亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        適宜鉀濃度降低小麥蚜蟲(chóng)密度的生理代謝機(jī)理

        2017-09-03 09:34:50付延磊王祎王宜倫姜瑛李培培閆鳳鳴譚金芳韓燕來(lái)
        關(guān)鍵詞:水平

        付延磊,王祎,2,王宜倫,2,姜瑛,李培培,閆鳳鳴,譚金芳,2,韓燕來(lái),2*

        (1河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,河南鄭州450002;2河南省糧食作物協(xié)同創(chuàng)新中心,河南鄭州450002;3河南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,河南鄭州450002)

        適宜鉀濃度降低小麥蚜蟲(chóng)密度的生理代謝機(jī)理

        付延磊1,王祎1,2,王宜倫1,2,姜瑛1,李培培1,閆鳳鳴2,3,譚金芳1,2,韓燕來(lái)1,2*

        (1河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,河南鄭州450002;2河南省糧食作物協(xié)同創(chuàng)新中心,河南鄭州450002;3河南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,河南鄭州450002)

        【目的】從對(duì)植物基礎(chǔ)代謝影響的角度,研究施鉀降低麥株蚜蟲(chóng)密度的作用機(jī)理,為田間小麥蚜蟲(chóng)的生態(tài)調(diào)控提供科學(xué)依據(jù)?!痉椒ā坎捎盟嘣囼?yàn),設(shè)置5個(gè)鉀水平(KCl0.005、0.05、0.5、2、10mmol/L),每個(gè)鉀水平均進(jìn)行蚜蟲(chóng)侵染和不侵染處理,每個(gè)處理重復(fù)3次,并于麥株五葉一心時(shí)進(jìn)行蚜蟲(chóng)侵染,將蟲(chóng)齡大小一致的成年無(wú)翅蚜蟲(chóng)接種在小麥的最新完全展開(kāi)葉上,每株小麥用5頭蚜蟲(chóng)侵染。然后,分別于蚜蟲(chóng)侵染4天和8天兩個(gè)時(shí)間節(jié)點(diǎn)調(diào)查麥株蚜蟲(chóng)密度并取樣,分析鉀水平和蚜蟲(chóng)取食對(duì)小麥葉片游離氨基酸、可溶性蛋白和可溶性糖含量的影響?!窘Y(jié)果】鉀水平在0.005~0.5mmol/L范圍內(nèi),蚜蟲(chóng)侵染后第4天,單位干物質(zhì)重的蚜蟲(chóng)密度隨著鉀水平的提高顯著降低,進(jìn)一步提高鉀水平,蚜蟲(chóng)的群體密度差異并不顯著;而在蚜蟲(chóng)侵染后第8天,蚜蟲(chóng)的群體密度隨著鉀水平的升高而顯著降低。隨著鉀水平提高,未被蚜蟲(chóng)侵染的小麥植株其游離氨基酸含量呈降低趨勢(shì),而可溶性蛋白和可溶性糖含量則呈先升高后降低趨勢(shì);被蚜蟲(chóng)侵染的小麥植株其游離氨基酸和可溶性蛋白含量的變化趨勢(shì)不變,而可溶性糖含量則呈持續(xù)增加趨勢(shì)。同一測(cè)定時(shí)間與不接蟲(chóng)處理相比,接蟲(chóng)處理隨著鉀水平的提高,蚜蟲(chóng)侵染誘導(dǎo)的游離氨基酸和可溶性蛋白含量降低,而可溶性糖含量增加。兩個(gè)時(shí)間節(jié)點(diǎn)相比,隨時(shí)間推移,不接蟲(chóng)處理游離氨基酸、可溶性蛋白、可溶性糖含量的平均增幅分別為2.6%、18.1%、2.0%,而接蟲(chóng)處理上述指標(biāo)平均增幅分別為67.3%、20.9%、22.9%,與不接蟲(chóng)處理相比,接蟲(chóng)處理麥株游離氨基酸和可溶性糖含量增幅較大。此外,蚜蟲(chóng)侵染誘導(dǎo)的游離氨基酸、可溶性蛋白和可溶性糖含量的增加量,都與相應(yīng)時(shí)間節(jié)點(diǎn)的蚜蟲(chóng)群體密度顯著或極顯著相關(guān),其中,接蟲(chóng)4天和接蟲(chóng)8天的相關(guān)系數(shù)分別為0.948、0.920、–0.908和0.944、0.985、–0.991。而組成型的可溶性蛋白和可溶性糖含量與相應(yīng)時(shí)間節(jié)點(diǎn)蚜蟲(chóng)群體密度間相關(guān)性不顯著,游離氨基酸含量卻與之呈極顯著正相關(guān),接蟲(chóng)4和8天的相關(guān)系數(shù)分別為0.995和0.944。【結(jié)論】提高鉀水平可能通過(guò)降低小麥組成型游離氨基酸的含量,降低蚜蟲(chóng)取食誘導(dǎo)型游離氨基酸和可溶性蛋白積累,提高誘導(dǎo)型可溶性糖的積累,共同降低麥長(zhǎng)管蚜密度。

        冬小麥;鉀;麥長(zhǎng)管蚜;蚜蟲(chóng)取食;游離氨基酸;可溶性蛋白;可溶性糖

        小麥?zhǔn)鞘澜缟系谌蠹Z食作物,蚜蟲(chóng)是影響小麥生產(chǎn)的主要害蟲(chóng)。據(jù)全國(guó)農(nóng)技推廣中心歷年公布的數(shù)據(jù),我國(guó)麥蚜常年發(fā)生面積約為0.1~0.17億公頃,造成小麥減產(chǎn)10%左右[1],其中麥長(zhǎng)管蚜(Sitobion avenae F.)是我國(guó)黃淮麥區(qū)的優(yōu)勢(shì)種[2],不僅直接吸食麥株汁液,同時(shí)通過(guò)傳播病毒,對(duì)小麥產(chǎn)量造成極大的影響。

