亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        美國(guó)花生收獲機(jī)械化技術(shù)衍變歷程及對(duì)中國(guó)的啟示

        2017-07-18 11:48:16高連興陳中玉CharlesChenButts
        關(guān)鍵詞:摘果莢果收獲機(jī)

        高連興,陳中玉,2,Charles Chen,C. L. Butts

        ?

        美國(guó)花生收獲機(jī)械化技術(shù)衍變歷程及對(duì)中國(guó)的啟示

        高連興1,陳中玉1,2※,Charles Chen3,C. L. Butts4

        (1. 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽110866;2. 鹽城工業(yè)職業(yè)技術(shù)學(xué)院汽車工程學(xué)院,鹽城224005; 3. 奧本大學(xué)農(nóng)學(xué)院,奧本 AL 36849;4. 美國(guó)農(nóng)業(yè)部農(nóng)業(yè)研究局國(guó)家花生研究實(shí)驗(yàn)室,道森GA 31742)

        美國(guó)是花生收獲機(jī)械化最早也是技術(shù)最先進(jìn)國(guó)家,花生生產(chǎn)與出口一直保持世界強(qiáng)國(guó)地位。為探明美國(guó)花生收獲機(jī)械化高水平發(fā)展主要?jiǎng)右?,發(fā)現(xiàn)可供借鑒的經(jīng)驗(yàn)和教訓(xùn),運(yùn)用文獻(xiàn)研究法、社會(huì)調(diào)查法、經(jīng)驗(yàn)總結(jié)法和一般科學(xué)思維方法等,系統(tǒng)地回顧了美國(guó)20世紀(jì)40年代以來花生收獲方式和機(jī)械化收獲技術(shù)衍變歷程,深入分析了兩段收獲方式的選擇和農(nóng)機(jī)農(nóng)藝緊密融合過程及其在花生收獲機(jī)械化發(fā)展中的關(guān)鍵作用。結(jié)合中國(guó)花生生產(chǎn)與機(jī)械化現(xiàn)狀,提出了因地制宜確立各主產(chǎn)區(qū)適宜的花生收獲方式和技術(shù)路線,建立區(qū)域性花生種植技術(shù)體系,處理好花生花生機(jī)械技術(shù)引進(jìn)與研發(fā)的關(guān)系,加強(qiáng)花生收獲機(jī)械關(guān)鍵技術(shù)、產(chǎn)地干燥技術(shù)和花生秸稈收獲技術(shù)研發(fā)等建議。

        農(nóng)業(yè)機(jī)械;機(jī)械化;收獲機(jī);花生;撿拾收獲機(jī);美國(guó);衍變歷程;啟示

        0 引 言

        花生是世界更是中國(guó)重要油料與經(jīng)濟(jì)作物。2016年世界花生收獲面積2.54×107hm2、產(chǎn)量4.22×107t,較1972年分別增長(zhǎng)40.35%和192.77%[1],其中中國(guó)、印度、尼日利亞和美國(guó)等10個(gè)國(guó)家花生總產(chǎn)量占世界花生總產(chǎn)量的85%[2]。中國(guó)花生種植面積4.75×106hm2、占世界16.68%,產(chǎn)量1.7×107t、占世界40.26%,面積和產(chǎn)量分別位居世界第二和第一。美國(guó)花生種植面積6.26×105hm2、占世界2.46%,位居世界第9位,而花生產(chǎn)量達(dá)5.79×105t、占世界6.11%,位居世界花生產(chǎn)量第4位;美國(guó)花生單產(chǎn)4.12×103kg/hm2,位居世界首位,花生出口量占世界16.03%而位居世界第3位[3-10]。綜合分析發(fā)現(xiàn),花生生產(chǎn)機(jī)械化特別是收獲機(jī)械化水平差異是導(dǎo)致各國(guó)花生生產(chǎn)水平與出口量差距的重要原因。美國(guó)、阿根廷、巴西和澳大利亞等少數(shù)國(guó)家早已實(shí)現(xiàn)花生收獲機(jī)械化[11-14],而亞洲和非洲花生生產(chǎn)國(guó)則仍主要靠人工收獲[15-18]。中國(guó)花生產(chǎn)量占世界40%,但花生收獲機(jī)械化水平僅30.2%且以小型機(jī)械分段收獲為主[19],人工收獲花生用工量約占整個(gè)生產(chǎn)過程用工量1/3以上,作業(yè)成本則占整個(gè)生產(chǎn)成本的50%以上[20-21]。美國(guó)最早實(shí)現(xiàn)花生收獲機(jī)械化并具有整套的花生機(jī)械化高產(chǎn)技術(shù)體系,收獲機(jī)械技術(shù)十分先進(jìn)。研究美國(guó)花生收獲機(jī)械化技術(shù)發(fā)展歷程和動(dòng)因,對(duì)促進(jìn)中國(guó)乃至全球花生收獲機(jī)械化以及花生生產(chǎn)發(fā)展具有重要意義。

        1 美國(guó)花生生產(chǎn)與收獲機(jī)械化概況

        美國(guó)花生種植始于18世紀(jì),當(dāng)時(shí)種植面積有限。直到20世紀(jì)初為控制棉花生病蟲害而實(shí)行輪作并發(fā)明了花生食品和工業(yè)用途以及花生摘果機(jī)等技術(shù)[8,22],花生種植面積快速增加并最終穩(wěn)定在6×105~7×105hm2。目前,美國(guó)花生種植業(yè)年產(chǎn)值超過12億美元,花生加工和流通等相關(guān)產(chǎn)業(yè)實(shí)現(xiàn)年產(chǎn)值40億美元以上[23-25]。

