態(tài)效應(yīng)研究進(jìn)展.生態(tài)學(xué)報(bào),2009,29(7):3835-3845. Zhou X B,Zhang Y M.Review on the ecological effects of N deposition in arid and semi-arid areas.Acta Ecologica Sinica,2009,29(7):3835-3845.(in Chinese)
[70] 李世娟,周殿璽.限水灌溉下不同氮肥用量對(duì)小麥產(chǎn)量及氮素分配利用的影響.華北農(nóng)學(xué)報(bào),2001,16:86-91. Li S J,Zhou D X.Effect of different nitrogen application on yield,nitrogen distribution and utilization in winter wheat under soil water stress.Acta Agricultural Boreali-Sinica,2001,16:86-91.(in Chinese)
[71] 申云霞,唐拴虎.冬小麥水肥產(chǎn)量交互效應(yīng)模擬研究.西北植物學(xué)報(bào),1995,15:138-141.
[72] Asner G P,Townsend A R,Riley W J,Maston P A,Neff J C.Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition.Biogeochemistry,2001,54:1-39.
[73] 梁銀麗,康紹忠.限量灌水和磷營養(yǎng)對(duì)冬小麥產(chǎn)量及水分利用的影響.土壤侵蝕與水土保持學(xué)報(bào),1997(3):60-67.
[74] 楊允菲,張寶田.松嫩平原羊草種群營養(yǎng)繁殖的季節(jié)動(dòng)態(tài)及其生物量與密度關(guān)系的分析.植物學(xué)報(bào),1992,34(6):443-449. Yang Y F,Zhang B T.An analysis of seasonal variation of vegetative propagation and the relationships between biomass and population density ofAneurolepidiumchinensein Songnen Plain of China.Acta Botanica Sinica,1992,34(6):443-449.(in Chinese)
[75] Tomlinson K,Oconnor T.Control of tiller recruitment in bunchgrasses:Uniting physiology and ecology.Functional Ecology,2004,18:489-496.
[76] Hutchings M,Kroon H D.Foraging in plants:The role of morphological plasticity in resource acquisition.Advances in Ecological Research,1994,25:159-238.
[77] Zhang L H,Zhang Y W,Zhao X N,Huang S J,Zhao J M,Yang Y F.Effects of different nutrient sources on plasticity of reproductive strategies in a monoecious species,Sagittariagraminea(Alismataceae).Journal of Systematics and Evolution,2014,52(1):84-91.
[78] Bai W,Sun X,Wang Z,Li L.Nitrogen addition and rhizome severing modify clonal growth and reproductive modes ofLeymuschinensispopulation.Plant Ecology,2009,205:13-21.
[79] Dalgleish H J,Kula A R,Hartnett D C,Sandercock B K.Responses of two bunchgrasses to nitrogen addition in tallgrass prairie:The role of bud bank demography.American Journal of Botany,2008,95:672-680.
[80] Gough L,Gross K L,Cleland E E,Clark C M,Collins S L.Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition.Oecologia,2012,169:1053-1062.
[81] Zhang Z L,Niu K C,Liu X D,Jia P,Du G.Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow.Journal of Plant Ecology,2014,7(3):231-239.
[82] 王俊鋒.氮,水和溫度對(duì)羊草有性生殖及克隆生長的影響.長春:東北師范大學(xué)博士學(xué)位論文,2010. Wang J F.Sexual reproduction and clonal growth ofLeymuschinensisin response to nitrogen application,waters,and warming.PhD Thesis.Changchun:Northeast Normal University,2010.(in Chinese)
[83] Li Z L,Zhang Y T,Yu D F,Zhang N,Lin J X,Zhang J W,Tang J H,Wang J F,Mu C S.The influence of precipitation regimes and elebated CO2on photosynthesis and biomass accumulation and partitioning in seedling of the rhizomatous perennial grassLeymuschinensis.PLoS One,2014,9(8):e103633.
[84] vande Velde H,Bonte D,AbdElgawad H,Asard H,Nijs I.Combined elevated CO2and climate warming induces lagged effects of drought inLoliumperenneandPlantagolanceolata.Plant Ecology,2015,216:1047-1059.
(責(zé)任編輯 王芳)
Review of the effects of climate change on the propagation of perennial clonal plants
Li Zhuo-lin1, Mu Chun-sheng2, Wu Chun-ying3
(1.Key Laboratory of Urbanization and Ecological Restoration of Shanghai, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China; 2.Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; 3.Grassland Management Station of Yanbian Autonomous Prefecture, Yanji 133001, China)
Climate change consists of many simultaneous factors which have different influences on plants, animals and microbes in various ecosystems. Clonal plants have two different modes of reproduction, sexual reproduction and vegetative propagation. Many clonal plants have abandoned or nearly abandoned sexual reproduction, owing to environmental adaptation. To some extent, their vegetative propagation ability might represent the total productivity of these plants. Therefore, the response of clonal plant propagation to climate change has becomea crucial issue. In this paper, we review the effects of the main climatic factors on clonal growth of a perennial plant. Both elevated CO2and nitrogen deposition increased the output of daughter shoots in most papers, but decreasing precipitation had adverse or noeffect. Warming time had different effects on daughter shoots. Although there is a lot of research about the effects of eachclimate change factor on clonal plants, studies showing howthe interaction of these factors affectsclonal plant propagation arescarce.To strengthen the body of research, studies about how interaction among the climatic factors affectsclonal plants areessential, because theynot only enrich knowledge of clonal plant and global change ecology, but also provide practical guidance for grassland management in the future.
CO2; warming; precipation pattern; N deposition; clonal growth
Mu Chun-sheng E-mail:mucs821@nenu.edu.cn
10.11829/j.issn.1001-0629.2016-0414
2016-08-08 接受日期:2017-03-24
973課題(2015CB150801);國家自然科學(xué)基金(31370432);植被生態(tài)科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室開放課題編號(hào)(130028675)
李卓琳(1987-),女,黑龍江漠河人,博士,主要從事全球氣候變化和牧草繁殖的研究。E-mail:lizhuolin1987621@126.com
穆春生(1961-),男,吉林長春人,教授,博士,主要從事飼料作物生態(tài)學(xué)和草業(yè)科學(xué)方向的研究。E-mail:mucs821@nenu.edu.cn
S162.5+9;Q785
A
1001-0629(2017)08-1694-11
李卓琳,穆春生,吳春英.氣候變化對(duì)草原多年生克隆植物無性繁殖的影響.草業(yè)科學(xué),2017,34(8):1694-1704.
Li Z L,Mu C S,Wu C Y.Review of the effects of climate change on the propagation of perennial clonal plants.Pratacultural Science,2017,34(8):1694-1704.