石俊凱 紀(jì)榮祎 黎堯 劉婭 周維虎2)?
1)(中國(guó)科學(xué)院光電研究院激光測(cè)量技術(shù)研究室,北京 100094)
2)(中國(guó)科學(xué)院大學(xué),北京 101407)
基于增益光纖長(zhǎng)度優(yōu)化的雙波長(zhǎng)運(yùn)轉(zhuǎn)摻鉺光纖鎖模激光器?
石俊凱1)紀(jì)榮祎1)黎堯1)劉婭1)周維虎1)2)?
1)(中國(guó)科學(xué)院光電研究院激光測(cè)量技術(shù)研究室,北京 100094)
2)(中國(guó)科學(xué)院大學(xué),北京 101407)
(2017年3月22日收到;2017年4月28日收到修改稿)
構(gòu)建了可自啟動(dòng)的雙波長(zhǎng)運(yùn)轉(zhuǎn)摻鉺光纖鎖模激光器.通過(guò)優(yōu)化增益光纖長(zhǎng)度,利用摻鉺光纖在1530 nm附近的再吸收效應(yīng)調(diào)節(jié)激光器的增益譜,使激光器在1530 nm和1560 nm附近具有相同的增益強(qiáng)度.實(shí)驗(yàn)中采用31 cm摻鉺光纖作為增益光纖,以透射式半導(dǎo)體可飽和吸收體作為鎖模器件,實(shí)現(xiàn)了自啟動(dòng)雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn).激光器鎖模輸出重復(fù)頻率為58.01 MHz,信噪比為58.2 dB,最高輸出功率為4.8mW.鎖模輸出的光譜在1532.4 nm和1552.3 nm處具有兩個(gè)強(qiáng)度接近的譜峰,譜峰間距約為20 nm.該激光器無(wú)需手動(dòng)調(diào)節(jié)即可實(shí)現(xiàn)雙波長(zhǎng)運(yùn)轉(zhuǎn),更便于實(shí)際使用.
鎖模激光器,雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn),自啟動(dòng)鎖模,自發(fā)輻射放大
近年來(lái),多波長(zhǎng)鎖模激光器在光纖傳感、光信號(hào)處理、精密光譜學(xué)、生物制藥研究、微波/太赫茲光子學(xué)和波分復(fù)用光學(xué)光纖通信系統(tǒng)等領(lǐng)域的廣泛應(yīng)用[1,2],因此引起了人們極大的關(guān)注.多波長(zhǎng)鎖模運(yùn)轉(zhuǎn)已經(jīng)在固體激光器,如Ti:sapphire激光器[3,4],Nd:CNGG激光器[5]和Yb:YAG陶瓷激光器[6]中成功實(shí)現(xiàn).相比于固體激光器,光纖激光器具有結(jié)構(gòu)簡(jiǎn)單、效率高、成本低等優(yōu)點(diǎn),成為獲得多波長(zhǎng)脈沖的更好選擇.Schlager等[7]報(bào)道了基于雙折射保偏光纖的雙波長(zhǎng)主動(dòng)鎖模光纖環(huán)形激光器.此后,人們?cè)诠饫w激光器內(nèi)引入色散光柵[8]、高非線性光纖[9]、偏置半導(dǎo)體光學(xué)放大器[10]或單采樣光纖布拉格光柵[11],均實(shí)現(xiàn)了多波長(zhǎng)主動(dòng)鎖模運(yùn)轉(zhuǎn).多波長(zhǎng)主動(dòng)鎖模光纖激光器具有高重頻、窄線寬等優(yōu)點(diǎn),但是其結(jié)構(gòu)復(fù)雜,需要引入腔外調(diào)解信號(hào),不便于使用.多波長(zhǎng)被動(dòng)鎖模光纖激光器具有脈沖短、峰值功率高、結(jié)構(gòu)緊湊且無(wú)需腔外調(diào)節(jié)等優(yōu)點(diǎn)而備受關(guān)注.
