崔志博,吳 健,王友善*,柴德龍,胡 鍇,呂佳鋒
(1.哈爾濱工業(yè)大學 復合材料與結構研究所,黑龍江 哈爾濱 150001;2.杭州朝陽橡膠有限公司,浙江 杭州 310018)
隨著計算力學理論和計算機技術的發(fā)展,有限元分析程序越來越成熟,已被成功應用于輪胎分析[1],基本能夠涵蓋輪胎所涉及的各個方面,例如靜態(tài)、穩(wěn)態(tài)、側偏和側傾等力學分析[2-3],溫度場、硫化和滾動阻力等熱學分析及噪聲和振動等聲學分析。然而很多因素會對有限元分析結果產生影響,輪胎-路面之間的摩擦特性就是其中之一[4]。
輪胎胎面為橡膠材料,橡膠材料與路面的摩擦因數(shù)具有異于普通材料的特點:隨著接觸壓力增大而減小,并且當滑移率達到一定值后隨著滑移率增大而減小[5-7]。為了獲取橡膠摩擦因數(shù)的變化規(guī)律,很多學者提出了摩擦因數(shù)與接觸壓力和滑移率的函數(shù)關系式[8-11]。
雖然已知橡膠材料摩擦因數(shù)的接觸壓力和滑移率依賴特性,但目前大多數(shù)輪胎有限元分析仍采用給出固定摩擦因數(shù)的方法,因此本工作研究輪胎-路面摩擦特性設置對有限元分析結果的影響,用以指導實驗測量和仿真分析。
本研究以12.00R20全鋼子午線輪胎為例,有限元分析模型如圖1所示。
根據(jù)Y.S.Wang等[12]的設計方法,通過調整內外輪廓,獲取5種在相同載荷條件下具有不同接地特性[蝴蝶形(接地側緣壓力較高)、輕微蝴蝶形(接地側緣壓力稍高)、近似矩形(接地壓力中間高)、膠囊形(接地壓力中間高)和橢圓形(接地壓力分布均勻),編號為a—e型]的輪胎,如圖2所示。
圖1 12.00R20輪胎有限元模型
仿真分析分為以下幾步:(1)裝配,即將胎圈收至輪輞內;(2)充氣,在輪胎內充以0.83 MPa氣壓,此時胎圈會貼緊輪輞;(3)靜態(tài)負荷,輪胎輪輞固定,通過地面給輪胎施加4 800 N載荷,此時輪胎在接地面處變形,并產生接地印痕;(4)純滑移,路面固定,給定輪胎一旋轉角速度,此時輪胎相對于地面旋轉;(5)純側偏,在輪胎穩(wěn)態(tài)滾動的基礎上再施加一側向速度,通過改變側向速度的大小和方向控制側偏角度。
圖2 5種典型接地特性
與接觸壓力相關的摩擦因數(shù)測試采用本課題組自主研發(fā)的橡膠摩擦因數(shù)測試儀,如圖3所示。
圖3 橡膠摩擦因數(shù)測試裝置
將橡膠塊固定于固定臂上,通過載荷裝置控制施加在橡膠塊與路面的接觸應力,路面固定于能沿滑軌運動的托架上,電動機提供動力使路面沿滑軌運動,參照HG 2729—1995《硫化橡膠與薄片摩擦因數(shù)的測定(滑動法)》,測試速度為500 mm·min-1,滑動行程為65 mm。
每一壓力值下測量5個試樣,每個試樣測量一次,最終數(shù)據(jù)取平均值。測試結果如圖4所示。由于本測試儀器滑移速度有限,因此與滑移率相關摩擦因數(shù)采用文獻[13]中的數(shù)據(jù)。將測量獲得的摩擦因數(shù)以表格形式載入Abaqus輸入文件中進行計算。
圖4 橡膠摩擦因數(shù)隨接觸壓力的變化
純滑移工況一般對應車輛啟動和剎車性能,此時的縱向力值是關注的主要指標。提取4種摩擦因數(shù)設置方式所獲得的縱向力值,如圖5所示。
從圖5可知,對于5種不同接地特性的輪胎,當摩擦因數(shù)設置方式不同時所獲得的縱向力曲線相差很大。
(1)當設置摩擦因數(shù)為固定值[圖5(a)中摩擦因數(shù)為0.3]時,5種典型接地特性的輪胎縱向力完全相同,縱向力與滑移率和接地特性無關,只與輪胎載荷相關。