        美國(guó)于20世紀(jì)50年代中期基本實(shí)現(xiàn)花生生產(chǎn)全程機(jī)械化,20世紀(jì)60年代后期全面實(shí)現(xiàn)兩段式花生收獲機(jī)械化。目前,主要采用以4~8行(工作幅寬3.6~7.6 m)為主的大型花生起收機(jī)和撿拾收獲機(jī)進(jìn)行花生收獲,花生收獲機(jī)械出口至阿根廷、巴西和澳大利亞等生產(chǎn)條件類似的國(guó)家,中國(guó)新疆昌吉州也有少量引進(jìn)[26]。

        美國(guó)廣義的花生收獲過程包括收獲前、收獲中和收獲后3個(gè)階段8個(gè)環(huán)節(jié)(圖1),通常所說花生收獲是指花生“收獲中”階段。其中,第一個(gè)環(huán)節(jié)是采用高壓湍流水槍去除花生莢果最外皮和次外層(圖1a),觀察代表花生成熟度的中間層顏色比例預(yù)測(cè)最佳收獲時(shí)間[27-28];花生起收(圖1b)和撿拾收獲(圖1d)構(gòu)成了兩段式花生收獲核心[29-35];花生條鋪處理(圖1c)是防止因降雨特別撿拾收獲前降雨而容易使花生條鋪腐爛、接地的花生植株不易撿拾而造成損失而采取的措施[36-37]。

        a. 預(yù)測(cè)花生收獲期 a. Peanut harvest date detection b. 花生起收 b. Digging peanuts from groundc. 花生條鋪處理 c. Conditioning peanut windrowsd. 花生撿拾收獲 d. Harvesting peanut windrows e. 花生莢果田間運(yùn)輸 e. Peanut pod transportation in fieldf. 花生莢果道路運(yùn)輸 f. Peanut pod transportation on roadg. 花生莢果整車干燥 g. Curing peanut pods in wagonh. 花生秸稈撿拾收獲 h.Harvesting peanut stalks

        2 花生收獲方法及收獲機(jī)械的衍變

        收獲方式及其衍變是花生收獲機(jī)械化發(fā)展的關(guān)鍵,收獲方式?jīng)Q定了花生收獲機(jī)械化的技術(shù)路線、作業(yè)環(huán)節(jié)、收獲機(jī)械功能、類型和結(jié)構(gòu)等。從19世紀(jì)末至今[22],美國(guó)曾經(jīng)應(yīng)用或試驗(yàn)過的花生收獲方法有多種,如傳統(tǒng)的樁棧式人工分段收獲法、樁棧式人機(jī)分段收獲法、濕花生分段收獲、花生聯(lián)合收獲法、分段式樁棧攤鋪撿拾收獲法和兩段式收獲法等。Gary T. Roberson將美國(guó)的花生收獲方式演變過程歸納為“樁棧式分段收獲時(shí)代”(peanut stackploe,1913-1950年)、“多種收獲方式共存的轉(zhuǎn)型時(shí)代”(transition period of peanut harvest,1951-1968年)和“兩段式機(jī)械化收獲時(shí)代”(peanut windrow harvest,1969年至今)3個(gè)典型歷史階段[38-42]。

        2.1 花生樁棧式分段收獲

        樁棧式分段收獲是美國(guó)傳統(tǒng)的人工花生收獲法[22,42]。所謂“樁?!笔侵钙鹜凇⑷ネ梁蟮幕ㄉ仓陣@打入土中的木樁進(jìn)行堆垛和晾曬,以免因刮風(fēng)等原因使花生堆垛坍塌而影響晾曬,這一過程和花生垛統(tǒng)稱為花生“樁棧”,是美國(guó)人工收獲花生的核心環(huán)節(jié)。樁棧式花生分段收獲主要分為花生起挖、打樁、花生撿拾與去土、樁棧、晾曬、樁棧田間運(yùn)輸、拆樁、摘果與清選等,除花生起挖和樁棧田間運(yùn)輸環(huán)節(jié)用畜力犁和畜力車外,其余環(huán)節(jié)均靠人工作業(yè)。直到1913年固定式花生摘果機(jī)(STATIONARY peanut picker)發(fā)明和應(yīng)用,人工摘果由摘果機(jī)替代,拖拉機(jī)通過拖曳、叉運(yùn)等方式參與樁棧田間運(yùn)輸,形成了樁棧式人機(jī)分段收獲方式。如圖2所示,畜力犁將花生起挖后,人工將帶有“十字”底座的木樁按一定間隔垂直地打入土中,然后人工將花生去土后圍繞直立地面的木樁堆成圓垛進(jìn)行樁棧晾曬,以便自然通風(fēng)晾曬而不被風(fēng)吹倒且減輕淋雨后霉變;花生樁棧一般經(jīng)過2~6周時(shí)間晾曬;用畜力車、拖拉機(jī)等移動(dòng)花生樁棧至摘果場(chǎng)地、人工拆樁,摘果機(jī)進(jìn)行摘果與清選。可見花生收獲環(huán)節(jié)多,特別是人工樁棧、移動(dòng)和拆開花生樁棧費(fèi)工費(fèi)時(shí)、勞動(dòng)強(qiáng)度大、花生損失大,收獲效率低,甚至延長(zhǎng)至降雪季節(jié)進(jìn)行花生摘果[22,42]。

        a. 畜力犁起挖花生 a. Peanut digging by horse-pulled plowb. 人工花生樁棧 b. Stacking peanut poles by hands c. 花生田間晾曬 c. Peanut drying in the fieldd. 花生樁棧運(yùn)輸 d. Peanut stackpole transportation

