袁夢(mèng)霞,喬秀臣
(華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海 200237)
三元體系A(chǔ)lCl3+CaCl2+H2O,AlCl3+FeCl3+H2O和CaCl2+FeCl3+H2O 在35℃時(shí)的相平衡
袁夢(mèng)霞,喬秀臣
(華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海 200237)
缺少含AlCl3、CaCl2和FeCl3的溶液相平衡,使通過(guò)蒸發(fā)結(jié)晶從粉煤灰鹽酸浸取液中制備純凈的AlCl3?6H2O變得比較困難。采用等溫溶解法研究了三元體系A(chǔ)lCl3+CaCl2+H2O,AlCl3+FeCl3+H2O和CaCl2+FeCl3+H2O在35℃時(shí)的相平衡關(guān)系,測(cè)定了相應(yīng)的溶解度及密度,并繪制了相應(yīng)相圖及密度-組成圖。實(shí)驗(yàn)結(jié)果表明:三元體系A(chǔ)lCl3+CaCl2+H2O和AlCl3+FeCl3+H2O分別有兩條溶解度曲線,兩個(gè)單鹽結(jié)晶區(qū),無(wú)復(fù)鹽和共溶體產(chǎn)生,同離子效應(yīng)導(dǎo)致增加溶液中 CaCl2和 FeCl3濃度會(huì)有效降低 AlCl3的溶解度;CaCl2+FeCl3+H2O體系會(huì)形成復(fù)鹽CaCl2·2FeCl3·7H2O;所得35℃相圖與25℃相圖相比,三元體系A(chǔ)lCl3+CaCl2+H2O和AlCl3+FeCl3+H2O中AlCl3·6H2O結(jié)晶區(qū)增大,CaCl2·6H2O結(jié)晶區(qū)轉(zhuǎn)變成 CaCl2·4H2O結(jié)晶區(qū),CaCl2+FeCl3+H2O 體系中CaCl2·2FeCl3·8H2O結(jié)晶區(qū)轉(zhuǎn)變?yōu)?CaCl2·2FeCl3·7H2O 結(jié)晶區(qū)。
相平衡;溶解度;結(jié)晶;氯化鋁;氯化鈣;氯化鐵
我國(guó)粉煤灰(CFA)年排放量超過(guò)5億噸,雖然通過(guò)建材、道路工程、回填工程等[1-5]可以利用約68%,但存量依然巨大,累積堆貯量超過(guò)50億噸,對(duì)環(huán)境造成巨大壓力。在我國(guó)粉煤灰排放量最多的內(nèi)蒙古和山西,相當(dāng)一部分粉煤灰中的氧化鋁含量高達(dá)40%~50%(質(zhì)量分?jǐn)?shù))[6-8]。因此,粉煤灰提鋁成為我國(guó)鼓勵(lì)的粉煤灰資源化利用新途徑。關(guān)于粉煤灰提鋁技術(shù),最早在20世紀(jì)60年代由波蘭科學(xué)家提出,之后在美國(guó)等發(fā)達(dá)國(guó)家掀起了開(kāi)發(fā)熱潮。國(guó)內(nèi)外對(duì)高鋁粉煤灰提取鋁進(jìn)行了大量研究,主要有堿法[9-12]和酸法[13-17]工藝路線。預(yù)脫硅堿石灰石工藝在國(guó)內(nèi)已實(shí)現(xiàn)工業(yè)化應(yīng)用,但仍存在能耗高、排渣量大等不足[18]。酸法提鋁工藝的工業(yè)化還處于研究階段,但因其排渣量少,脫硅容易而受青睞[13]。酸法工藝的浸取劑主要采用H2SO4或HCl,目前鹽酸工藝在我國(guó)建成若干示范線。然而,文獻(xiàn)目前僅有三元體系 AlCl3+CaCl2+H2O的固液相平衡數(shù)據(jù)[19-25],而對(duì)AlCl3+FeCl3+H2O,CaCl2+FeCl3+H2O則鮮有報(bào)道。由于缺乏這些酸浸液體系的系統(tǒng)相平衡數(shù)據(jù),導(dǎo)致分離提純AlCl3·6H2O變得難以控制。
本文研究了三元體系 AlCl3+CaCl2+H2O、AlCl3+ FeCl3+H2O和CaCl2+FeCl3+H2O在35℃時(shí)的固液相平衡,并與25℃的相圖比較,分析討論了不同溫度下的體系平衡特性,為結(jié)晶氯化鋁從復(fù)雜體系的鹽酸浸取液中分離提純提供基礎(chǔ)數(shù)據(jù)。
