劉學(xué) 冉憲文2) 徐志宏 湯文輝
1)(國(guó)防科學(xué)技術(shù)大學(xué)理學(xué)院,長(zhǎng)沙 410073)
2)(長(zhǎng)沙理工大學(xué),近地空間電磁環(huán)境監(jiān)測(cè)與建模湖南省普通高校重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410015)
多能復(fù)合譜電子束與X射線能量沉積剖面的等效性?
劉學(xué)1)冉憲文1)2)徐志宏1)湯文輝1)?
1)(國(guó)防科學(xué)技術(shù)大學(xué)理學(xué)院,長(zhǎng)沙 410073)
2)(長(zhǎng)沙理工大學(xué),近地空間電磁環(huán)境監(jiān)測(cè)與建模湖南省普通高校重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410015)
(2016年5月13日收到;2016年10月17日收到修改稿)
以模擬等效核爆X射線熱-力學(xué)效應(yīng)為目標(biāo),從能量沉積剖面著手,對(duì)給定多能復(fù)合譜電子束的入射角度進(jìn)行了設(shè)計(jì)計(jì)算.給出了不同靶材、不同溫度黑體譜X射線的等效設(shè)計(jì)計(jì)算結(jié)果.對(duì)比表明,該設(shè)計(jì)方法適用于多種靶材、多種目標(biāo)X射線的等效設(shè)計(jì),并且設(shè)計(jì)后的電子束能夠提高模擬目標(biāo)X射線的熱-力學(xué)效應(yīng)的逼真度.
脈沖電子束,X射線,等效性,入射角
高空核爆產(chǎn)生的X射線主要以軟X射線為主,具有能注量大,持續(xù)時(shí)間短(約100 ns量級(jí))等特點(diǎn)[1].在核爆X射線輻照下,迎光面光學(xué)厚度內(nèi)的材料將會(huì)迅速熔化、汽化甚至部分離解為等離子體,并以很高的速度逆光噴射,所產(chǎn)生的噴射沖量可引起結(jié)構(gòu)的屈曲變形,從而導(dǎo)致結(jié)構(gòu)的整體振動(dòng)失穩(wěn);同時(shí),由于X射線能量沉積的非均勻性,在材料內(nèi)部會(huì)產(chǎn)生熱擊波,熱擊波的傳播及反射可造成材料的拉伸損傷并可導(dǎo)致材料出現(xiàn)層裂破壞[2,3].核爆X射線輻照所引起的這些問(wèn)題統(tǒng)稱為熱-力學(xué)效應(yīng)問(wèn)題,因此研究強(qiáng)脈沖X射線的熱-力學(xué)效應(yīng)對(duì)于評(píng)估航天器的生存能力和導(dǎo)彈的突防能力以及檢驗(yàn)抗核加固措施的有效性等方面具有十分重要的意義.
通常,強(qiáng)脈沖X射線、電子束以及激光束都可以引起材料和結(jié)構(gòu)的熱-力學(xué)效應(yīng).但是高能激光器的波長(zhǎng)通常處于紅外段,其波長(zhǎng)遠(yuǎn)大于X射線,對(duì)于不透明介質(zhì)來(lái)說(shuō)其光學(xué)厚度通常接近于零,因此在研究激光硬破壞時(shí)通常把激光作為熱流邊界條件處理.與激光相比,核爆X射線和電子束在材料中則具有相對(duì)較大的光學(xué)厚度(約為mm量級(jí)),它們所產(chǎn)生的熱-力學(xué)效應(yīng)主要決定于光學(xué)厚度內(nèi)的能量沉積剖面峰值以及剖面的梯度.當(dāng)前,實(shí)驗(yàn)室內(nèi)尚沒(méi)有建立起可用于模擬高空核爆的軟X射線源,因此研究核爆X射線的熱-力學(xué)效應(yīng)主要通過(guò)低能強(qiáng)流脈沖電子加速器來(lái)間接完成[4].然而,與核爆X射線相比,電子束的光學(xué)厚度相對(duì)較大,能量沉積剖面的峰值和梯度相對(duì)較小,因此有必要從電子束的能譜和輻照方式等方面對(duì)電子束與核爆X射線的等效性進(jìn)行深入研究.對(duì)于單能電子束,楊海亮等[5]通過(guò)研究三種單能電子束在不同入射角條件下在Al材料中的能量沉積剖面,得出較低能量的電子束以較大角度入射靶材料能夠較好地模擬核爆X射線的輻照效應(yīng).然而對(duì)于具有多能復(fù)合譜結(jié)構(gòu)的電子束,以何種入射方式能夠獲得與核爆X射線相同的輻照效果,尚缺乏針對(duì)性的研究.