多波長(zhǎng)被動(dòng)鎖模光纖激光器大多采用全光纖結(jié)構(gòu),以獲得更高的環(huán)境穩(wěn)定性.多波長(zhǎng)被動(dòng)鎖模運(yùn)轉(zhuǎn)已經(jīng)在基于非線性偏振旋轉(zhuǎn)技術(shù)[12]或非線性光學(xué)環(huán)鏡[13]鎖模機(jī)制的光纖激光器中得以實(shí)現(xiàn).近年來(lái),真正的飽和吸收體(saturab le absorber, SA)如半導(dǎo)體可飽和吸收鏡[14]、單壁碳納米管[15]、石墨烯[16]和拓?fù)浣^緣體[17]也已經(jīng)被用于實(shí)現(xiàn)多波長(zhǎng)被動(dòng)鎖模運(yùn)轉(zhuǎn).目前已報(bào)道的多波長(zhǎng)被動(dòng)鎖模光纖激光器需要在開(kāi)機(jī)后將腔內(nèi)的調(diào)節(jié)器件調(diào)整到合適的狀態(tài)才能實(shí)現(xiàn)多波長(zhǎng)運(yùn)轉(zhuǎn),無(wú)法實(shí)現(xiàn)自啟動(dòng),不便于使用.此外激光腔內(nèi)引入的調(diào)制器件,如偏振控制器[14]或損耗調(diào)節(jié)器[1],增加了激光器結(jié)構(gòu)的復(fù)雜度.
本文提出了一種在摻鉺光纖(Er-doped fiber, EDF)激光器中實(shí)現(xiàn)雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn)的新方法.構(gòu)建鎖模激光器時(shí)選取合適長(zhǎng)度的增益光纖,利用摻鉺光纖的再吸收效應(yīng)使激光器在1530 nm和1560 nm附近具有相同的增益強(qiáng)度.采用透射式半導(dǎo)體可飽和吸收體作為鎖模器件,即可實(shí)現(xiàn)自啟動(dòng)雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn).實(shí)驗(yàn)結(jié)果表明,當(dāng)抽運(yùn)功率高于鎖模閾值時(shí),激光器實(shí)現(xiàn)鎖模運(yùn)轉(zhuǎn),鎖模輸出的光譜在1532.4 nm和1552.3 nm處有兩個(gè)譜峰.
實(shí)驗(yàn)裝置如圖1所示.抽運(yùn)源采用尾纖耦合輸出的單模激光二極管(laser diode,LD),最大輸出功率為600 mW,中心波長(zhǎng)976 nm.抽運(yùn)光通過(guò)波分復(fù)用器(wavelength division multiplexer, WDM)耦合進(jìn)增益光纖,經(jīng)過(guò)增益光纖后,殘余抽運(yùn)光(residual pum p,RP)由另一個(gè)WDM導(dǎo)出腔外.隔離器(isolator,Iso)為偏振無(wú)關(guān)隔離器,確保腔內(nèi)激光的單向運(yùn)轉(zhuǎn).增益光纖采用Nufern公司生產(chǎn)的SM-ESF-7/125型號(hào)光纖;腔內(nèi)光纖器件的尾纖為Corning公司生產(chǎn)的EMF-28E型號(hào)光纖,總長(zhǎng)度約為3.2 m.實(shí)驗(yàn)中采用光纖耦合的透射式半導(dǎo)體可飽和吸收體(Batop,德國(guó))作為鎖模器件,吸收率為58%,調(diào)制深度為35%,弛豫時(shí)間為2 ps.激光器以10:90光纖耦合器(optical coupler,OC)作為輸出器件,將10%的脈沖能量導(dǎo)出腔外作為激光器輸出.
圖1 (網(wǎng)刊彩色)實(shí)驗(yàn)裝置圖 LD,激光二極管;W DM,波分復(fù)用器;EDF,摻鉺光纖;Iso,隔離器;SA,飽和吸收體;OC,耦合輸出;RP,殘余抽運(yùn)光Fig.1.(color on line)Experim ental setup:LD,laser d iode;W DM,wavelength d ivision m u ltip lexer;EDF, Er-doped fiber;Iso,isolator;SA,satu rab le absorber; OC,ou tpu t coup ler;RP,residual pum p.