        提高作物抗蟲(chóng)性是降低蟲(chóng)害發(fā)生、對(duì)蟲(chóng)害進(jìn)行綜合防治的重要技術(shù)途徑,也是農(nóng)業(yè)領(lǐng)域中極具挑戰(zhàn)性的研究課題[3]。研究表明,施肥等農(nóng)藝措施對(duì)作物抗蟲(chóng)性具有重要影響[4–5],其中施用鉀肥在降低作物蟲(chóng)害發(fā)生方面效果突出。Waring等[6]通過(guò)綜述前人研究結(jié)果指出,有50%和40%試驗(yàn)中高鉀供應(yīng)與蚜蟲(chóng)或刺吸性蟲(chóng)害發(fā)生呈正相關(guān);Perrenouds[7]對(duì)國(guó)際鉀肥研究所2000多項(xiàng)鉀肥試驗(yàn)結(jié)果進(jìn)行總結(jié)后發(fā)現(xiàn),63%的施用鉀肥試驗(yàn)?zāi)軌蚪档拖x(chóng)害的發(fā)生率;鉀缺乏延長(zhǎng)大麥蚜蟲(chóng)生命歷期和增加繁殖能力[8];土壤或葉片鉀含量較低時(shí)大豆蚜蟲(chóng)群體密度、蚜蟲(chóng)凈增值率和內(nèi)稟增長(zhǎng)率較高[9–11]。

        碳水化合物是植物和植食性昆蟲(chóng)共同的能量來(lái)源,而氨基酸作為植物主要的氮素形態(tài),不僅是制約植食性昆蟲(chóng)生長(zhǎng)的食物,也是重要的防御性物質(zhì)的前體物質(zhì)[12],而可溶性蛋白作為植物另一類含氮化合物,不僅可以酶的形式參加植物的各種代謝活動(dòng)和作為滲透調(diào)節(jié)物[13],而且也是植食性昆蟲(chóng)的營(yíng)養(yǎng)物質(zhì)[14]。因而,對(duì)上述物質(zhì)進(jìn)行調(diào)控對(duì)控制植食性昆蟲(chóng)的發(fā)生具有重要意義。

        研究表明,供鉀水平對(duì)植株碳氮代謝有重要影響。例如Van Emden等[15]發(fā)現(xiàn),施鉀可降低甘藍(lán)可溶性氮的含量;Hu等[16]研究認(rèn)為,缺鉀的棉花植株游離氨基酸含量較高;低鉀脅迫條件下,玉米可溶性蛋白含量降低,而可溶性糖含量增加[13]。植食性昆蟲(chóng)取食亦可誘導(dǎo)植物基本代謝物質(zhì)尤其是碳水化合物和氨基酸的變化。蚜蟲(chóng)取食可誘導(dǎo)小麥韌皮部必需氨基酸含量的升高[17–18];蚜蟲(chóng)取食日本花楸后植株游離氨基酸含量比未取食植株高約4倍[19],但關(guān)于蚜蟲(chóng)取食條件下供鉀水平對(duì)植株碳氮代謝相關(guān)物質(zhì)積累的影響研究較少,尤其是將上述變化與蚜蟲(chóng)發(fā)生相聯(lián)系的研究還鮮見(jiàn)報(bào)道。

        本研究通過(guò)對(duì)不同鉀水平下小麥植株分別進(jìn)行不接蟲(chóng)和接蟲(chóng)處理,探討了供鉀水平和蚜蟲(chóng)取食對(duì)麥株游離氨基酸、可溶性蛋白質(zhì)和可溶性糖影響的主效及其交互效應(yīng),在此基礎(chǔ)上分析了供鉀水平對(duì)蚜蟲(chóng)取食過(guò)程中上述物質(zhì)變化的影響及其與蚜蟲(chóng)密度的關(guān)系,為田間麥蚜的生態(tài)調(diào)控提供科學(xué)依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)設(shè)計(jì)

        本試驗(yàn)采用水培試驗(yàn),在光照培養(yǎng)室中進(jìn)行,采用鉀水平和蚜蟲(chóng)侵染水平5×2設(shè)計(jì),其中5個(gè)供鉀(K+)水平分別為0.005、0.05、0.5、2、10 mmol/L;蚜蟲(chóng)侵染分為不接蟲(chóng)和接蟲(chóng)兩個(gè)水平。植物所需要的鉀用氯化鉀提供(其中鉀水平低于2mmol/L處理中Cl–用NaCl補(bǔ)充)。營(yíng)養(yǎng)液配方采用楊振明營(yíng)養(yǎng)液:Ca(NO3)2·4H2O0.6mmol/L,NH4NO30.8 mmol/L,CaCl22.6mmol/L,MgSO4·7H2O0.3mmol/L, (NH4)2HPO40.28mmol/L,NH4H2PO40.64mmol/L, CuSO4·5H2O0.001mmol/L,ZnSO4·7H2O0.001 mmol/L,H3BO30.033mmol/L,MnSO40.01mmol/L, (NH4)6Mo7O2·4H2O0.0002mmol/L。螯合鐵:EDTAFe2+0.02mmol/L。培養(yǎng)過(guò)程中每2天更換1次營(yíng)養(yǎng)液。小麥五葉一心開(kāi)始接種蚜蟲(chóng)(5頭/株),蚜蟲(chóng)選用蟲(chóng)齡一致的健壯成蟲(chóng),每個(gè)處理15株為一個(gè)重復(fù),共設(shè)3個(gè)重復(fù)。為防止蚜蟲(chóng)從接蟲(chóng)植株上遷出,用上端開(kāi)口的玻璃紙罩將植株罩住,開(kāi)口處再蓋上用80目(á0.178mm)的尼龍網(wǎng)做成的蓋子。所用麥長(zhǎng)管蚜的飼養(yǎng)設(shè)定溫度為20℃,相對(duì)濕度為70%,光照(LED燈)每日為L(zhǎng)(light)∶D(dark)=14h∶10h。小麥品種為黃淮地區(qū)的主栽品種‘矮抗58’。