1.1 實(shí)驗(yàn)試劑與儀器
實(shí)驗(yàn)主要試劑為六水氯化鋁(AR,≥97%,國(guó)藥試劑股份有限公司),六水氯化鐵(AR,≥98%,國(guó)藥試劑股份有限公司),氯化鈣(AR,≥96%,泰坦科技股份有限公司)。實(shí)驗(yàn)用水為超純水(Sartorius),電導(dǎo)率≤0.055×10-4S·m-1。
實(shí)驗(yàn)主要儀器為 F32-ME程序控溫恒溫循環(huán)器,控制溫度為 35℃,溫度波動(dòng)度 0.02℃,德國(guó)Julabo。X射線多晶衍射儀(XRD)D8 advance,德國(guó)布魯克AXS,實(shí)驗(yàn)的X射線光管是銅靶Kα,掃描速率 10(°)·min-1,步長(zhǎng) 0.02°,掃描范圍 10°~60°。
1.2 實(shí)驗(yàn)方法
實(shí)驗(yàn)采用等溫溶解平衡法測(cè)定穩(wěn)定相平衡[26]。將配制好的一定量不同比例的分析純?cè)噭┡c超純水混合放入500 ml的玻璃反應(yīng)器,密封后放入已經(jīng)恒溫的油浴槽內(nèi),開(kāi)啟機(jī)械攪拌,攪拌速度為 250 r·min-1。在整個(gè)平衡過(guò)程中,一直保持固相的存在。系統(tǒng)在攪拌每2~3 h后,靜置4 h取樣分析液相濃度,直到連續(xù)3次取樣的濃度差小于1%,則認(rèn)為體系達(dá)到了完全平衡。為保證系統(tǒng)充分達(dá)到固液相平衡,選取混合攪拌時(shí)間為48 h,靜置時(shí)間為24 h。取樣時(shí)先將液相與固體濕渣通過(guò)真空抽濾分離,裝置采用事先已經(jīng)在恒定溫度下恒溫2 h的定制的帶夾套3#砂芯漏斗。分離所得濾液即為相平衡時(shí)飽和液相,其中一部分用于濃度分析,剩余部分采用比重瓶法進(jìn)行密度測(cè)定;濕渣相一部分經(jīng)溶解稀釋后用于濃度分析,而另一部分經(jīng)過(guò)洗滌真空干燥后用于XRD分析。
1.3 樣品分析
用EDTA絡(luò)合滴定法測(cè)定Ca2+和Al3+的濃度,分別以鈣指示劑和二甲酚橙為指示劑;用分光光度法測(cè)定 Fe3+的濃度,分光光度計(jì)為美國(guó) UNICO(UV-2802);用硝酸銀標(biāo)準(zhǔn)溶液測(cè)定Cl-的濃度;水的含量用減量法計(jì)算[26]。固相組成鑒定用濕渣法[27]結(jié)合XRD共同確定。每個(gè)平衡樣品重復(fù)3次,3次平行實(shí)驗(yàn)誤差不超過(guò)0.5%,3次測(cè)定結(jié)果的平均值作為最后結(jié)果。所有物理量不確定度參照文獻(xiàn)[28-29]進(jìn)行計(jì)算。
2.1 35℃時(shí)AlCl3+CaCl2+H2O三元體系
三元體系A(chǔ)lCl3+CaCl2+H2O在35℃時(shí)的溶解度數(shù)據(jù)如表1所示,其濃度組成以質(zhì)量分?jǐn)?shù)表示。由對(duì)應(yīng)的相圖(圖 1)可知,該體系為簡(jiǎn)單的三元體系,沒(méi)有復(fù)鹽及共溶體存在,E1為共飽和點(diǎn)。整個(gè)相圖可分為 4個(gè)區(qū)域,分別為 AlCl3·6H2O結(jié)晶區(qū)(A1D1E1A1)、CaCl2·4H2O 結(jié)晶區(qū)(C1F1E1C1)、共飽和結(jié)晶區(qū)及未飽和區(qū)。其中AlCl3·6H2O結(jié)晶區(qū)比CaCl2·4H2O結(jié)晶區(qū)大,表明AlCl3在35℃時(shí)水中的溶解度較 CaCl2的溶解度小,隨著 CaCl2濃度的增加,同離子效應(yīng)會(huì)促使溶液中 AlCl3鹽析而結(jié)晶出來(lái),因此,AlCl3溶解度相應(yīng)變小。表1中平衡固相A、C及共飽和點(diǎn)E1所對(duì)應(yīng)的XRD分析結(jié)果如圖2所示,圖示結(jié)果表明固相A的組成為AlCl3·6H2O,固相 C 為 CaCl2·4H2O,共飽和點(diǎn) E1為 AlCl3·6H2O+CaCl2·4H2O。