實(shí)驗(yàn)中采用光譜儀(YOKOGAWA,AQ6370D)記錄光譜,功率計(jì)(Thorlabs,PM 100D)測(cè)量激光功率,APE公司的自相關(guān)儀(Pu lse Check)測(cè)量脈沖的自相關(guān)曲線,鎖模脈沖序列和一次諧波射頻譜采用光電二極管(Newport,1801-FS)與數(shù)字示波器(KEYSIGHT,DSO9254A)和頻譜分析儀(KEYSIGHT,N9010A)結(jié)合進(jìn)行監(jiān)測(cè).
EDF輻射吸收譜如圖2所示,增益譜譜峰和吸收譜譜峰在1530 nm附近重合.假設(shè)EDF長(zhǎng)度不變,隨著抽運(yùn)功率降低,由于光纖的輻射再吸收效應(yīng),自發(fā)輻射放大(am plified spontaneous em ission,ASE)譜在1530 nm處的譜峰逐漸衰減,直至消失,ASE譜的譜峰從1530 nm轉(zhuǎn)移到1560 nm[18].同理,假設(shè)抽運(yùn)功率不變,隨著EDF長(zhǎng)度的增加,在輻射再吸收效應(yīng)的作用下,ASE譜在1530 nm處的譜峰逐漸衰減,譜峰從1530 nm逐漸轉(zhuǎn)移到1560 nm.在一定抽運(yùn)功率下,選取合適長(zhǎng)度的EDF,使ASE譜在兩個(gè)波長(zhǎng)處強(qiáng)度相同.以此作為增益光纖構(gòu)建激光器,使激光器在兩個(gè)波長(zhǎng)處具有相同的增益強(qiáng)度,即可實(shí)現(xiàn)激光器的雙波長(zhǎng)運(yùn)轉(zhuǎn).
圖2 摻鉺光纖的輻射與吸收截面譜[19]Fig.2.Em ission and absorp tion cross section spectra correspond ing to EDF[].
實(shí)驗(yàn)中分別選取長(zhǎng)度為22,31,40和90 cm的EDF作為增益光纖構(gòu)建激光器,分別測(cè)量低抽運(yùn)功率下輸出的ASE譜和最高抽運(yùn)下輸出的鎖模光譜.圖3(a)為不同增益光纖長(zhǎng)度條件下輸出的ASE譜.可以看出,激光器在1530 nm和1560 nm處有兩個(gè)增益峰.當(dāng)增益光纖長(zhǎng)度為22 cm時(shí),1530 nm處的增益強(qiáng)度大于1560 nm處.隨著增益光纖長(zhǎng)度的增加,在EDF輻射再吸收效應(yīng)的作用下,1530 nm處的增益峰逐漸減弱.當(dāng)EDF長(zhǎng)度為31 cm時(shí),兩處增益峰的強(qiáng)度基本一致.當(dāng)EDF長(zhǎng)度增加到90 cm時(shí),1530 nm處的增益峰接近湮滅.在這一過(guò)程中,同樣在再吸收效應(yīng)的作用下,1560 nm附近的增益峰向長(zhǎng)波方向漂移.實(shí)驗(yàn)現(xiàn)象與分析結(jié)果一致.
圖3 不同增益光纖長(zhǎng)度條件下激光器輸出的(a)ASE譜和(b)鎖模輸出光譜Fig.3.(a)ASE spectra and(b)m ode-locking outpu t spectra versus d iff erent length of EDF.