        1.2 小麥植株蚜蟲(chóng)群體密度的測(cè)定

        于接種蚜蟲(chóng)后的第4天和第8天取樣之前先調(diào)查蚜蟲(chóng)數(shù)量,然后稱取對(duì)應(yīng)小麥植株的地上部干重,計(jì)算單位干物質(zhì)重的蚜蟲(chóng)數(shù)目。

        1.3 游離氨基酸、可溶性糖和可溶性蛋白質(zhì)含量的測(cè)定

        于接種蚜蟲(chóng)后的第4天和第8天取樣,各處理接蟲(chóng)植株取接蟲(chóng)部位葉片,不接蟲(chóng)植株取同葉位葉片。游離氨基酸測(cè)定采用水合茚三酮法,可溶性糖測(cè)定采用蒽酮法,可溶性蛋白質(zhì)測(cè)定采用考馬斯亮藍(lán)法。

        1.4 數(shù)據(jù)處理

        數(shù)據(jù)處理采用Excel2010和SPSS statistics19.0進(jìn)行數(shù)據(jù)計(jì)算與統(tǒng)計(jì)分析;相關(guān)性采用雙變量相關(guān)性分析。

        表1 處理 4 天、8 天后麥株蚜蟲(chóng)數(shù)量 (No./g, DW)Table 1 Number of aphids in wheat under different K treatments on the 4th and 8th day after the infestation

        2 結(jié)果與分析

        2.1 不同供鉀水平對(duì)麥株蚜蟲(chóng)數(shù)量的影響

        隨著時(shí)間的推移,各施鉀水平蚜蟲(chóng)數(shù)量均呈增加趨勢(shì);隨著鉀水平的提高,麥株上蚜蟲(chóng)數(shù)量整體呈降低趨勢(shì)(表1)。接蟲(chóng)后第4天,蚜蟲(chóng)數(shù)量在K 0.005~0.5mmol/L范圍內(nèi)顯著下降,繼續(xù)提高鉀水平蚜蟲(chóng)數(shù)量無(wú)顯著變化;接蟲(chóng)后第8天,蚜蟲(chóng)數(shù)量在K0.005~10mmol/L范圍內(nèi)顯著下降。由此可以看出,隨著蚜蟲(chóng)侵染時(shí)間的延長(zhǎng),降低蚜蟲(chóng)數(shù)量所需的供鉀水平隨之增加。

        2.2 鉀水平和蚜蟲(chóng)取食對(duì)小麥葉片游離氨基酸含量的影響

        在兩個(gè)時(shí)間節(jié)點(diǎn)上,鉀水平和接蟲(chóng)水平對(duì)小麥游離氨基酸影響的主效應(yīng)及其交互效應(yīng)均達(dá)顯著水平(表2)。同一接蟲(chóng)水平下,葉片游離氨基酸含量均隨著鉀水平的提高呈先降低后趨于穩(wěn)定的趨勢(shì),其轉(zhuǎn)折點(diǎn)在K0.5水平。鉀水平相同時(shí),與不接蟲(chóng)處理相比,接蟲(chóng)植株葉片游離氨基酸含量均呈增加趨勢(shì),但接蟲(chóng)植株與不接蟲(chóng)植株兩者差值隨鉀水平的增加而縮小,其中在接蟲(chóng)后第4天K0.005、0.05 mmol/L水平下,接蟲(chóng)與不接蟲(chóng)植株葉片游離氨基酸含量差異達(dá)顯著水平;而在接蟲(chóng)后第8天,各供鉀水平下接蟲(chóng)與不接蟲(chóng)植株葉片游離氨基酸含量差異均達(dá)顯著水平。兩個(gè)時(shí)間點(diǎn)相比,隨時(shí)間推移,不接蟲(chóng)處理植株游離氨基酸的增加幅度較小,為–4.8%~10.8%,平均增幅為2.6%;而接蟲(chóng)處理不同鉀水平下植株游離氨基酸含量增加幅度較大,為40.2%~100.0%,平均增幅為67.3%。

        2.3 鉀對(duì)蚜蟲(chóng)取食過(guò)程中小麥葉片可溶性蛋白質(zhì)含量的影響

        在兩個(gè)時(shí)間節(jié)點(diǎn)上,鉀水平對(duì)小麥可溶性蛋白質(zhì)含量的影響的主效應(yīng)達(dá)顯著水平,接蟲(chóng)水平對(duì)小麥可溶性蛋白質(zhì)影響的主效應(yīng)未達(dá)顯著水平,但鉀水平和接蟲(chóng)水平對(duì)小麥可溶性蛋白質(zhì)影響的交互效應(yīng)達(dá)顯著水平(表3)。接蟲(chóng)水平相同時(shí),葉片可溶性蛋白質(zhì)含量均隨著鉀水平的提高呈先增加后減少的趨勢(shì),其中在K2水平下葉片可溶性蛋白質(zhì)含量達(dá)最高。同一鉀水平下,與不接蟲(chóng)處理相比,接蟲(chóng)后植株葉片可溶性蛋白含量均呈增加趨勢(shì),但接蟲(chóng)植株與不接蟲(chóng)植株葉片可溶性蛋白含量的差值隨鉀水平的提高而縮小,在接蟲(chóng)后第4天K0.005mmol/L水平下、在第8天K0.005和0.05mmol/L水平下,接蟲(chóng)與不接蟲(chóng)植株葉片可溶性蛋白含量差異均達(dá)顯著水平。兩個(gè)時(shí)間點(diǎn)下相同處理間葉片可溶性蛋白質(zhì)含量均隨時(shí)間推移呈增加趨勢(shì)。其中,不接蟲(chóng)處理間植株可溶性蛋白含量增加7.6%~31.3%,平均增幅為18.1%;接蟲(chóng)處理間植株可溶性蛋白含量增加9.7%~33.7%,平均增幅為20.7%。