        2.2 濕花生人工撿拾收獲和聯(lián)合收獲

        20世紀(jì)40年代初期,美國(guó)花生種植面迅速增大到目前花生種植面積的3倍,以“樁?!睘楹诵牡娜斯な斋@遠(yuǎn)不能滿足不斷增長(zhǎng)的花生收獲需求,開始嘗試避開人工樁棧的濕花生人工撿拾收獲和花生聯(lián)合收獲。濕花生人工撿拾收獲是將畜力犁起挖的花生人工撿拾去土后或放鋪(堆)進(jìn)行短時(shí)間晾曬或直接喂入機(jī)引花生摘果機(jī)進(jìn)行摘果作業(yè)(圖3a)?;ㄉ?lián)合收獲是一次將花生從土壤中起出、去土和摘果等環(huán)節(jié)作業(yè)的收獲方法。其中,北卡羅萊納州立大學(xué)生物與農(nóng)業(yè)工程系最先發(fā)明了花生聯(lián)合收獲機(jī)原型(圖3b)[22,42],在此基礎(chǔ)上陸續(xù)研制出牽引式半喂入花生聯(lián)合收獲機(jī)(圖3c)和全喂入花生聯(lián)合收獲機(jī)(圖3d)。最終的田間試驗(yàn)表明,匍匐型濕花生枝茂葉綠且秧蔓纏繞,不僅去土和摘果難度大,花生莢果清選也難以保證,特別難以實(shí)現(xiàn)半喂入摘果,濕花生人工撿拾收獲和花生聯(lián)合收獲機(jī)研究以失敗而結(jié)束。

        a. 濕花生田間移動(dòng)摘果機(jī)(1949年) a. Fresh peanut thresher in field (1949)b. 花生聯(lián)合收獲機(jī)原型(1947年)b. Peanut combine prototype (1947) c. 半喂入花生聯(lián)合收獲機(jī)(1950年) c. Semi-feed peanut combine (1950)d.全喂入花生聯(lián)合收獲機(jī)(1960年) d. Full-feed peanut combine (1960)

        2.3 早期的花生起收機(jī)

        在研究濕花生收獲以及花生聯(lián)合收獲的同時(shí),美國(guó)也開展了花生無序條鋪、莢果朝上的有序條鋪與花生樁棧晾曬等系列對(duì)比試驗(yàn),結(jié)果表明,莢果朝上的花生有序條鋪晾曬效果遠(yuǎn)好于樁棧式和無序條鋪的晾曬效果,一般只需晾曬3~5 d即適宜摘果作業(yè)[42]。基于花生條鋪晾曬對(duì)比試驗(yàn)和濕花生收獲試驗(yàn)結(jié)果,Turner、Ford、Hobbs、Mcclenny和Ferguson等陸續(xù)研制出具有起挖、去土和放鋪功能而結(jié)構(gòu)原理不同的花生起收機(jī)(圖4)[43-47],但尚未解決花生莢果朝上的植株有序放鋪問題。

        a. Ford花生起收機(jī)(1952年) a. Ford peanut digger (1952)b. Turner花生起收機(jī)(1952年) b. Turner peanut digger(1952) c. Hobbs花生起收機(jī)(1956年) c. Hobbs peanut digger (1956)d. Mcclenny花生起收機(jī)(1959年) d. Mcclenny peanut digger (1959)

        2.4 早期的花生撿拾收獲機(jī)及其作業(yè)方式

        在花生起收機(jī)和花生條鋪物料特性研究基礎(chǔ)上,Lilliston、Benthall和Roanoke等公司先后研制出牽引式花生撿拾收獲機(jī)(圖5)[42,48-49],這些花生撿拾收獲機(jī)的總體結(jié)構(gòu)基本相似,即由拖拉機(jī)偏牽引行走,采用齒帶式撿拾裝置,配備專門的固定式內(nèi)燃機(jī)單獨(dú)驅(qū)動(dòng)撿拾和摘果裝置,主要適于2行(1條鋪)花生撿拾收獲。

        a. Benthall花生撿拾收獲機(jī)(1955年) a. Benthall peanut combine (1955)b. Lilliston撿拾收獲機(jī)(1959年) b. Lilliston peanut combine (1959)

        花生撿拾收獲機(jī)可在田間移動(dòng)過程中撿拾花生條鋪同時(shí)摘果,也可停下來作為固定式花生摘果機(jī)使用。因此,在花生起收機(jī)放鋪質(zhì)量不佳、人工花生樁棧普遍存在的情況下,人們或利用花生撿拾收獲機(jī)在田間進(jìn)行間歇式固定式摘果作業(yè),或?qū)⒒ㄉ鷺稐備伜筮M(jìn)行撿拾收獲。

        2.5 兩段式花生收獲方式最終確立

        直到20世紀(jì)60年代后期花生起收機(jī)的莢果朝上有序放鋪難題已經(jīng)解決,兩段式花生收獲完全取代了“樁?!钡仁斋@方式,成為至今為止美國(guó)唯一花生機(jī)械化收獲方式。針對(duì)撿拾對(duì)象和條件的變化,花生撿拾收獲機(jī)發(fā)生了重要變化:齒帶撿拾裝置由結(jié)構(gòu)緊湊、具有高速撿拾功能的彈齒滾筒撿拾器替代;獨(dú)立配置的內(nèi)燃機(jī)動(dòng)力被拖拉機(jī)動(dòng)力輸出軸(power-take-off,PTO)取代;機(jī)組側(cè)牽引配置形式改變?yōu)檎隣恳箼C(jī)組配置更加合理(圖5a、5b);花生種植行距與拖拉機(jī)輪距、花生起收機(jī)和撿拾收獲機(jī)撿拾幅寬配套。Lilliston Implement Company、Hobbs corporation、Long Manufacturing Company和Hobbs- Adams Engineering Company等分別研制成功可實(shí)現(xiàn)有序翻轉(zhuǎn)放鋪的花生起收機(jī)和彈齒滾筒式花生撿拾收獲機(jī)[50-54]。