圖1 三元體系A(chǔ)lCl3+CaCl2+H2O在35℃時(shí)的相圖Fig.1 Phase diagram of ternary system AlCl3+CaCl2+H2O at 35℃
圖 1數(shù)據(jù)顯示,35℃時(shí)所得實(shí)驗(yàn)結(jié)果與 Wang等[25]所得結(jié)果基本一致,AlCl3和 CaCl2在 35℃水中的溶解度分別為 31.65%與 51.68%,較文獻(xiàn)[25]中的 31.28%和 51.50%略微偏高,結(jié)果的差異是由離子濃度分析方法不同所致。與 25℃時(shí)三元體系A(chǔ)lCl3+CaCl2+H2O的相平衡數(shù)據(jù)[26]比較可發(fā)現(xiàn),兩個(gè)溫度體系下平衡特性存在類似之處,但是,隨著相平衡溫度升高到 35℃,AlCl3溶解度小幅增加,共飽和點(diǎn)向右移動(dòng),AlCl3·6H2O 結(jié)晶區(qū)增大,這表明在氯化鈣存在條件下,提高溫度有助于析出AlCl3·6H2O 晶體。隨著相平衡溫度升高到 35℃,CaCl2的溶解度同樣增加,其結(jié)晶固相也由 25℃時(shí)含6個(gè)結(jié)晶水的CaCl2·6H2O轉(zhuǎn)變成僅含4個(gè)結(jié)晶水的CaCl2·4H2O。溫度對(duì)該體系平衡的影響與文獻(xiàn)報(bào)道結(jié)果[24-25]一致。
圖2 三元體系A(chǔ)lCl3+CaCl2+H2O在35℃時(shí)固相A(AlCl3·6H2O)、C (CaCl2·4H2O)及共飽和點(diǎn) E1的 XRD 譜圖Fig.2 XRD patterns of phases A (AlCl3·6H2O), C(CaCl2·4H2O) and invariant point E1in ternary system AlCl3+CaCl2+H2O at 35℃
表1 AlCl3+CaCl2+H2O三元體系在35℃時(shí)的溶解度及密度Table 1 Solubility and density data of ternary system AlCl3+CaCl2+H2O at 35℃
2.2 35℃時(shí)AlCl3+FeCl3+H2O三元體系
三元體系A(chǔ)lCl3+FeCl3+H2O在35℃時(shí)的溶解度數(shù)據(jù)如表2所示,其對(duì)應(yīng)的相圖如圖3所示。目前,含 FeCl3體系的平衡研究多局限于低溫條件[30-31],相關(guān)高溫相圖研究鮮有報(bào)道,這主要?dú)w因于 FeCl3的水解特性。以本文研究為例,若采用無(wú)水 FeCl3配制溶液,體系存在嚴(yán)重水解現(xiàn)象,而采用FeCl3·6H2O 則又無(wú)法滿足 35℃條件下共飽和點(diǎn)組成要求。因此,本研究未能獲得 AlCl3+FeCl3+H2O體系相應(yīng)的共飽和點(diǎn)數(shù)據(jù),但從實(shí)驗(yàn)得到的大部分溶解度數(shù)據(jù)可知,該三元體系在 35℃時(shí)為簡(jiǎn)單體系,飽和固相分別為AlCl3·6H2O和FeCl3·6H2O,其中 AlCl3·6H2O 結(jié)晶區(qū)比 FeCl3·6H2O 結(jié)晶區(qū)大。因此,AlCl3在 35℃水中的溶解度較 FeCl3小,隨著FeCl3增加,溶液中AlCl3易被鹽析而結(jié)晶出來(lái)。