        表2 接蟲(chóng)后第 4 天和第 8 天不同鉀水平處理小麥游離氨基酸含量 (mg/g)Table 2 Free amino acids content of wheat after the aphids infestation under different K levels on the 4th and the 8th day

        2.4 鉀水平和蚜蟲(chóng)取食對(duì)小麥葉片可溶性總糖含量的影響

        在兩個(gè)時(shí)間節(jié)點(diǎn)上,鉀水平和接蟲(chóng)水平對(duì)小麥可溶性總糖含量的影響的主效應(yīng)及其交互效應(yīng)均達(dá)顯著水平(表4)。不接蟲(chóng)時(shí),小麥葉片可溶性總糖含量均隨著鉀水平的提高呈先增加后趨于穩(wěn)定的變化規(guī)律,其轉(zhuǎn)折點(diǎn)為K0.05mmol/L,進(jìn)一步提高鉀水平可溶性糖含量變化不顯著。接蟲(chóng)時(shí),在第4天小麥葉片可溶性總糖含量隨著鉀水平的變化規(guī)律與不接蟲(chóng)相同,但轉(zhuǎn)折點(diǎn)鉀水平提高到K0.5mmol/L。在第8天小麥葉片可溶性總糖含量隨著鉀水平的提高而升高。供鉀水平相同時(shí),與不接蟲(chóng)相比,接蟲(chóng)后小麥葉片可溶性總糖增加量隨鉀水平增加而提高,其中在第4天的K2和10mmol/L水平下,在第8天的各供鉀水平下,可溶性總糖的增加量均達(dá)顯著水平。兩個(gè)時(shí)間點(diǎn)相比,不接蟲(chóng)處理葉片可溶性總糖含量隨時(shí)間推移增加較少,增加幅度為–3.7%~4.4%,平均增幅為2.0%;接蟲(chóng)處理葉片可溶性總糖含量隨時(shí)間推移增加較多,增加幅度為17.8%~29.9%,平均增幅為22.9%。

        表3 接蟲(chóng)后第 4 天和第 8 天不同鉀水平處理小麥可溶性蛋白質(zhì)含量 (mg/g)Table 3 Effect of K levels on total soluble protein content of wheat under different K treatment levels on the 4th and the 8th day after the aphids infestation

        表4 接蟲(chóng)第 4 天和第 8 天不同鉀水平處理小麥可溶性總糖含量 (mg/g)Table 4 Total soluble sugar content of wheat affected by the K treatment levels on the 4th and the 8th day after the aphids infestation

        2.5 不同生化指標(biāo)與蚜蟲(chóng)密度的相關(guān)性分析

        表5表明,在接蟲(chóng)后第4天和第8天,隨著鉀水平的增加,小麥蚜蟲(chóng)密度與不接蟲(chóng)小麥葉片游離氨基酸含量呈極顯著正相關(guān)關(guān)系,與可溶性蛋白和可溶性糖含量相關(guān)性不顯著;與蚜蟲(chóng)取食誘導(dǎo)的游離氨基酸積累量、可溶性蛋白積累量呈顯著的負(fù)相關(guān)關(guān)系,而與蚜蟲(chóng)取食誘導(dǎo)的可溶性糖的增加量呈顯著的正相關(guān)關(guān)系。

        表5 接蟲(chóng)后第 4 天和第 8 天各測(cè)定指標(biāo)與蚜蟲(chóng)密度的相關(guān)性分析Table 5 Correlation analysis of the measured items and aphid population density on the 4th and 8th day after the aphids infestation

        3 討論和結(jié)論

        植物的抗性,既涉及到植物本身的組成抗性,也包括遭受植食性昆蟲(chóng)進(jìn)攻后所表現(xiàn)出來(lái)的誘導(dǎo)抗性[20]。植物的抗蟲(chóng)性外在表現(xiàn)為昆蟲(chóng)種群降低和為害減少,其內(nèi)在機(jī)理既與植物基礎(chǔ)代謝相關(guān),也與其次生代謝有關(guān)。本研究涉及的施鉀可以增強(qiáng)小麥抗蚜水平的可能的生理機(jī)制,就是從植物基礎(chǔ)代謝的角度開(kāi)展的研究。

        本試驗(yàn)結(jié)果表明,在接蟲(chóng)后8天內(nèi),兩個(gè)時(shí)間節(jié)點(diǎn)小麥植株單位干重的蚜蟲(chóng)群體密度均受供鉀水平的影響,且在一定供鉀濃度范圍內(nèi)隨供鉀水平的提高呈降低趨勢(shì),這與前人在大豆、甘藍(lán)等作物上發(fā)現(xiàn)的土壤或葉片鉀含量較低時(shí)植株蚜蟲(chóng)群體密度、蚜蟲(chóng)凈增值率和內(nèi)稟增長(zhǎng)率繁殖率較高的研究結(jié)果相一致[9–11,14]。進(jìn)一步證明提高供鉀水平可降低蚜蟲(chóng)密度,同時(shí)研究也發(fā)現(xiàn),隨著時(shí)間的推移,有效降低蚜蟲(chóng)密度所需要的鉀水平增加。