最近,胡楊等[6]的研究結(jié)果表明,在多能復(fù)合譜電子束熱-力學(xué)效應(yīng)打靶試驗(yàn)中,陽(yáng)極靶面光斑范圍內(nèi)電子束存在入射角度的分布.該入射角度的分布必然對(duì)多能譜電子束在靶材料內(nèi)的能量沉積剖面產(chǎn)生較大的影響.本文將從多能復(fù)合譜電子束入射角度分布概率出發(fā),探討多能復(fù)合譜電子束與核爆X射線熱-力學(xué)效應(yīng)方面等效的可能性.
2.1 多能復(fù)合譜電子束與X射線能量沉積的差異
X射線與物質(zhì)相互作用主要有光電效應(yīng)、散射效應(yīng)和電子對(duì)效應(yīng),而電子與物質(zhì)相互作用機(jī)理則主要為彈性碰撞和非彈性碰撞.因此,高能注量的X射線與電子束在材料中的能量沉積剖面存在明顯差異.圖1(a)給出了垂直入射和能注量均為200 J/cm2條件下,采用MCNP計(jì)算得到的某電子束復(fù)合譜和等效黑體溫度為kT=3 keV(k為玻爾茲曼常量,T為溫度)的X射線在金屬Al中的能量沉積剖面,圖1(b)給出了相應(yīng)的電子束復(fù)合能譜.
對(duì)比可以看出,盡管兩者能注量相同,但兩者在靶材料內(nèi)部的能量沉積剖面卻存在明顯差異:X射線絕大部分能量沉積在0-400μm厚度范圍的迎光面,能量沉積峰值約為7.25 kJ/g,單位質(zhì)量沉積的能量隨著入射深度的增加急劇下降;而電子束的大部分能量則沉積在0-800μm厚度范圍的迎光面表層厚度內(nèi),能量沉積峰值僅為1.38 kJ/g,單位質(zhì)量沉積的能量隨著入射深度的增加而緩慢地下降.顯然,如果在電子加速器上采用該復(fù)合譜電子束模擬等效黑體溫度kT=3 keV的X射線在金屬Al內(nèi)部的熱-力學(xué)效應(yīng),必然會(huì)導(dǎo)致金屬Al中熱擊波壓力和汽化反沖比沖量低于X射線輻照下的相應(yīng)數(shù)值,進(jìn)而導(dǎo)致評(píng)估和檢驗(yàn)結(jié)論出現(xiàn)偏差.
圖1 電子束與X射線在Al材料內(nèi)部的能量沉積 (a)電子束與X射線能量沉積剖面對(duì)比;(b)多能復(fù)合譜電子束Fig.1.Energy deposition of electron beam and X-ray in Al:(a)Comparison about energy deposition of electron beam and X-ray in material Al;(b)multi-energy composite spectrum electron beam.
2.2 多能復(fù)合譜電子束能量沉積剖面隨入射角的變化規(guī)律
電子束入射角是指電子束與靶材料相互作用時(shí)電子的入射方向與靶材料迎光面法向方向間的夾角.楊海亮等[5]的研究表明入射角對(duì)單能電子束的能量沉積剖面有較大影響.鑒于此,有必要考察入射角對(duì)多能復(fù)合譜電子束在材料中能量沉積剖面的影響.圖2給出了圖1(b)所示的多能復(fù)合譜電子束在能注量200 J/cm2條件下,以多個(gè)不同角度入射金屬鋁時(shí)產(chǎn)生的能量沉積剖面.可以看出,隨著入射角度的增加,能量沉積峰值逐漸變大并且越來(lái)越靠近迎光面,整個(gè)能量沉積剖面變得更為陡峭.其整體變化趨勢(shì)與單能電子束隨入射角度的變化趨勢(shì)相同.然而,當(dāng)電子束入射角增大到80°時(shí),盡管其能量沉積峰值接近3.2 kJ/g,但仍小于X射線(等效黑體溫度為kT=3 keV)能量沉積峰值的二分之一,這說(shuō)明采用多能復(fù)合譜電子束不能簡(jiǎn)單地通過(guò)增加入射角度來(lái)模擬核爆X射線的熱-力學(xué)效應(yīng).但是,理論計(jì)算表明可以通過(guò)提升電子束的能注量來(lái)提高電子束在靶材料迎光面的能量沉積峰值,以使電子束打靶試驗(yàn)的能量沉積峰值接近核爆X射線的能量沉積峰值.這就需要對(duì)打靶電子束的能譜結(jié)構(gòu)進(jìn)行優(yōu)化.