目前,與文獻(xiàn)[26]報(bào)道的25℃條件下AlCl3+FeCl3+H2O體系的相平衡數(shù)據(jù)相比,雖然AlCl3溶解度僅有小幅增加,但FeCl3溶解度則增加在10%以上(圖3),這表明FeCl3的溶解度受溫度影響更為顯著。本文雖未能獲得體系共飽和點(diǎn)數(shù)據(jù),但 AlCl3·6H2O 結(jié)晶區(qū)隨溫度的升高而顯著增大,F(xiàn)eCl3·6H2O的結(jié)晶區(qū)則由于 FeCl3的溶解度升高而相應(yīng)減少。這與AlCl3+CaCl2+H2O體系結(jié)晶區(qū)的變化規(guī)律相似,同樣,該結(jié)果表明采用蒸發(fā)結(jié)晶的方式,并保持一定的析晶溫度,可以實(shí)現(xiàn)AlCl3與FeCl3的結(jié)晶分離。
圖3 三元體系A(chǔ)lCl3+FeCl3+H2O在35℃時(shí)的部分相圖Fig.3 Part phase diagram of ternary system AlCl3+FeCl3+H2O at 35℃
表2 AlCl3+FeCl3+H2O三元體系在35℃時(shí)的溶解度及密度Table 2 Solubility and density data of ternary system AlCl3+FeCl3+H2O at 35℃
2.3 35℃時(shí)CaCl2+FeCl3+H2O三元體系
三元體系CaCl2+FeCl3+H2O在35℃時(shí)的溶解度數(shù)據(jù)如表3所示,其對(duì)應(yīng)的相圖如圖4所示。由表中的溶解度數(shù)據(jù)可知,該三元體系在35℃時(shí)存在復(fù)鹽相,有 3個(gè)結(jié)晶區(qū) CaCl2·4H2O,F(xiàn)eCl3·6H2O 和CaCl2·2FeCl3·7H2O,其中 CaCl2·4H2O 和 FeCl3·6H2O結(jié)晶區(qū)比復(fù)鹽 CaCl2·2FeCl3·7H2O 結(jié)晶區(qū)小。與 25℃條件下體系相圖[26]相比,35℃體系的平衡特征發(fā)生明顯變化。35℃體系平衡線整體位于25℃平衡線的下方,預(yù)示著FeCl3和CaCl2在水中的溶解度隨溫度升高而明顯增加。FeCl3溶解度的上升使得FeCl3·6H2O結(jié)晶區(qū)明顯變小,但相應(yīng)的鈣鹽和復(fù)鹽的結(jié)晶區(qū)大小不減反增,這主要?dú)w因于平衡固相組成的差異。圖4結(jié)果表明,與CaCl2相關(guān)的平衡固相的結(jié)晶水有所減少,其中,鈣鹽平衡固相由25℃時(shí)的 CaCl2·6H2O 轉(zhuǎn)變成 35℃時(shí)的 CaCl2·4H2O,復(fù)鹽也相應(yīng)地失去一個(gè)結(jié)晶水而轉(zhuǎn)變成CaCl2·2FeCl3·7H2O。
圖4 三元體系CaCl2+FeCl3+H2O 在35℃時(shí)的相圖Fig.4 Phase diagram of ternary system CaCl2+FeCl3+H2O at 35℃
圖5 三元體系CaCl2+FeCl3+H2O在35℃時(shí)復(fù)鹽的XRD譜圖Fig.5 XRD pattern of phase Db(CaCl2·2FeCl3·7H2O) in ternary system CaCl2+FeCl3+H2O at 35℃
表3 35℃時(shí)CaCl2+FeCl3+H2O三元體系的溶解度及密度Table 3 Solubility and density data of ternary system CaCl2+FeCl3+H2O at 35℃
復(fù)鹽Db的XRD結(jié)果如圖5所示,所得X射線衍射圖無(wú)法在現(xiàn)有PDF數(shù)據(jù)庫(kù)中找到對(duì)應(yīng)物相,可以確定CaCl2·2FeCl3·7H2O為新的物質(zhì),相關(guān)晶體的晶胞參數(shù)測(cè)定需要進(jìn)一步展開(kāi)研究。
2.4 溶液密度
不同體系飽和溶液的密度隨 CaCl2或 FeCl3濃度的變化關(guān)系如圖6所示,從圖6(a)可知,三元體系A(chǔ)lCl3+CaCl2+H2O的飽和溶液密度隨著CaCl2濃度的增加而逐漸增加;三元體系 AlCl3+FeCl3+H2O的飽和溶液密度隨著FeCl3濃度的增加逐步增加,后期趨于增加變緩慢;體系 CaCl2+FeCl3+H2O的飽和溶液密度開(kāi)始隨著CaCl2濃度的增加迅速升高到1.6762 g·cm-3,隨后又開(kāi)始逐步減少到共飽和點(diǎn)E4,而后迅速下降。