圖3(b)為不同增益光纖長(zhǎng)度條件下輸出的鎖模光譜.當(dāng)EDF長(zhǎng)度為22 cm時(shí),對(duì)應(yīng)的鎖模光譜只有1530 nm處一個(gè)波峰,1560 nm處的激光頻率在模式競(jìng)爭(zhēng)的作用下幾近湮滅.當(dāng)EDF長(zhǎng)度為31 cm時(shí),由于1530 nm和1560 nm處的增益強(qiáng)度基本相同,因此激光器鎖模時(shí)將兩個(gè)波段同時(shí)鎖定,且兩個(gè)波段的鎖模光譜強(qiáng)度也非常接近.隨著EDF長(zhǎng)度的繼續(xù)增加,1530 nm處的鎖模光譜逐漸衰減,直至完全湮滅.同時(shí),鎖模光譜在1560 nm附近的波峰在增益譜的影響下向長(zhǎng)波方向漂移.
根據(jù)增益光纖長(zhǎng)度對(duì)比實(shí)驗(yàn)結(jié)果,選取增益光纖長(zhǎng)度為31 cm.激光器輸出結(jié)果如圖4和圖5所示.圖4為激光器輸出的斜效率曲線,如圖所示,隨著抽運(yùn)功率增加,激光器首先實(shí)現(xiàn)連續(xù)波(continuous wave,CW)運(yùn)轉(zhuǎn).當(dāng)抽運(yùn)功率提升到390 mW時(shí),激光器的CW輸出功率為0.54 mW.激光的低轉(zhuǎn)換效率是由短增益光纖提供的較低增益和SA的高非飽和損耗共同造成的.繼續(xù)提升抽運(yùn)功率至395 mW,激光器實(shí)現(xiàn)鎖模運(yùn)轉(zhuǎn),輸出功率躍升至3.2 mW.在抽運(yùn)功率為530 mW時(shí),激光器獲得最高輸出功率4.8 mW.實(shí)驗(yàn)中發(fā)現(xiàn),在激光器鎖模運(yùn)轉(zhuǎn)狀態(tài)下,將抽運(yùn)功率降低至88 mW,激光器仍能維持鎖模運(yùn)轉(zhuǎn).這種現(xiàn)象被稱為抽運(yùn)滯后效應(yīng)[20].
圖4 激光器斜效率曲線Fig.4.Output power as a function of pum p power.
圖5為最高抽運(yùn)功率條件下激光器的輸出特性.圖5(a)為激光器輸出光譜,插圖為對(duì)數(shù)坐標(biāo)下的光譜.光譜在1532.4 nm和1552.3 nm處有兩個(gè)譜峰,半高寬分別為6.6 nm和5.2 nm. 1552.3 nm處譜峰與兩譜峰之間的低谷處強(qiáng)度分別為1532.4 nm處強(qiáng)度的92%和13%.圖5(b)為輸出脈沖的自相關(guān)曲線,其半高全寬度(fullw idth half maximum,FWHM)為353.9 fs,假設(shè)脈沖為高斯型脈沖,對(duì)應(yīng)的脈沖FWHM為250.3 fs.圖5(c)和圖5(d)分別為激光器輸出的脈沖序列和一次諧波射頻譜.激光器輸出脈沖的重復(fù)頻率為58.01MHz,對(duì)應(yīng)的脈沖間距為17.24 ns.激光器鎖模輸出的信噪比為58.2 dB.以上測(cè)量結(jié)果表明,該激光器實(shí)現(xiàn)了可自啟動(dòng)的雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn),且鎖模狀態(tài)運(yùn)轉(zhuǎn)穩(wěn)定.
圖5 最高抽運(yùn)功率下激光器輸出 (a)線性坐標(biāo)和對(duì)數(shù)坐標(biāo)(插圖)下的光譜;(b)自相關(guān)曲線;(c)脈沖序列;(d)一次諧波射頻譜Fig.5.Laser outpu t characteristics corresponding to m ax pum p power:(a)Spectra on linear scale and log scale(inset);(b)autocorrelation trace;(c)pu lse train;(d)RF spectrum.