圖2 電子束以不同入射角在Al內(nèi)部的能量沉積Fig.2.Energy deposition of electron beam with different incident angles in Al.
2.3 多能復(fù)合譜電子束多角度入射的方案設(shè)計(jì)
如前所述,多能復(fù)合譜電子束打靶時(shí)存在角度分布.若能調(diào)整電子束以多角度的方式入射靶材,就有可能提升多能復(fù)合譜電子束與核爆X射線對(duì)靶材熱-力學(xué)效應(yīng)的等效性.研究表明,該方案存在可行性,并可用于指導(dǎo)電子束打靶熱-力學(xué)效應(yīng)試驗(yàn).其具體方案如下.
將材料均分為n層網(wǎng)格(見(jiàn)圖3),電子束和X射線的能注量分別為Φe和Φp,在第j層網(wǎng)格材料內(nèi)部形成的能量沉積值分別為和電子束入射角度范圍為0°-80°,平均離散為m組.電子束以θi角度入射,在第j層網(wǎng)格材料產(chǎn)生的能量沉積值為Eij,且以θi角度入射的概率為pi.這樣電子束按照某種角度概率分布入射時(shí),在第j層網(wǎng)格材料產(chǎn)生的總能量沉積值為
假定能注量對(duì)能量沉積的影響近似滿足正相關(guān)性,則可將Φe和Φp統(tǒng)一起來(lái),用變量α表示兩者的比值,則
若電子束與X射線在材料中產(chǎn)生的能量沉積剖面相同,則應(yīng)有
這樣,優(yōu)化目標(biāo)即為求出同時(shí)滿足(1)式和(3)式的pi(i=1,2,3,···,m). 另外,由于pi為概率,本身需要滿足約束條件:
(1)式和(3)式可表示為
其約束條件為(4)式和(5)式.因此,問(wèn)題轉(zhuǎn)化為求解(7)式滿足約束條件(4)式和(5)式的解.
一般情況下,線性約束條件下的非線性優(yōu)化問(wèn)題不存在理論上的精確解,但可通過(guò)模擬退火算法[7]使得近似解滿足從而找出滿足約束條件的最優(yōu)解.
圖3 電子束入射角度概率分布示意圖Fig.3.A diagram about incident angle probability distribution of electron beam.
利用多能復(fù)合譜電子束多角度入射設(shè)計(jì)方案,借助于MCNP和Matlab軟件,對(duì)Al,Cu和Ta三種材料作為靶材時(shí)的等效電子束進(jìn)行了設(shè)計(jì).設(shè)計(jì)目標(biāo)是能注量Φp=200 J/cm2,等效溫度分別為kT=3和5 keV的黑體X射線.實(shí)際計(jì)算中,材料劃分為100層網(wǎng)格(即n=100),入射角度每隔5°離散為一組,共計(jì)17組(即m=17).
圖4-圖9給出了相應(yīng)的電子束角度分布譜及相應(yīng)的能量沉積剖面,其中X射線能量沉積計(jì)算方法可參考文獻(xiàn)[8].
圖4 電子束在Al材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=3 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=470 J/cm2;(b)電子束入射角度概率譜Fig.4.Energy deposition of electron beam in Al,X-ray withkT=3 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=470 J/cm2;(b)incident angle probability spectrum of electron beam.
圖5 電子束在Al材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=5 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=200 J/cm2;(b)電子束入射角度概率譜Fig.5.Energy deposition of electron beam in Al,X-ray withkT=5 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=200 J/cm2;(b)incident angle probability spectrum of electron beam.
圖6 電子束在Cu材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=3 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=422 J/cm2;(b)電子束入射角度概率譜Fig.6.Energy deposition of electron beam in Cu,X-ray withkT=3 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=422 J/cm2;(b)incident angle probability spectrum of electron beam.