圖6 不同體系飽和溶液密度與組成關(guān)系Fig.6 Saturated solution density versus composition in different systems
(1)實(shí)驗(yàn)結(jié)果表明 AlCl3+CaCl2+H2O和AlCl3+FeCl3+H2O三元體系在35℃時(shí)為簡(jiǎn)單三元體系,而CaCl2+ FeCl3+H2O存在復(fù)鹽析晶。
(2)由于同離子效應(yīng),增加溶液中 CaCl2和FeCl3濃度,則會(huì)使 AlCl3溶解度降低而利于AlCl3·6H2O 析晶。
(3)隨著溫度升高,AlCl3溶解度略有增大,且更易于與CaCl2和FeCl3分離。
符 號(hào) 說(shuō) 明
w(B)——物質(zhì)質(zhì)量分?jǐn)?shù)
ρ——溶液密度,g·cm-3
[1] LIEBERMAN R N, QUEROL X, MORENO N, et al. Physical and chemical changes in coal fly ash during acidic or neutral wastes treatment, and its’ effect on the fixation process[J]. Fuel, 2016, 184:69-80.
[2] XU D H, LI H Q, BAO W J, et al. A new process of extracting alumina from high-alumina coal fly ash in NH4HSO4+H2SO4mixed solution[J]. Hydrometallurgy, 2016, 165: 336-344.
[3] WANG L, SUN H, SUN Z H, et al. New technology and application of brick making with coal fly ash[J]. Journal of Material Cycles and Waste Management, 2016, 18(4): 763-770.
[4] 楊蔚, 董發(fā)勤, 何平. 燃煤固硫灰渣的特性及其資源化利用現(xiàn)狀[J]. 粉煤灰綜合利用, 2013, 4: 50-56.YANG W, DONG F Q, HE P. The characteristics and resource utilization status of coal-fired desulphurization ash residue[J]. Fly Ash Comprehensive Utilization, 2013, 4: 50-56.
[5] DU Y, SUN J M, YANG H B, et al. Recovery of gallium in the alumina production process from high-alumina coal fly ash [J]. Rare Metal Materials and Engineering, 2016, 45(7): 1893-1897.
[6] BLISSETT R S, ROWSON N A. A review of the multi-component utilization of coal fly ash[J]. Fuel, 2012, 97: 1-23.
[7] ZHANG Z Y, QIAO X C, YU J G. Aluminum release from microwave-assisted reaction of coal fly ash with calcium carbonate[J].Fuel Process. Technol., 2015, 134: 303-309.