構(gòu)建了一種新型雙波長(zhǎng)運(yùn)轉(zhuǎn)摻鉺光纖鎖模激光器.根據(jù)不同長(zhǎng)度增益光纖的對(duì)比實(shí)驗(yàn)結(jié)果,選取31 cm摻鉺光纖作為增益光纖,激光器在1530 nm和1560 nm附近具有相同的增益系數(shù),實(shí)現(xiàn)了自啟動(dòng)雙波長(zhǎng)鎖模運(yùn)轉(zhuǎn).激光器輸出重復(fù)頻率為58.01 MHz,信噪比為58.2 dB,最高輸出功率為4.8 mW,鎖模輸出的光譜在1532.4 nm和1552.3 nm處具有兩個(gè)譜峰,譜峰間距約為20 nm.該激光器無(wú)需手動(dòng)調(diào)節(jié)即可實(shí)現(xiàn)雙波長(zhǎng)運(yùn)轉(zhuǎn),使用時(shí)降低了對(duì)操作人員的要求,便于應(yīng)用推廣.
[1]Zhao X,Zheng Z,Liu L,Liu Y,Jiang Y,Yang X,Zhu J 2011 Opt.Express 19 1168
[2]Huang S,W ang Y,Yan P,Zhao J,Li H,Lin R 2014 Opt. Express 22 11417
[3]Zhang Z,Yagi T 1993 Opt.Lett.18 2126
[4]Zhu C,He J,W ang S 2005 Opt.Lett.30 561
[5]X ie G Q,Tang D Y,Luo H,Zhang H J,Yu H H,W ang J Y,Tao X T,Jiang M H,Q ian L J 2008 Opt.Lett.33 1872
[6]Yoshioka H,Nakam ura S,Ogawa T,W ada S 2010 Opt. Express 18 1479
[7]Schlager J B,KawanishiS,SaruwatariM 1991 E lectron. Lett.27 2072
[8]Town G E,Chen L,Sm ith P W E 2000 IEEE Photon. Techno l.Lett.12 1459
[9]Chen Z,Sun H,M a S,Du tta N K 2008 IEEE Photon. Techno l.Lett.20 2066
[10]Dong H,Zhu G H,W ang Q,Sun H,Du tta N K 2004 Opt.Express 12 4297
[11]Yao J,Yao J,W ang Y,T jin SC,Zhou Y,Lam Y L,Liu J,Lu C 2001 Opt.Comm un.191 341
[12]Xu ZW,Zhang Z X 2013 Acta Phys.Sin.62 104210(in Chinese)[徐中巍,張祖興2013物理學(xué)報(bào)62 104210]
[13]Yun L,Liu X,M ao D 2012 Opt.Express 20 20992
[14]Zhang H,Tang D,W u X,Zhao L M 2009 Opt.Express 17 12692
[15]Zhang Z X,Xu Z W,Zhang L 2012 Opt.Express 20 26736
[16]Zhang C,Luo Z Q,W ang J Z,Zhou M,Xu H Y,Cai Z P 2012 Chin.J.Lasers 39 25(in Chinese)[張成,羅正錢,王金章,周敏,許惠英,蔡志平2012中國(guó)激光39 25]
[17]Liu M,Zhao N,Liu H,Zheng X W,Luo A P,Luo Z C,Xu W C,Zhao C J,Zhang H,W en S C 2014 IEEE Photon.Technol.Lett.26 983
[18]Desurvire E,Sim pson J R 1989 J.Lightwave Technol.7 835
[19]Desurvire E,Zirngib l M,Presby H M,D iG iovanni D 1991 IEEE Photon.Technol.Lett.3 127
[20]Kom arov A,Leb lond H,Sanchez F 2005 Phys.Rev.A 71 053809
(Received 22 March 2017;revised manuscript received 28 April 2017)
Dual-wavelength mode-locked Er-doped fiber laser based on optimizing gain fiber length?
Shi Jun-Kai1)Ji Rong-Yi1)Li Yao1)Liu Ya1)Zhou Wei-Hu1)2)?