圖7 電子束在Cu材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=5 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=200 J/cm2;(b)電子束入射角度概率譜Fig.7.Energy deposition of electron beam in Cu,X-ray withkT=5 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=200 J/cm2;(b)incident angle probability spectrum of electron beam.
圖8 電子束在Ta材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=3 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=495 J/cm2;(b)電子束入射角度概率譜Fig.8.Energy deposition of electron beam in Ta,X-ray withkT=3 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=495 J/cm2;(b)incident angle probability spectrum of electron beam..
圖9 電子束在Ta材料內(nèi)的能量沉積剖面優(yōu)化結(jié)果,X射線kT=5 keV,Φp=200 J/cm2 (a)電子束與X射線能量沉積剖面對(duì)比,電子束能注量Φe=320 J/cm2;(b)電子束入射角度概率譜Fig.9.Energy deposition of electron beam in Ta,X-ray withkT=3 keV,Φp=200 J/cm2:(a)Comparison about energy deposition of electron beam and X-ray,energy density of electron beamΦe=320 J/cm2;(b)incident angle probability spectrum of electron beam.
對(duì)比圖4-圖9中的能量沉積剖面可知,采用等效設(shè)計(jì)后的多角度入射電子束譜能夠有效地提高模擬X射線熱-力學(xué)效應(yīng)的逼真度.無(wú)論是低原子序數(shù)的Al、中原子序數(shù)的Cu還是高原子序數(shù)的Ta,在能量沉積峰值和變化梯度方面均有較好的一致性.然而,一致性的實(shí)現(xiàn)是以提高打靶電子束的能注量為代價(jià)的,表1給出了模擬不同X射線的電子束等效入射角和能注量.這說(shuō)明,對(duì)于高能注量核爆X射線輻照的熱-力學(xué)響應(yīng)實(shí)驗(yàn)室模擬評(píng)估,必須采用能注量更高的打靶電子束.
表1 不同黑體X射線(能注量Φp=200 J/cm2)條件下優(yōu)化后的電子束對(duì)于不同材料的等效入射角度和能注量Table 1.Under the condition of different X-rays(energy density 200 J/cm2),the equivalent incident angle and energy density about different materials of electron beam after optimization.
以等效模擬核爆X射線熱-力學(xué)效應(yīng)為目標(biāo),從能量沉積剖面著手,對(duì)多能復(fù)合譜電子束的入射角度分布進(jìn)行了設(shè)計(jì).該設(shè)計(jì)方法具有較好的適用性,可適用于多種原子序數(shù)、多種溫度的黑體X射線等效電子束的設(shè)計(jì).并且設(shè)計(jì)后的電子束與目標(biāo)X射線在能量沉積峰值、變化梯度等方面具有較好的一致性,能夠提高電子束模擬目標(biāo)X射線在靶材料中所產(chǎn)生熱-力學(xué)效應(yīng)的逼真度.
[1]Qiao D J 2012Pulsed X-ray Thermal-mechanical Effects and Fundament of Nuclear Hardening Techniques(Beijing:National Defense Industry Press)p1(in Chinese)[喬登江 2012脈沖X射線熱力學(xué)效應(yīng)及加固技術(shù)基礎(chǔ) (北京:國(guó)防工業(yè)出版社)第1頁(yè)]
[2]Tang W H,Zhang R Q 1997J.Phys.C3 623
[3]Tang W H,Zhang R Q 1997High Power Laser and Particle Beams9 618(in Chinese)[湯文輝,張若棋1997強(qiáng)激光與粒子束9 618]
[4]Qiu A C 2000Eng.Sci.2 24(in Chinese)[邱愛(ài)慈 2000中國(guó)工程科學(xué)2 24]
[5]Yang H L,Qiu A C,Zhang J S,Huang J J,Sun J F 2002High Power Laser and Particle Beams14 778(in Chinese)[楊海亮,邱愛(ài)慈,張嘉生,黃建軍,孫劍鋒2002強(qiáng)激光與粒子束14 778]
[6]Hu Y,Yang H L,Sun J F,Sun J,Zhang P F 2015Acta Phys.Sin.64 245203(in Chinese)[胡楊,楊海亮,孫劍鋒,孫江,張鵬飛2015物理學(xué)報(bào)64 245203]
[7]Gan Y A,Tian F,Li W Z,Li M S,Chen B Z,Zhen D B,Hu Y Q,Gu J F,Guo Y H,Qian S D,Xue H C 1999Operational Research(Beijing:Tsinghua University Press)p174(in Chinese)[甘應(yīng)愛(ài),田豐,李維錚,李梅生,陳秉正,鄭大本,胡運(yùn)權(quán),顧基發(fā),郭耀煌,錢頌迪,薛華成 1999運(yùn)籌學(xué)(北京:清華大學(xué)出版社)第174頁(yè)]
[8]Tang W H,Zhang R Q,Zhao G M 1995Chinese J.High Pressure Physics9 107(in Chinese)[湯文輝,張若棋,趙國(guó)民1995高壓物理學(xué)報(bào)9 107]
PACS:52.59.-f,41.50.+h,07.77.Ka,02.60.Pn DOI:10.7498/aps.66.025202
Equivalence of energy deposition profile in target between electron beam of multi-energy composite spectrum and X-ray?