[8] LUO Q, CHEN G L, SUN Y Z, et al. Dissolution kinetics of aluminum, calcium, and iron from circulating fluidized bed combustion fly ash with hydrochloric acid[J]. Ind. Eng. Chem. Res.,2013, 52: 18184-18191.
[9] YANG Q C, MA S H, ZHENG S L, et al. Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 1187-1195.
[10] 葛鵬鵬, 李鎮(zhèn), 茅沈棟, 等. 粉煤灰提取氧化鋁工藝研究進(jìn)展[J].無(wú)機(jī)鹽工業(yè), 2010, 42(7): 1-4.GE P P, LI Z, MAO S D, et al. Progress on extraction of alumina fromfly ash[J]. Inorganic Chemicals Industry, 2010, 42(7): 1-4.
[11] BAI G H, TENG W, WANG X G, et al. Alkalidesilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production[J]. Transactions of Nonferrous Metals Society of China,2010, 20: 169-175.
[12] NGAGIB S, INOUE K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy, 2000, 56: 269-292.
[13] NAYAK N, PANDA C R. Aluminum extraction and leaching characteristics of Talcher Thermal Power Station fly ash with sulphuric acid[J]. Fuel, 2010, 89: 53-58.
[14] SEIDEL A, ZIMMELS Y. Mechanism and kinetics of aluminum and iron leaching from coal fly ash by sulfuric acid[J]. Chem. Eng. Sci.,1998, 53: 3835-3852.
[15] MATJIE R H, BUNT J R, VAN HEERDEN J H P. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J]. Miner Eng., 2005, 18: 299-310.
[16] JUDITH A E, DONALD J B, PAUL R B. Removal of impurites from clay: US4239735[P]. 1980-12-16
[17] 王占修, 張秀全, 丁建礎(chǔ). 粉煤灰提取氧化物研究進(jìn)展[J]. 無(wú)機(jī)鹽工業(yè), 2011, 43(4):15-17.WANG Z X, ZHANG X Q, DING J C. Progress of extracting oxide from fly ash[J]. Inorganic Chemicals Industry, 2011, 43(4):15-17.
[18] 蔣家超, 趙由才. 粉煤灰提鋁技術(shù)的研究現(xiàn)狀[J]. 有色冶金設(shè)計(jì)與研究, 2008, 29(2): 40-43.JIANG J C, ZHAO Y C. Current research situation of Al extraction from fly ash[J]. Nonferrous Metals Engineering & Research, 2008,29(2): 40-43.
[19] CHRISTOV C. Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15K[J]. Calphad, 2001, 25: 445-454.
[20] 付夢(mèng)源, 程文婷, 程芳琴. AlCl3·6H2O在Fe(Ⅲ)-K-Ca-Cl-H2O體系中溶解度的測(cè)定[J]. 中國(guó)科技論文, 2015, 10(24): 2856-2862.FU M Y, CHENG W T, CHENG F Q. Solubility of aluminum chloride hexahydrate in Fe(Ⅲ)-K-Ca-Cl-H2O system[J]. China Sciencepaper, 2015, 10(24): 2856-2862.
[21] ANDRE L, CHRISTOV C, LASSIN A, et al. Thermodynamic behavior of FeCl3-H2O and HCl-FeCl3-H2O systems-a Pitzer model at 25℃[J]. Procedia Earth Planet. Sci., 2013, 7: 14-18.
[22] ATBIR A, HADEK M E, COHEN-ADAD R. Solid-liquid equilibria in the quaternary system NaCl-FeCl2-FeCl3-H2O[J]. Fluid Phase Equilibria, 2001, 181: 187-194.
[23] CLYNNE M A, POTTERII R W. Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures[J]. J. Chem.Eng. Data, 1979, 24(4):338-340.
[24] LI Z B, GAO W G. Solubility of AlCl3·6H2O in the Fe(Ⅱ)+Mg+Ca+K+Cl+H2O system and its salting-out crystallization with FeCl2[J]. Ind. Eng. Chem. Res., 2013, 52: 14282-14290.