        3 花生農(nóng)藝與收獲機(jī)械的融合過程

        美國(guó)花生收獲機(jī)械化發(fā)展過程中,農(nóng)機(jī)農(nóng)藝在不同層面以及關(guān)鍵環(huán)節(jié)密切融合發(fā)揮了關(guān)鍵作用。其中包括有利于機(jī)械收獲的耕作與栽培制度、種植模式、收獲方式和花生品種選育等農(nóng)藝變革,也包括基于花生農(nóng)藝的最佳花生收獲期預(yù)測(cè)、花生起收放鋪、條鋪撿拾和摘果機(jī)構(gòu)等機(jī)械技術(shù)創(chuàng)新。

        3.1 花生耕作制度的變革

        美國(guó)傳統(tǒng)的花生種植方式分清種和間種2種[55],種植目的分收獲莢果(peanuts harvested for nuts/peanuts picked and threshed)、收獲秸稈(peanuts harvested for hay)和為控制雜草并作為綠肥培肥的花生(peanuts non-harvested)3種[56]。間種的花生與其他作物在土壤耕作、播種和田間管理等環(huán)節(jié)具有一定通用性,但在作物生長(zhǎng)后期、特別收獲期,不同作物之間的生物學(xué)性狀差異變得顯著,需要不同結(jié)構(gòu)原理的專用收獲機(jī)械,間種限制了機(jī)械收獲作業(yè)。收獲莢果的花生需要經(jīng)歷起收、晾曬和摘果等收獲環(huán)節(jié),而僅收獲秸稈的花生則需要專門的花生秸稈收獲機(jī)械。為有利于花生收獲機(jī)械化作業(yè),美國(guó)于1960年和1975年相繼淘汰了花生間種方式和以收獲花生秸稈和綠肥而種植的花生種植(表1),實(shí)現(xiàn)了全美統(tǒng)一的花生清種栽培技術(shù)體系,極大地促進(jìn)了美國(guó)花生生產(chǎn)特別是收獲機(jī)械化的發(fā)展。

        表1 1940-1975年美國(guó)花生種植基本概況與變化過程

        3.2 花生種植模式的變革

        隨著兩段式花生收獲方式及其花生起收機(jī)和撿拾收獲機(jī)應(yīng)用,為了消除花生品種、種植方式和行距等花生農(nóng)藝因素差異的制約作用,人們將花生種植農(nóng)藝因素和機(jī)械技術(shù)融合起來進(jìn)行綜合技術(shù)研究,逐步建立了以Runner等系列匍匐型花生為主要品種、適應(yīng)機(jī)械通過和起收機(jī)翻轉(zhuǎn)放鋪的大行距整套花生機(jī)械化高產(chǎn)栽培技術(shù)體系。目前,美國(guó)花生種植全部實(shí)行與拖拉機(jī)輪距匹配的寬窄單行(narrow-wide single rows,簡(jiǎn)稱1模式)(圖6a)和2種寬窄雙行(narrow-wide twin rows,簡(jiǎn)稱2和3模式)(圖6b、6c)規(guī)范化種植模式,為機(jī)械化收獲創(chuàng)造了有利條件。1模式適應(yīng)拖拉機(jī)輪距182 cm,窄行距81 cm、寬行距101 cm,便于輪胎通過;2適應(yīng)拖拉機(jī)輪距182 cm,輪胎通過的寬行距21為91 cm、中間和兩側(cè)寬行距相等,即23為56 cm、窄行距22為18 cm;3模式適應(yīng)拖拉機(jī)輪距193 cm,中間和兩側(cè)寬行距相等,即33為56 cm、窄行距32為23 cm[57-59]。

        3.3 適于株型特點(diǎn)的花生起收機(jī)

        美國(guó)80%以上花生屬于匍匐和半匍匐型[60],其植株分枝多而旺盛、開花結(jié)莢期長(zhǎng)、莢果水平分布范圍大、植株質(zhì)心低(圖7a)。在花生植株運(yùn)動(dòng)特性、條鋪黏連性與流動(dòng)性研究基礎(chǔ)上,美國(guó)農(nóng)業(yè)工程專家經(jīng)過約20 a的研究與反復(fù)試驗(yàn),最終發(fā)明了帶有翻轉(zhuǎn)輪和曲線形攏禾器的翻轉(zhuǎn)放鋪機(jī)構(gòu)(圖7b)[61],從而攻克了匍匐型花生植株莢果朝上、有序翻轉(zhuǎn)放鋪的難題。目前,美國(guó)KMC(圖7c)、AMADAS(圖7d)、FERGUSON和COLOMBO等4個(gè)公司生產(chǎn)鏟鏈?zhǔn)交ㄉ鹗諜C(jī)(Rattler Bar Digger),適于匍匐型花生起收,對(duì)花生種植壟距、土壤、株高和雜草狀況等適應(yīng)性強(qiáng),但起收直立與半自立型花生時(shí)翻轉(zhuǎn)放鋪效果不夠理想[62-66]。

        注:L1=182 cm,L11=101 cm,L12=81 cm,L2=182 cm,L21=91 cm,L22=18 cm,L23=56 cm,L3=193 cm,L31=91 cm,L32=23 cm,L33=56 cm

        圖7 美國(guó)匍匐型花生植株與鏟鏈?zhǔn)交ㄉ鹗諜C(jī)結(jié)構(gòu)原理

        針對(duì)直立和半直立型花生分枝少、質(zhì)心高、不易形成翻轉(zhuǎn)條鋪等特點(diǎn)(圖8a),PEARMAN發(fā)明了鏟夾式花生起收機(jī)(圖8b),其采用一對(duì)夾持鏈將起土鏟起挖的花生植株夾持并向后上方輸送,經(jīng)過振動(dòng)部件去土后在放鋪桿引導(dǎo)下借助運(yùn)動(dòng)慣性側(cè)向放鋪[67]。鏟夾式花生起收機(jī)結(jié)構(gòu)簡(jiǎn)單、可實(shí)現(xiàn)高速平穩(wěn)作業(yè),但因需要對(duì)行夾持,對(duì)花生行距、株高和土壤類型適應(yīng)性較差,應(yīng)用受到限制,美國(guó)只有PEARMAN獨(dú)家生產(chǎn),起收行數(shù)1~2行和4、6、8行(圖8c、8d)[68-70]。