Liu Xue1)Ran Xian-Wen1)2)Xu Zhi-Hong1)Tang Wen-Hui1)?
1)(College of Science,National University of Defense Technology,Changsha 410073,China)
2)(Monitoring and Modeling of Electromagnetic Environment in Near Space Key Laboratory of General Universities of Hunan Province,Changsha University of Science and Technology,Changsha 410015,China)
13 May 2016;revised manuscript
17 October 2016)
It has great significance to study the thermal-mechanical effects of X-ray in assessing the viability of space-crafts,the penetration ability of missiles and testing the effectiveness of the anti-nuclear reinforcement measures.However,it is rather difficult to construct a suitable X-ray source in laboratory.During recent decades,pulsed electron beam with multi-energy composite spectrum has become a most important simulation source of X-ray to study its thermalmechanical effects.And energy deposition profile in target material is the basis for studying the thermo-mechanical effects.However,under the same incident conditions,the energy deposition profile of pulsed electron beam with multienergy composite spectrum in target material is extremely different from X-ray’s,and the equivalence between the two beams is quite low.Thus,it is very important to adjust the energy spectrum and the incident mode of pulsed electron beam so as to improve their equivalence.In this paper,we use the energy deposition profiles of electron beam and X-ray in different kinds of material.MCNP is used to calculate their energy deposition profiles in target materials.Two kinds of blackbody X-rays with the equivalent temperatures of 3 and 5 keV and energy density of 200 J/cm2are chosen for an optimization target.Aluminum,copper and titaniumare chosen as the target materials.Based on the change law of electron beam’s energy deposition profile when the electron beam hits the target material at different incident angles,a theoretical model is established.Then,taking advantage of simulated annealing algorithm,we use the MATLAB to carry out numerical calculation and finally the numerical optimization results about the incident angle spectrum and energy density of electron beam are obtained.After optimization,the energy deposition of pulsed electron beam with multi-energy composite spectrum is well adjusted.The peak energy deposition and change of gradient of electron beam are of wonderful consistency with X-ray’s.The equivalence of pulsed electron beam with multi-energy composite spectrum in simulating X-ray is also effectively improved.However,the energy density of adjusted pulsed electron beam should be much higher than 200 J/cm2.Electron beam designed by this paper can be used to better simulate the thermal-mechanical effects of X-ray in different kinds of materials.
pulsed electron beam,X-ray,equivalence,angle of incidence
:52.59.-f,41.50.+h,07.77.Ka,02.60.Pn
10.7498/aps.66.025202
?武器裝備預(yù)研項(xiàng)目(批準(zhǔn)號(hào):51311020201)和長(zhǎng)沙理工大學(xué)近地空間電磁環(huán)境監(jiān)測(cè)與建模湖南省普通高校重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(批準(zhǔn)號(hào):20150104)資助的課題.
?通信作者.E-mail:18175121477@163.com
*Project supported by the Chinese Defense Advance Research Program of Science and Technology,China(Grant No.51311020201)and Monitoring and Modeling of Electromagnetic Environment in Near Space of Institutes of Technology of Changsha Open Foundation of Key Laboratory of General Colleges and Universities of Hunan Province,China(Grant No.20150104).
?Corresponding author.E-mail:18175121477@163.com