        前人關(guān)于供鉀水平對(duì)植株游離氨基酸、可溶性蛋白和可溶性糖含量的影響已進(jìn)行過(guò)較多研究。多數(shù)研究結(jié)果均表明缺鉀增加植株游離氨基酸水平,這在大豆、棉花、甘藍(lán)等作物上均得到證明[11,14-15],本研究結(jié)果與前人結(jié)論基本一致,且進(jìn)一步發(fā)現(xiàn),供鉀水平在0.5mmol/L以下植株游離氨基酸含量顯著降低,而鉀水平高于0.5mmol/L,進(jìn)一步增加供鉀水平植株游離氨基酸含量變化較小。前人關(guān)于供鉀水平對(duì)植株可溶性蛋白質(zhì)、可溶性糖含量的影響的研究結(jié)果不盡一致,有的結(jié)果甚至相反。如閆洪奎等[16]和Mengel等[21]發(fā)現(xiàn)低鉀脅迫使植物可溶性蛋白含量降低,而Rashid等[22]則發(fā)現(xiàn),增施鉀肥可以使水稻組織內(nèi)可溶性蛋白含量降低。而本研究發(fā)現(xiàn),供鉀水平過(guò)低和過(guò)高對(duì)小麥可溶性蛋白質(zhì)含量均有不利影響。Marschner等[23]認(rèn)為,供鉀不足會(huì)引起植物體內(nèi)可溶性糖含量的升高,Rashid等[22]的研究也表明,提高水稻組織中的含鉀量會(huì)降低可溶性糖含量。但是,柳洪鵑等[24]研究表明,鉀肥可以促進(jìn)植物組織中淀粉水解,從而提高組織可溶性糖含量。本研究結(jié)果表明,小麥可溶性蛋白隨供鉀水平的增加呈先上升后降低的趨勢(shì);在鉀水平低至0.005mmol/L時(shí),小麥可溶性糖含量雖顯著降低,但在該水平以上,進(jìn)一步提高鉀水平,可溶性糖含量變化不顯著。與前人研究不盡一致。筆者認(rèn)為,植株可溶性蛋白和可溶性糖含量對(duì)鉀水平的響應(yīng)可能受作物類型和品種、外部環(huán)境條件等多種因素的影響,而本試驗(yàn)條件與其它研究可能有所差異。

        相關(guān)分析表明,未接蟲(chóng)時(shí),僅植株游離氨基酸的含量與相應(yīng)時(shí)間節(jié)點(diǎn)蚜蟲(chóng)密度呈顯著的正相關(guān)關(guān)系,而可溶性蛋白質(zhì)和可溶性糖的含量與相應(yīng)時(shí)間節(jié)點(diǎn)蚜蟲(chóng)密度均未達(dá)到顯著水平,似乎說(shuō)明植株中后兩種物質(zhì)積累的多少不是限制蚜蟲(chóng)生長(zhǎng)的主要因子。但這一結(jié)果似乎難以解釋前人的研究,人們發(fā)現(xiàn),抗蚜品種西瓜幼苗的可溶性蛋白含量明顯低于感蚜材料[25];小麥抗蚜性與可溶性蛋白含量呈負(fù)相關(guān)[26]。棉株體內(nèi)可溶性糖含量與其抗蚜性呈正相關(guān)[27];冬小麥體內(nèi)平均可溶性糖含量越高,麥蚜密度或生殖力越低[26]。朱永峰等[28]對(duì)燕麥的研究發(fā)現(xiàn),高抗蚜品種受到蚜蟲(chóng)危害后體內(nèi)可溶性糖含量的增加顯著高于感蚜品種。Karley等[29]和Pompon等[30]研究認(rèn)為,植物韌皮部可溶性糖濃度足夠高時(shí)會(huì)導(dǎo)致蚜蟲(chóng)的取食液和血淋巴滲透勢(shì)升高,從而引起蚜蟲(chóng)脫水和死亡。蔗糖的濃度顯著影響蚜蟲(chóng)的進(jìn)食,當(dāng)蔗糖的濃度超過(guò)20%以后,蚜蟲(chóng)的進(jìn)食嚴(yán)重減弱[31]。

        筆者分析發(fā)現(xiàn),供鉀水平和蚜蟲(chóng)取食對(duì)植株游離氨基酸、可溶性蛋白質(zhì)含量和可溶性糖含量影響的交互效應(yīng)亦達(dá)顯著水平,也就是說(shuō),寄主植物中受蚜蟲(chóng)取食所誘導(dǎo)的上述物質(zhì)積累因供鉀水平不同而異。其中隨著供鉀水平的增加,蚜蟲(chóng)取食誘導(dǎo)的游離氨基酸和可溶性蛋白含量顯著降低,而蚜蟲(chóng)取食誘導(dǎo)的可溶性糖含量顯著增加。相關(guān)分析表明,隨著鉀水平的提高,寄主蚜蟲(chóng)取食誘導(dǎo)的氨基酸、可溶性蛋白質(zhì)的增加量與蚜蟲(chóng)密度呈顯著的正相關(guān)關(guān)系,而可溶性糖的增加量與蚜蟲(chóng)密度呈顯著的負(fù)相關(guān)關(guān)系。該結(jié)果與前人研究所得的氨基酸、可溶性蛋白以及可溶性糖與蚜蟲(chóng)密度的關(guān)系基本吻合,所以我們推測(cè),供鉀水平對(duì)蚜蟲(chóng)密度的影響一方面是降低了植株體內(nèi)組成型和誘導(dǎo)型游離氨基酸的含量,另一方面降低了誘導(dǎo)型可溶性蛋白含量和增加了誘導(dǎo)型可溶性糖的含量,共同降低麥長(zhǎng)管蚜密度。