1)(Laboratory of Laser M easurem ent Technology,Academ y ofOpto-E lectronics,Chinese Academ y of Sciences,
Beijing 100094,China)
2)(University of Chinese Academ y of Sciences,Beijing 101407,China)
Recently,multi-wavelength pu lsed lasers have becom e a research hotspot due to their versatile app lications,such as precision spectroscopy,microwave/terahertz photonics,optical signal processing,and wavelength division mu ltip lexed op tical fiber communication system s.As a prom ising candidate,passively m ode-locked fiber laser has the advantages of ultrashort pulse,ultrahigh peak power,com pact structure and low-cost.In the existing mu lti-wavelength passively mode-locked fiber lasers,mu lti-wavelength mode-locked operation is achieved by ad justing the intracavity modu lators to a proper state after laser has worked.It is inconvenient for practical use,so,its app lication scope is restricted.In this paper,a new method to achieve dual-wavelength m ode-locked operation in an erbium-doped fiber laser is p roposed. For an erbium-doped fiber,the peaks of both absorption and em ission spectra overlap in the 1530 nm-region.So the em ission light in the 1530 nm-region w ill be re-absorbed by the erbium-doped fiber with low pum p power or long gain fiber.Utilizing the em ission re-absorption effect,the gain spectrum can be m odified by different lengths of gain fiber. In the experim ent,an all-fiber ring cavity is adopted and a transm ission-type sem iconductor saturable absorber is used as a modelocker.The cavity consists of~3.2-m-long single m ode fiber and an erbium-doped fiber.Gain fibers with different lengths are used in the cavity to reveal the dependence of em ission re-absorption on both gain spectrum and mode-locked output spectrum.According to the experimental resu lts,there are two hum ps in the am p lified spontaneous em ission spectrum located in the 1530 nm-region and 1560 nm-region,respectively.W ith the gain fiber length increasing, gain spectrum in the 1530 nm-region is suppressed,and gain intensity in the 1560 nm-region gradually surpasses that in the 1530 nm-region.Based on the experim ental results,self-starting dual-wavelength m ode-locked operation is achieved with a 31-cm-long gain fiber.The two spectral peaks with close intensity are located at 1532.4 nm and 1552.3 nm, respectively.The m aximum output power is 4.8 mW at a repetition rate of 58.01 MHz and a signal-to-noise ratio of 58.2 dB.This self-starting dual-wavelength m ode-locked erbium-doped fiber laser is convenient for practical use and can meet the requirements formany potential app lications.
mode-locked lasers,dual-wavelength mode-locking operation,self-starting mode-locking, am p lified spontaneous em ission
PACS:42.55.-f,42.55.Wd,42.55.Xi,42.60.Fc DO I:10.7498/aps.66.134203
?國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):61475162)、中國(guó)科學(xué)院國(guó)際合作局對(duì)外合作重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào):181811KYSB20160029)、中國(guó)科學(xué)院前沿科學(xué)重點(diǎn)研究項(xiàng)目(批準(zhǔn)號(hào):QYZDY-SSW-JSC 008)和國(guó)家重大科學(xué)儀器設(shè)備專項(xiàng)(批準(zhǔn)號(hào):2011YQ 120022, 2014YQ 090709)資助的課題.
?通信作者.E-m ail:zhouweihu@aoe.ac.cn
PACS:42.55.-f,42.55.Wd,42.55.Xi,42.60.Fc DO I:10.7498/aps.66.134203
*Pro ject supported by the National Natu ral Science Foundation of China(G rant No.61475162),the Key Pro ject of Bureau of International Co-operation,Chinese Academ y of Sciences(G rant No.181811KYSB 20160029),the K ey Research Pro ject of Bureau of Frontier Sciences and Education,Chinese Academ y of Sciences(G rant No.QYZDY-SSW-JSC008),and the National Key Scientifi c Instrum ents and Equipm ent Developm ent of China(G rant Nos.2011YQ 120022,2014YQ 090709).
?Corresponding author.E-m ail:zhouweihu@aoe.ac.cn