        圖8 美國(guó)半直立型花生植株與鏟夾式花生起收機(jī)結(jié)構(gòu)原理

        3.4 適于條鋪特點(diǎn)的花生撿拾收獲機(jī)

        花生植株條鋪的有序程度、植株間的粘滯性、條鋪與地面接觸狀況和花生植株各部位含水率等,是影響花生撿拾和摘果機(jī)構(gòu)設(shè)計(jì)和性能的重要因素。美國(guó)早期的花生起收機(jī)放鋪質(zhì)量較差,因而撿拾收獲機(jī)均采用撿拾與輸送一體化的齒帶式撿拾裝置,其結(jié)構(gòu)比較龐大,工作寬度和速度有限,一般只能撿拾1個(gè)條鋪(2行),難以實(shí)現(xiàn)拖拉機(jī)的正牽引作業(yè)[71]?;ㄉb置主要采用切流式滾筒,以適應(yīng)匍匐型花生分枝多、經(jīng)濟(jì)系數(shù)低、容易出現(xiàn)秸稈纏繞等特點(diǎn),為提高摘果強(qiáng)度需要串聯(lián)多級(jí)高速的摘果裝置,因而導(dǎo)致莢果損傷和功耗較大。為進(jìn)一步提高撿拾裝置的工作效率,以彈齒滾筒滑道式撿拾裝置替代了齒帶式撿拾裝置,使花生撿拾收獲機(jī)的整體配置得到了優(yōu)化,撿拾寬度和撿拾速度提高;采用轉(zhuǎn)速較低的多滾筒切流摘果裝置,解決了摘果效率與莢果損傷之間的矛盾。近年來,無滑道彈齒滾筒和蒲輪式撿拾裝置開始應(yīng)用,從而在保證工作效率的前提下使撿拾裝置更加簡(jiǎn)化,并可減輕機(jī)構(gòu)磨損,提高撿拾速度。美國(guó)AMADAS、KMC和COLOMBO最新的花生撿拾收獲機(jī)如圖9所示,其中KMC和COLOMBO只生產(chǎn)牽引式花生撿拾收獲機(jī),而AMADAS同時(shí)生產(chǎn)牽引和自走輪式花生撿拾收獲機(jī),收獲行距76、91、96和101 cm不等。牽引式花生撿拾收獲機(jī)均為2~6行的系列產(chǎn)品,而AMADAS自走式花生撿拾收獲機(jī)只有8行一種規(guī)格[29-35]。

        3.5 適于莢果成熟特性的收獲期預(yù)測(cè)方法

        美國(guó)匍匐型花生連續(xù)開花、結(jié)莢且收獲時(shí)沒有衰敗特征,收獲過早和過晚均影響花生產(chǎn)量與品質(zhì)。20世紀(jì)70年代初期,美國(guó)科學(xué)家發(fā)現(xiàn)了花生果殼的多層結(jié)構(gòu)及其中間層(Mesocarp)顏色與花生成熟度的相關(guān)性,即按黑、棕、黃和白依次表明花生完熟、接近完熟、半熟和未成熟,顏色和花生成熟度之間有密切的時(shí)間規(guī)律[27-28]。根據(jù)這一規(guī)律,在收獲前進(jìn)行花生熟成比例測(cè)定,確定70%~80%花生莢果成熟即為最佳收獲時(shí)間,從而預(yù)測(cè)出花生最佳收獲時(shí)間?;ㄉ墒於葯z測(cè)方法與設(shè)備(peanut maturity detection method and equipment)如圖10所示,通過高壓湍流水槍去除花生莢果最外皮和次外層,觀察代表花生成熟度的中間層(Mesocarp)顏色,然后統(tǒng)計(jì)各種顏色花生莢果比例或按圖案排列到模式圖中,可方便準(zhǔn)確預(yù)測(cè)出最佳收獲時(shí)間。

        圖9 美國(guó)現(xiàn)代典型花生撿拾收獲機(jī)

        a.刮出花生中間層 a. Hull-scrape peanut maturity profileb. 去除花生殼外層的高壓湍流水槍 b.Blasting out peanut shell by a high pressure hydraulic gun c. 不同顏色代表不同成熟度 c. Different colors of mesocarp representing different maturityd. 按中間層顏色預(yù)測(cè)收獲期的模板 d. Harvest period detection template in according with colors of mesocarp

        4 美國(guó)花生收獲機(jī)械化發(fā)展對(duì)中國(guó)的啟示

        綜合分析美國(guó)花生收獲機(jī)械化衍變歷程發(fā)現(xiàn),美國(guó)花生收獲機(jī)械化成功發(fā)展具有多方面因素,其中主要?jiǎng)右虬ǎ翰粩嘟鉀Q花生生產(chǎn)問題和農(nóng)機(jī)農(nóng)藝緊密融合基礎(chǔ)上,實(shí)行了花生耕作制度與栽培技術(shù)體系的系列變革措施,使之最大限度適應(yīng)收獲機(jī)械化發(fā)展要求;重視花生收獲方式的試驗(yàn)研究并最終選擇了最適宜的兩段式收獲方式,為花生農(nóng)藝技術(shù)、收獲機(jī)械技術(shù)及其二者融合發(fā)展指明了方向、目標(biāo)和技術(shù)路線;在花生收獲機(jī)械技術(shù)原理上不斷創(chuàng)新,使機(jī)械與工作對(duì)象和環(huán)境條件等巧妙結(jié)合成最佳系統(tǒng);形成并不斷完善花生品種、種植株行距、土壤條件和機(jī)具性能參數(shù)的配套技術(shù)體系,實(shí)現(xiàn)高產(chǎn)、高效、優(yōu)質(zhì)和低耗的花生生產(chǎn);從花生最佳收獲期確定到花生莢果收獲、運(yùn)輸、干燥和秸稈收獲等,整個(gè)花生收獲過程技術(shù)配套和技術(shù)系列化發(fā)展。