        關(guān)于施鉀增強(qiáng)植株抗蟲(chóng)性的機(jī)理,前人從鉀對(duì)植物基礎(chǔ)代謝的影響角度雖進(jìn)行過(guò)闡述,例如Van Emden提出,施鉀降低甘藍(lán)蚜蟲(chóng)繁殖力機(jī)理與降低了植株游離氨基酸含量有關(guān)[15];Walter等[11]提出,施鉀降低大豆蚜蟲(chóng)發(fā)生與降低了植株韌皮部中的天冬氨酸含量有關(guān),但上述研究主要基于施鉀對(duì)未感蟲(chóng)植株的生理代謝的影響進(jìn)行分析,因而未涉及施鉀對(duì)蟲(chóng)害誘導(dǎo)植物抗蚜性的影響。而本研究通過(guò)對(duì)不同鉀水平下小麥植株分別進(jìn)行不接蟲(chóng)和接蟲(chóng)處理,在探討供鉀水平和蚜蟲(chóng)取食對(duì)麥株游離氨基酸、可溶性蛋白質(zhì)和可溶性糖影響的主效及其交互效應(yīng)基礎(chǔ)上,分析了供鉀水平對(duì)蚜蟲(chóng)取食過(guò)程中麥株上述物質(zhì)變化的影響及其與蚜蟲(chóng)密度的關(guān)系,既探討了施鉀對(duì)植株組成型抗性的影響,也探討了施鉀對(duì)蚜蟲(chóng)取食誘導(dǎo)抗性的影響,更為深入地闡述供鉀水平—植株基礎(chǔ)代謝—蚜蟲(chóng)發(fā)生的關(guān)系。

        目前認(rèn)為,蟲(chóng)害的早期信號(hào)傳到細(xì)胞內(nèi)后,植物將通過(guò)三種主要的激素茉莉酸(JA)、水楊酸(SA)、乙烯(ET)等信號(hào)物質(zhì)介導(dǎo)的信號(hào)通路,啟動(dòng)一系列防御反應(yīng)[32]。因此需要進(jìn)一步深入分析鉀水平對(duì)上述過(guò)程的調(diào)控機(jī)理,以揭示施鉀如何通過(guò)影響植物基礎(chǔ)代謝而影響植物的防御反應(yīng)。另外,本試驗(yàn)是在室內(nèi)水培條件下嚴(yán)格控制蚜蟲(chóng)遷移的前提下開(kāi)展的,且只應(yīng)用了一個(gè)小麥品種,因此,該試驗(yàn)僅反映了無(wú)翅蚜蟲(chóng)在不同鉀水平的矮抗58小麥幼苗上的生長(zhǎng)發(fā)育與植株體內(nèi)碳氮代謝相關(guān)物質(zhì)含量的關(guān)系,其結(jié)果有待在更多的品種、土壤培育小麥和田間進(jìn)一步驗(yàn)證。

        總之,從植物基礎(chǔ)代謝角度分析,提高鉀水平可能通過(guò)降低小麥組成型游離氨基酸的含量,降低蚜蟲(chóng)取食誘導(dǎo)型游離氨基酸和可溶性蛋白積累,提高誘導(dǎo)型可溶性糖的積累,共同降低小麥苗期麥長(zhǎng)管蚜密度。

        [1]胡想順,趙惠燕.我國(guó)小麥抗蚜機(jī)理研究進(jìn)展[J].應(yīng)用昆蟲(chóng)學(xué)報(bào), 2014,51(6):1459–1469. Hu XS,Zhao HY.The reviews of wheat resistant mechanism to cereal aphid in China[J].Chinese Journal of Applied Entomology, 2014,51(6):1459–1469.

        [2]王美芳,原國(guó)輝,陳巨蓮,等.麥蚜發(fā)生危害特點(diǎn)及小麥抗蚜性鑒定的研究[J].河南農(nóng)業(yè)科學(xué),2006,(7):58–60. Wang MF,Yuan GH,Chen JL,et al.Research advances of occurrence pattern,damage characteristics of wheat aphid and resistance identification of wheat[J].Journal of Henan Agricural sciences,2006(7):58–60.

        [3]Dogimont C,Bendahmane A,Chovelon V,et al.Host plant resistance to aphids in cultivated crops:Genetic and molecular bases, and interactions with aphid populations[J].Comptes Rendus Biologies,2010,333:566–573.

        [4]Altieri MA,Nicholls CI.Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems[J].Soil& Tillage Research,2003,72:203–211.

        [5]龐淑婷,董元華.土壤施肥與植食性害蟲(chóng)發(fā)生為害的關(guān)系[J].土壤, 2012,44(5):719–726. Pang ST,Dong YH.Effects of soil fertilization on herbivores infestation[J].Soils,2012,44(5):719–726.

        [6]Waring GL,Cobb NS.The impact of plant stress on herbivore population dynamics[J].Insect-plant Interactions,1992,4:167–226.

        [7]Perrenoud S.Potassium and plant health[M].Bern,Switzerland: International Potash Institute,1990.

        [8]Havlickova H,Smetankova M.Effect of potassium and magnesium fertilization on barley preference by the bird cherry-oat aphid (Rhopalosiphum padi)[J].Rostlinna Vyroba,1998,44(8):379–383.

        [9]Myers SW,Gratton C,Wolkowski RP,et al.Effect of soil potassium availability on soybean aphid(Hemiptera: Aphididae) population dynamics and soybean yield[J].Journal of Economic Entomology,2005,98(1):113–120.

        [10]Myers SW,Gratton C.Influence of potassium fertility on soybean aphid,aphis glycines matsumura(Hemiptera: Aphididae),population dynamics at afield and regional scale[J].Physiological Ecology, 2006,35(2):219–227.

        [11]Walter AJ,Difonzo CD.Soil potassium deficiency affects soybean phloem nitrogen and soybean aphid populations[J].Physiological Ecology,2007,36(1):26–33.

        [12]Zhou SQ,Lou YR,Tzin V,Jander G.Alteration of plant primary metabolism in response to insect herbivory[J].Plant Physiology, 2015,169:1488–1498.

        [13]閆洪奎,劉祥,王會(huì)廣,等.低鉀脅迫下耐低鉀玉米可溶性蛋白、可溶性糖和鉀含量的變化及其關(guān)系[J].玉米科學(xué),2012,20(6):81–84.Yan HK,Liu X,Wang HG,et al.Changes and relation of soluble protein,soluble sugar and potassium in low-potassium tolerant maize under low-potassium condition[J].Journal of Maize Sciences,2012, 20(6):81–84.