圖5 摩擦因數(shù)設置方式對縱向力的影響
(2)當設置摩擦因數(shù)隨法向壓力增大而降低[圖5(b)中設置的摩擦因數(shù)為上節(jié)測試結果]時,可以看出e型輪胎的縱向力最小,而b型輪胎的縱向力最大,這與圖5(a)的計算結果相差很大,說明均勻的接地壓力分布不一定獲得最大的摩擦力,這與材料的摩擦因數(shù)相關,當摩擦因數(shù)與接地壓力關系為凸函數(shù)時均勻的接地壓力分布將獲得最大的縱向力,而當呈凹函數(shù)關系時則非均勻的接地壓力分布將獲得最大縱向力[14],圖4所示曲線顯然為凹函數(shù)。
(3)當設置摩擦因數(shù)僅與滑移率相關{圖5(c)設置摩擦因數(shù)為文獻[13]測試結果中僅與滑移率相關部分}時,輪胎縱向力隨滑移率的變化規(guī)律,即隨滑移率的增大先增大后減小,但在數(shù)值上完全相同,說明以此條件設置摩擦因數(shù)無法體現(xiàn)接地特性的影響。
(4)當設置摩擦因數(shù)隨接觸壓力增大而減小、隨滑移率先增大后減小{圖5(d)中摩擦因數(shù)設置為文獻[13]測試結果}時,5種不同接地特性輪胎的縱向力曲線相似,但數(shù)值不同。
對比圖5可知:對于純縱滑狀態(tài),摩擦因數(shù)的設置非常重要,當進行方案定性對比時,通過設置摩擦因數(shù)隨接觸壓力變化才能體現(xiàn)出接地特性不同導致的影響;縱向力與滑移率(在圖5中由旋轉角速度體現(xiàn))曲線形狀的變化是由摩擦因數(shù)隨滑移率改變而引起的。
由純滑移工況分析可知,必須設置摩擦因數(shù)與法向相關,接地特性對輪胎受力的影響才能體現(xiàn)出來。在純側偏工況分析時,僅對比摩擦因數(shù)為常值和與接地壓力相關兩種情況。純側偏工況下側向力、側翻力矩和回正力矩隨側偏角度的變化關系(速度為80 km·h-1)如圖6—8所示。
圖6 側向力隨側偏角度的變化規(guī)律
圖7 側翻力矩隨側偏角度的變化規(guī)律
圖8 回正力矩隨側偏角度的變化規(guī)律
從圖6可知,當設置摩擦因數(shù)為常數(shù)時,5種接地特性的輪胎在側偏過程中所受側向力基本相同,而設置摩擦因數(shù)隨接觸壓力變化時,則表現(xiàn)出明顯不同。這是由于側向力由摩擦力構成,不同接地特性導致摩擦因數(shù)不一致,從而產生不同的側向力。
圖7所示的側翻力矩基本規(guī)律受摩擦因數(shù)影響不大,由于側翻力矩主要由法向接地壓力引起,而法向接地壓力主要由輪胎本身接地特性決定。
對比圖8(a)與(b)可知,5種接地特性輪胎在兩種摩擦因數(shù)設置方式下的回正力矩由大到小的順序都為e,d,c,b,a型,但是對應的回正力矩峰值側偏角則不同,其中圖8(a)峰值側偏角度為4.5°,而圖8(b)為3°左右。
以上分析表明,摩擦因數(shù)的設置對輪胎側偏工況下六分力曲線的幅值和形狀影響很大,必須準確測量摩擦因數(shù)數(shù)值及變化規(guī)律。
本研究通過考慮不同摩擦因數(shù)設置方式,對12.00R20輪胎在純滑移和純側偏工況下的縱向力等參數(shù)對比,獲得如下結論:
(1)對于純滑移工況,摩擦因數(shù)隨接觸壓力變化能體現(xiàn)出不同接地特性對縱向力幅值的影響,摩擦因數(shù)隨滑移率變化會引起縱向力曲線形狀的變化;
(2)對于純側偏工況,摩擦因數(shù)變化對側向力和回正力矩影響較大,對側翻力矩影響較小。
本研究可為輪胎設計、車輛-輪胎配套分析和胎面配方設計提供指導。