        信度指測(cè)量結(jié)果的一致性、穩(wěn)定性以及可靠性,一般多以內(nèi)部一致性系數(shù)(Cronbach’ α)來檢驗(yàn)。如表1所示,各構(gòu)念的Cronbach’ α系數(shù)的變動(dòng)范圍在0.919~0.951之間,均大于0.7,因而可以說研究中采用的量表具有較好的信度。另一方面,構(gòu)念的組合信度(CR)也是判別內(nèi)在質(zhì)量的標(biāo)準(zhǔn)之一,各構(gòu)念的CR值均在0.60以上,表示量表的內(nèi)在質(zhì)量理想。

        中國(guó)1959年研制第一臺(tái)花生起收機(jī)后[72],因特殊國(guó)情而發(fā)展緩慢,直到20世紀(jì)80年代初期的中國(guó)農(nóng)村經(jīng)濟(jì)體制改革,在引進(jìn)、消化美國(guó)兩段式花生收獲機(jī)械[73-74]和中國(guó)臺(tái)灣花生聯(lián)合收獲機(jī)基礎(chǔ)上[75-76],陸續(xù)開展了花生收獲特性、花生起收機(jī)、聯(lián)合收獲機(jī)和撿拾收獲機(jī)等系列研究,先后研制出4HQL-2、4HLB-2、4HLB-4、4HBL-4等型號(hào)履帶自走式花生聯(lián)合收獲機(jī)和4HJL-4、4HLJ-8型大中型花生撿拾收獲機(jī)[77-83]。然而,由于我國(guó)各主產(chǎn)區(qū)之間花生種植農(nóng)藝地域差異特點(diǎn)顯著,花生收獲機(jī)械結(jié)構(gòu)復(fù)雜且難以適應(yīng)農(nóng)藝等綜合因素影響,目前中國(guó)花生收獲機(jī)械化水平僅為30.2%,花生收獲仍以人工和小型收獲機(jī)械作業(yè)為主,人工生產(chǎn)成本高、生產(chǎn)效率低、花生損失大且影響花生質(zhì)量,嚴(yán)重制約花生生產(chǎn)和出口競(jìng)爭(zhēng)力。

        借鑒美國(guó)花生收獲機(jī)械化發(fā)展經(jīng)歷及其成功經(jīng)驗(yàn)與教訓(xùn),基于中國(guó)目前花生生產(chǎn)和收獲機(jī)械化發(fā)展現(xiàn)狀,主要建議如下:

        1)盡快確立花生收獲適宜方式 收獲方式?jīng)Q定了花生收獲機(jī)械化技術(shù)路線、適用的機(jī)械類型和結(jié)構(gòu)型式,很大程度上決定了機(jī)械作業(yè)效果、設(shè)備投資與利用率,同時(shí)對(duì)花生栽培方式和種植技術(shù)起到約束作用。就某一花生產(chǎn)區(qū)而言,選擇美國(guó)式的兩段收獲還是中國(guó)臺(tái)灣式的聯(lián)合收獲以及中國(guó)傳統(tǒng)式的分段收獲,要根據(jù)區(qū)域自然、經(jīng)濟(jì)和農(nóng)業(yè)生產(chǎn)條件形成的花生耕種方式、地塊和土質(zhì)條件、花生生產(chǎn)經(jīng)營(yíng)規(guī)模不同、農(nóng)民農(nóng)業(yè)生產(chǎn)基礎(chǔ)和花生種植傳統(tǒng)等具體情況,應(yīng)因地制宜綜合考慮。例如,遼寧、吉林、黑龍江和內(nèi)蒙古東部等東北花生區(qū)和新疆、內(nèi)蒙古西北部等耕地規(guī)模較大、花生一年一季或二年三季種植地區(qū),適于采用兩段收獲方式;一年兩季或三季種植、地塊較小的南方可能更多地考慮聯(lián)合收獲方式;有些地區(qū)花生種植面積不大、地塊較小且多屬于丘陵山區(qū),機(jī)械分段收獲可能具有更好的綜合效益。

        2)建立區(qū)域性花生種植技術(shù)體系 從農(nóng)機(jī)農(nóng)藝融合角度出發(fā),在協(xié)調(diào)當(dāng)前與長(zhǎng)遠(yuǎn)效益矛盾基礎(chǔ)上,引導(dǎo)農(nóng)民以經(jīng)濟(jì)效益為中心,逐步轉(zhuǎn)變費(fèi)工費(fèi)時(shí)、難以實(shí)現(xiàn)機(jī)械收獲且經(jīng)濟(jì)效益不高的多種花生間種和套作等種植方式,在地域范圍內(nèi)相對(duì)規(guī)范花生品種、壟作或平作、壟距和行距等,形成機(jī)械與農(nóng)藝配套的高產(chǎn)、高效、低耗花生機(jī)械化生產(chǎn)技術(shù)體系。