        [14]李田田,姜文芝,谷停停,等.黃瓜葉片營(yíng)養(yǎng)物質(zhì)與抗蚜性的關(guān)系研究[J].山東農(nóng)業(yè)科學(xué),2016,48(10):44–47. Li TT,Jiang WZ,Gu TT,et al.Relationship between aphid resistance and leaf nutrient content of cucumber[J].Shandong Agricultural Sciences,2016,48(10):44–47.

        [15]Van Emden HF.Studies on the relations of insect and host plant.III. A comparison of the reproudution of Brevicoryne Brassicae and Myzus Presicae(Hemiptera Aphididae)on brussels sprout plants supplied with different rates of nitrogen and potassium[J]. Entomologia Experimentalis et Applicata,1966,9(4):444–460.

        [16]Hu W,Zhao WQ,Yang JS,et al.Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.)boll during the boll development stage[J]. Plant Physiology and Biochemistry,2016,101:113–123.

        [17]Dorschner KW,Ryan JD,Johnson RC.Modification of host nitrogen levels by the greenbug(Homoptera:Aphididae):its role in resistance of winter wheat to aphids[J].Environmental Entomology, 1987,16(4):1007–1011.

        [18]Sandstr?m J,Telang A,Moran NA.Nutritional enhancement of host plants by aphids—A comparison of three aphid species on grasses[J]. Journal of Insect Physiology,2000,46(1):33–40.

        [19]Koyama Y,Yao I,Akimoto SI.Aphid galls accumulate high concentrations of amino acids:a support for the nutrition hypothesis for gall formation[J].Entomologia Experimentalis et Applicata,2004, 113(1):35–44.

        [20]婁永根,程家安.植物的誘導(dǎo)抗蟲(chóng)性[J].昆蟲(chóng)學(xué)報(bào),1997,40(3): 320–330. Lou YG,Cheng JA.Induced plant resistance to phytophagous insects[J].Acta Entomologica Sinica,1997,40(3):320–330.

        [21]Mengal K,Kirkby EA,Appel T,et al.Principles of plant nutrition(5th edition)[M].The Netherlands:Dordrecht,2001.

        [22]Rashid MM,Jahan M,Islam KS.Impact of nitrogen,phosphorus and potassium on Brown[J].Rice Science,2016,23(3):119–131.

        [23]Marschner H.Mineral nutrition of higher plants(2nd edition)[M]. New York:Academic Press,1995.

        [24]柳洪鵑,史春余,張立明,等.鉀素對(duì)食用型甘薯糖代謝相關(guān)酶活性的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(3):724–732. Liu HJ,Shi CY,Zhang LM,et al.Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato[J].Plant Nutrition and Fertilizer Science,2012,18(3):724–732.

        [25]吳梅梅,楊麗榮,張顯.蚜蟲(chóng)侵染對(duì)西瓜幼苗生理生化指標(biāo)的影響[J].果樹(shù)學(xué)報(bào),2015,32(5):943–949. Wu MM,Yang LR,Zhang X.Effect of aphid invasion on physiological and biochemical indexes in watermelon seedling stage[J].Journal of Fruit Science,2015,32(5):943–949.

        [26]王祎,張?jiān)铝?蘇建偉,等.氮硅配施對(duì)冬小麥生育后期蚜蟲(chóng)密度及抗蟲(chóng)生化物質(zhì)含量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(4): 832–839. Wang Y,Zhang YL,Su JW,et al.Effect of nitrogen application combined with silicon on density of Sitobion avenae and contents of biochemical materials of winter wheat at the late growth stage[J]. Journal of Plant Nutrition and Fertilizer,2013,19(4):832–839.

        [27]劉旭明,楊奇華.棉花抗蚜的生理生化機(jī)制及其與棉蚜種群數(shù)量消長(zhǎng)關(guān)系的研究[J].植物保護(hù)學(xué)報(bào),1993,20(1):25–29. Liu XM,Yang QH.Physiological and biochemical mechanism of cotton aphid resistance and its relationship with the growth and decline of the cotton aphid populations[J].Acta Phytophylacica Sinica,1993,20(1):25–29.

        [28]朱永峰,陳明,劉長(zhǎng)仲.蚜蟲(chóng)為害對(duì)五個(gè)燕麥品種苗期體內(nèi)幾種物質(zhì)的影響[J].植物保護(hù),2011,37(2):55–58,66. Zhu YF,Chen M,Liu CZ.Variations of several substances in the seedlings of five oat varieties infested by aphids[J].Plant Protection, 2011,37(2):55–58,66.

        [29]Karley AJ,Ashford DA,Minto LM.The significance of gut sucrase activity for osmoregulation in the pea aphid,Acyrthosiphon pisum[J]. Journal of Insect Physiology,2005,51(12):1313–1319.

        [30]Pompon J,Quiring D,Joyer C.A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential[J].Journal of Insect Physiology,2011,57(9):1317–1322.

        [31]Mittler TE.Effect of amino acid and sugar concentrations on the food uptake of the aphid Myzus persicae[J].Entomologia Experimentalis et Applicata,1967,10(1):39–51.

        [32]Gao LL,Jonathan PA,Klingler JP,et al.Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula[J].Molecular Plant-microbe Interactions,2007,20(1): 82–93.