[25] WANG J, PETIT C, ZHANG X, et al. Phase equilibrium study of the AlCl3-CaCl2-H2O system for the production of aluminum chloride hexahydrate from Ca-rich flue ash[J]. J. Chem. Eng. Data, 2016, 61:359-369.
[26] YUAN M X, QIAO X C, YU J G. Phase equilibria of AlCl3+FeCl3+H2O, AlCl3+CaCl2+H2O, and FeCl3+CaCl2+H2O at 298.15 K[J]. J. Chem. Eng. Data, 2016, 61(5):1749-1755.
[27] 宋彭生. 濕渣法在水鹽體系相平衡研究中的應(yīng)用[J]. 鹽湖研究,1991, 1: 1-23.SONG P S. Application of wet-residue method in the study of phase equilibrium of salt-water system[J]. Journal of Salt Lake Research,1991, 1: 1-23.
[28] ROBERT D, MICHAEL F, VLADIMIR V D. ThermoML: an XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data(Ⅱ ): Uncertainties[J]. J. Chem. Eng. Data, 2003, 48:1344-1359.
[29] 國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 測(cè)量不確定度評(píng)定與表示: JJF 1059.1-2012[S]. 北京: 中國(guó)計(jì)量出版社, 2012.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Evaluation and expression of uncertainty in measurement: JJF 1059.1-2012[S].Beijing: China Metrology Publishing House, 2012.
[30] ATBIR A, MANCOUR B S, HADEK M El. Solid-liquid equilibria in the quaternary system K+, Fe2+, Fe3+||Cl--H2O at 288.15K [J]. Fluid Phase Equilibria, 2004, 215: 97-103.
[31] ATBIR A, HADEK M El, COHEN A R. Ternary system phase diagram of KCl-FeCl3-H2O, isotherms 15 and 30℃[J]. J. Phys. IV France, 2001, 11(10): 187-190.
Phase equilibria of AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O and CaCl2+FeCl3+H2O ternary systems at 35℃
YUAN Mengxia, QIAO Xiuchen
(School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China)
It is difficult to prepare pure AlCl3·6H2O through evaporation crystallization in aluminum recovery from leaching coal fly ash by hydrochloric acid, without phase equilibria diagram for AlCl3, CaCl2and FeCl3solution. The phase equilibria of AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O and CaCl2+ FeCl3+H2O ternary systems at 35℃ were investigated using isothermal dissolution method. After solubility and densities were measured, phase diagram and density diagram were plotted against compositions. The phase diagrams of AlCl3+CaCl2+H2O and AlCl3+FeCl3+H2O had two univariant curves and two crystallization zones without formation of double salt or solid solution. Solubility of AlCl3decreased with increasing concentration of CaCl2or FeCl3due to common ion effect. Double salt CaCl2·2FeCl3·7H2O was formed in CaCl2+FeCl3+H2O ternary system. When temperature was increased from 25℃ to 35℃, phase equilibria diagrams of AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O and CaCl2+FeCl3+H2O were all changed. Crystallization zone of AlCl3·6H2O in AlCl3+CaCl2+H2O and AlCl3+FeCl3+H2O ternary systems was enlarged and crystallization zone of CaCl2·6H2O was converted into crystallization zone of CaCl2·4H2O. Crystallization zone of CaCl2·2FeCl3·8H2O in CaCl2+FeCl3+H2O ternarysystem was converted into crystallization zone of CaCl2·2FeCl3·7H2O.
phase equilibria; solubility; crystallization; aluminum chloride; calcium chloride; ferric chloride
date:2016-12-15.
Prof. QIAO Xiuchen, xiuchenqiao@ecust.edu.cn
supported by the National High Technology Research and Development Program of China(2011AA06A102) and the National Natural Science Foundation ofChina (21176082).
TQ 013.1
A
0438—1157(2017)07—2653—07
10.11949/j.issn.0438-1157.20161758
2016-12-15收到初稿,2017-02-15收到修改稿。
聯(lián)系人:?jiǎn)绦愠肌?/p>
袁夢(mèng)霞(1988—),女,博士研究生。
國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(2011AA06A102);國(guó)家自然科學(xué)基金項(xiàng)目(21176082)。