        3)技術(shù)引進(jìn)與研發(fā)密切結(jié)合生產(chǎn)急需 花生收獲機(jī)械化發(fā)展不僅僅是技術(shù)問題,同時(shí)也是農(nóng)業(yè)生產(chǎn)和農(nóng)村社會(huì)經(jīng)濟(jì)的綜合系統(tǒng)問題。由于花生種植、農(nóng)業(yè)生產(chǎn)和農(nóng)村經(jīng)濟(jì)的地域性特點(diǎn),一個(gè)國(guó)家、地區(qū)或產(chǎn)區(qū)先進(jìn)適用的花生收獲機(jī)械未必在另一個(gè)花生產(chǎn)區(qū)收到同樣效果,其涉及到農(nóng)藝適應(yīng)性、生產(chǎn)可行性和經(jīng)濟(jì)合理性等。因此,對(duì)研發(fā)單位提出了更高要求,即在研發(fā)前要開展大量而深入細(xì)致的實(shí)際調(diào)研,發(fā)現(xiàn)花生收獲實(shí)踐中最急需解決的技術(shù)問題、最受歡迎的收獲機(jī)械類型,找出農(nóng)民對(duì)不同類型花生收獲機(jī)械的接受程度及其技術(shù)適應(yīng)經(jīng)濟(jì)合理性等真實(shí)原因,搞好引進(jìn)和研發(fā)的可行性研究,做到密切結(jié)合當(dāng)前生產(chǎn)實(shí)際,有針對(duì)性地進(jìn)行技術(shù)引進(jìn)和研發(fā)。

        4)針對(duì)花生植株性狀加強(qiáng)收獲機(jī)械關(guān)鍵技術(shù)研究 中國(guó)主栽的直立型花生具有植株高分枝少、莢果水平分布范圍小等特點(diǎn),需進(jìn)行其植株物理機(jī)械特性、運(yùn)動(dòng)特性、花生果柄強(qiáng)度和花生起收時(shí)典型土壤條件等多個(gè)方面基礎(chǔ)研究;在現(xiàn)有花生收獲機(jī)械研發(fā)成果基礎(chǔ)上,以鏟夾式和鏟鏈?zhǔn)?種花生起收機(jī)為目標(biāo),深入研究起挖和放鋪機(jī)構(gòu)原理和參數(shù)優(yōu)化,前者主要針對(duì)沙土和輕壤土的花生起收,重點(diǎn)解決花生起挖過程中挖土鏟深度控制、對(duì)行問題,減少掉果損失、提高農(nóng)藝適應(yīng)性;后者主要針對(duì)輕壤土和中壤土種植的花生起收,重點(diǎn)解決有序放鋪問題。針對(duì)直立型花生植株間連結(jié)作用力小、條鋪連續(xù)性差等特點(diǎn),加強(qiáng)花生撿拾與摘果裝置研究,盡快替代中國(guó)目前應(yīng)用齒帶式撿拾裝置,從而解決撿拾幅寬、速度和結(jié)構(gòu)限制問題,實(shí)現(xiàn)機(jī)組正牽引配置并由拖拉機(jī)動(dòng)力輸出軸進(jìn)行驅(qū)動(dòng),適當(dāng)增大撿拾幅寬。中國(guó)最近研制的4~8行自走式花生撿拾收獲機(jī),結(jié)構(gòu)與美國(guó)同類產(chǎn)品相似,主要采用彈齒滾筒式撿拾裝置和多滾筒切流摘果裝置,但工作性能尚需盡快試驗(yàn)和完善。

        5)加強(qiáng)收獲后莢果干燥與秸稈收獲技術(shù)研究 兩段式收獲的花生莢果含水率一般18%~20%,必須及時(shí)進(jìn)行干燥處理。傳統(tǒng)的庭院自然晾曬場(chǎng)地有限、效率低、損失大,難以滿足花生種植面積的增大和集中的發(fā)展需要。美國(guó)的花生干燥由花生收購站集中、專業(yè)化進(jìn)行,設(shè)備技術(shù)先進(jìn)、規(guī)模大投資大,干燥處理花生量大,不適宜中國(guó)的花生生產(chǎn),亟待研制適宜產(chǎn)地加工的適用干燥設(shè)備?;ㄉ?lián)合過程中將摘果后的花生秸稈直接落到地面,部分小型花生撿拾機(jī)雖有秸稈集放裝置,但存在與撿拾和摘果裝置配套問題,放到地面的秸稈難以及時(shí)收獲,建議研制以中小型為主的花生秸稈撿拾打捆機(jī),適時(shí)地將作為優(yōu)質(zhì)畜牧飼料的花生秸稈收獲。

        5 結(jié) 論

        通過對(duì)美國(guó)花生收獲機(jī)械化不同發(fā)展階段的花生收獲方式、特點(diǎn)及其技術(shù)衍變歷程的追溯與綜合分析,特別對(duì)花生收獲機(jī)械與農(nóng)藝技術(shù)融合、花生起收機(jī)和花生撿拾收獲機(jī)等技術(shù)衍變過程分析和系統(tǒng)歸納,展現(xiàn)了美國(guó)花生收獲機(jī)械化技術(shù)發(fā)展足跡、主要環(huán)節(jié)的農(nóng)機(jī)農(nóng)藝融合措施和關(guān)鍵技術(shù)發(fā)展過程。針對(duì)中國(guó)花生收獲機(jī)械化實(shí)際情況,建議:1)因地制宜確立區(qū)域性花生收獲適宜方式和技術(shù)路線,如遼寧、吉林、黑龍江等耕地規(guī)模較大、花生一年一季或二年三季種植地區(qū),適于采用兩段收獲方式;一年兩季或三季種植、地塊較小的南方考慮聯(lián)合收獲方式;有些地區(qū)花生種植面積不大、地塊較小且多屬于丘陵山區(qū),機(jī)械分段收獲可能具有更好的綜合效益。2)在一定地域范圍內(nèi)適當(dāng)規(guī)范花生品種、壟作或平作、壟距和行距等,形成機(jī)械農(nóng)藝配套的高產(chǎn)、高效、低耗的花生機(jī)械化生產(chǎn)技術(shù)體系。3)技術(shù)引進(jìn)與研發(fā)密切結(jié)合生產(chǎn)急需,針對(duì)花生植株性狀加強(qiáng)收獲機(jī)械關(guān)鍵技術(shù)研究,加強(qiáng)收獲后莢果干燥與秸稈收獲裝置研究。4)根據(jù)中國(guó)主栽的直立型花生特點(diǎn)和現(xiàn)有花生收獲機(jī)械研發(fā)狀況,以鏟夾式和鏟鏈?zhǔn)?種花生起收機(jī)為目標(biāo),深入研究起挖和放鋪機(jī)構(gòu)原理和參數(shù)優(yōu)化,重點(diǎn)解決有序放鋪問題。