        Physiological mechanism of potassium application in decreasing density of aphid (Sitobion avenae F.) in wheat

        FU Yan-lei1,WANG Yi1,2,WANG Yi-lun1,2,JIANG Ying1,LI Pei-pei1,YAN Feng-ming2,3,TAN Jin-fang1,2,HAN Yan-lai1,2*
        (1 College of Resource and Environment, Henan Agricultural University, Zhengzhou 450002, China; 2 Collaborative Innovation Center of Food Crops in Henan, Zhengzhou 450002, China; 3 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China)

        【Objectives】Based on the view of plant basic metabolism,the experiment revealed the mechanism of reducing aphid(Sitobion avenae F.)population density of wheat by applying potassium,and provided scientific basis for ecological regulation of wheat aphids in the field.【Methods】A solution culture method and fully balancing design with five potassium levels(0.005,0.05,0.5,2and10mmol/L KCl,respectively)and two aphidinfection levels(aphid infection and not infection)were used in this experiment,and three repetitions were arranged for each treatment.When the wheat seedlings had5expanded leaves,5adult wingless aphids in the same size and age were set on the latest fully expanded leaves per wheat plant.Then the density of aphids were surveyed and the wheat samples were collected respectively at the fourth and eighth days after the aphid infection to study effects of potassium level and aphid feeding on free amino acids,soluble protein and the content of soluble sugar of wheat leaves.【Results】The results showed that at the fourth day after the infection of aphids and in the range of K0.005–0.5mmol/L,the aphid density of unit dry weight of wheat decreased significantly as potassium level increased,and if improving the potassium level further,the aphids population density did not increase significantly.At the eighth day after the aphid infection,the aphid population density decreased significantly with the increase of potassium levels in the arranged range.As potassium level increased,the free amino acid contents in the wheat plants uninfected by aphids showed adecreasing trend,while both soluble protein and soluble sugar contents showed increasing trends at first and then showed decreasing trends.In the wheat plants infected by aphids,the free amino acids and soluble protein contents showed the same changing trend as in the former,however,the soluble sugar content showed acontinuously increasing trend.Comparing the treatment infected by aphids with the treatment uninfected by aphids at the same time nodes,as potassium level increased,the free amino acids and soluble protein contents of wheat plant were decreased by aphid infection,while the soluble sugar contents were increased.By comparison of the involved indexes in the two time nodes,as the time prolongation,there were average increments of2.6%,18.1%,2.0%for free amino acid, soluble protein and soluble sugar contents respectively in the uninfected wheat,and of67.3%,20.9%and 22.9%for infected wheat respectively,which showed greater increase for free amino acids and soluble sugar content in infected wheat plants than in uninfected wheat plant.In addition,the contents of induced free amino acid,soluble protein and soluble sugar,had significant or extremely significant correlation with the aphid population density in relevant each time node,and the correlation coefficients were0.948,0.920and–0.908in the fourth day,and0.944,0.985and–0.991in the eighth day respectively.The contents of constitutive soluble protein and soluble sugar had no significant correlation with aphid density,but the content of constitutive free amino acid had extremely significant correlation with aphid density,and the correlation coefficients were0.995 and0.944respectively at the fourth and eighth days after the aphid infection.【Conclusions】Our results showed that increasing potassium supply could significantly reduce aphid population density by significantly reducing constitutive free amino acid content,inhibiting the accumulation of free amino acids and soluble protein and promoting the induced soluble sugar content.

        winter wheat;potassium;Sitobion avenae;aphids feeding;free amino acid;soluble protein; soluble sugar

        2016–11–28接受日期:2017–04–04

        省部共建小麥玉米國(guó)家重點(diǎn)實(shí)驗(yàn)室課題(39990037);國(guó)家“十二五”科技支撐計(jì)劃(2013BAD07B07-2);鄭州市科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(131PCXTD610)共同資助。

        付延磊(1989—),男,河南南陽(yáng)人,碩士研究生,主要從事植物鉀素營(yíng)養(yǎng)生理研究。E-mail:15837195361@163.com

        *通信作者E-mail:hyanlai@126.com

        猜你喜歡
        水平
        張水平作品
        作家葛水平
        火花(2019年12期)2019-12-26 01:00:28
        深化精神文明創(chuàng)建 提升人大工作水平
        加強(qiáng)上下聯(lián)動(dòng) 提升人大履職水平
        水平有限
        雜文月刊(2018年21期)2019-01-05 05:55:28
        加強(qiáng)自身建設(shè) 提升人大履職水平
        老虎獻(xiàn)臀
        中俄經(jīng)貿(mào)合作再上新水平的戰(zhàn)略思考
        建機(jī)制 抓落實(shí) 上水平
        做到三到位 提升新水平
        亚洲一二三四五区中文字幕| 成人自拍小视频在线看| 丰满女人猛烈进入视频免费网站 | 少妇人妻系列中文在线| 图片小说视频一区二区| 狠狠噜天天噜日日噜视频麻豆| 老熟妇乱子伦av| 亚洲av美女在线播放啊| 国产三级在线观看高清| 久久综网色亚洲美女亚洲av | 全免费a敌肛交毛片免费| 久久久精品人妻无码专区不卡| 国产精品一区二区暴白浆| 无码一区久久久久久久绯色AV| 九九精品国产99精品| 在线不卡av一区二区| 亚洲日韩国产av无码无码精品| 国产午夜福利100集发布| 亚洲红怡院| 日本在线一区二区三区四区| 精品厕所偷拍一区二区视频| 免费99精品国产自在在线 | 国产精品女同久久久久久| 亚洲一区二区三区免费av| 一区二区三区四区草逼福利视频 | 人禽伦免费交视频播放| 久久成人永久免费播放| 亚洲一区久久蜜臀av| 人妻精品久久久久中文字幕69| 国产成人综合久久精品免费| 亚洲黄片久久| 国产亚洲精品av一区| 消息称老熟妇乱视频一区二区| 国产精品九九九无码喷水| 激情人妻网址| 日韩精品视频免费网站| 门卫又粗又大又长好爽| 国产特级毛片aaaaaa高清| 色妞色综合久久夜夜| 日本一区二区三区中文字幕视频 | 亚洲二区三区四区太九|