        [1] National Agricultural Statistics Service. Crop production[R]. Washington: United States Department of Agriculture, 2016.

        [2] International Nut&Dried Fruit. Global statistical review 2014-2016[EB/OL]. 2015-05-14. www.nutfruit.org.

        [3] Foreign Agricultural Service. World agricultural production[R]. Washington: United States Department of Agriculture, 2016.

        [4] Fletcher S M, Chen C, Zhang P, et al. Competetiveness of peanuts: United States versus China[R]. Georgia: University of Georgia, 2009.

        [5] Jay W Chapin. Peanut money-maker production guide 2015[R]. South Carolina: National Peanut Board, 2015.

        [6] Fletcher S M, Revoredo C L. World peanut market: An overview of the past 30 years[R]. Georgia: University of Georgia, 2009.

        [7] Forgien Agricultural Service. Oilseeds: World markets and trade[R]. Washington: United States Department of Agriculture, 2016.

        [8] Foreign Agricultural Service. Production, supply and distribution online[EB/OL]. 2017-04-28. http://apps.fas.usda.gov/ psdonline/psd-Query.aspx.

        [9] National Agricultural Statistics Service. Crop production 2015 summary[R]. Washington: United States Department of Agriculture, 2016.

        [10] National Agricultural Statistics Service. Crop production historical track records[R]. Washington: United States Department of Agriculture, 2016.

        [11] Mcarthur W C, Verner N Grise, Harry O Doty, et al. U. S. Peanut industry[R]. Washington: Economic Reasearch Service, United States Department of Agriculture, 1982.

        [12] Agrochart. Argentina: Oilseeds and peanuts update[EB/OL]. 2016-02-06. http://www.agrochart.com/en/news/2379/argenti na-oilseeds-and-products-update-feb-2016.html.

        [13] Peanut Company of Australia. History of the Australian peanut industry[EB/OL]. 2016-12-23. www.pca.com.au/pca-p rofile/history- of-the-peanut-industry/.

        [14] Lopes D C. Potential crops for biodiesel production in Brazil: A review[J]. World Journal of Agricultural Sciences, 2011, 7(2): 206-217.

        [15] Josef Kienzle, John E Ashburner, Brian G Sims. Mechanization for rural development: A review of patterns and progress from around the world[M]. Rome: Production and Protection Division, FAO, 2013.

        [16] Shankarappa Talawar. Peanut in India: History, production, and utilization[R]. Georgia: Sustainable Human Ecosystems Laboratory University of Georgia, 2004.

        [17] Ajeigbe H A, Waliyar F, Echekwu C A, et al. A farmer’s guide to profitable groundnut production in Nigeria[M]. Kano: International Crops Research Institute for the Semi- arid Tropics (ICRISAT), 2015.

        [18] 陳中玉,高連興,Chen Charles,等. 中美花生收獲機(jī)械化技術(shù)現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,48(4):1-21. Chen Zhongyu, Gao Lianxing, Chen Charles, et al. Analysis on technology status and development of peanut harvest mechanization of China and United States[J]. Transaction of The Chinese Society for Agricultural Machinery, 2014, 48(4): 1-21.(in Chinese with English abstract)

        [19] 中華人民共和國(guó)農(nóng)業(yè)部. 2016中國(guó)農(nóng)業(yè)機(jī)械化年鑒[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2016.

        [20] 陳有慶,胡志超,王海鷗,等. 我國(guó)花生機(jī)械化收獲制約因素與發(fā)展對(duì)策[J]. 中國(guó)農(nóng)機(jī)化,2012 (4): 14-17. Chen Youqing, Hu Zhichao, Wang Haiou, et al. Restrictive factors and development countermeasure for peanut mechanized harvesting in China[J]. Chinese Agricultural Mechanization, 2012(4): 14-17. (in Chinese with English abstract)

        [21] 王艷. 中國(guó)花生主產(chǎn)區(qū)比較優(yōu)勢(shì)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2013. Wang Yan. Study on the Comparative Advantage of Chinese Groundnut in Main Producing Areas[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract)

        [22] Department of Biological and Agricultural Engineering. BAE’s role in the history of peanut[EB/OL]. 2003-03-12. http://www.bae. ncsu.edu.

        [23] Carley D H, Fletcher S M. An analysis of peanut price support issues[R]. Georgia: University of Georgia, 1997.

        [24] John P. Beasley. 2013 peanut production update [R]. Georgia:Georgia Peanut Commission,2013.

        [25] Hayley Boriss, Junior Specialist, Marcia Kreith. Commodity profile: Peanut[EB/OL]. 2016-06-21. http://aic.ucdavis.edu/pro files/Peanuts- 2006.pdf.

        [26] 王亮,魏建軍,李艷,等. 中國(guó)花生全程機(jī)械化發(fā)展?fàn)顩r及其在新疆的應(yīng)用[J]. 中國(guó)農(nóng)學(xué)通報(bào),2014,30(2):161-168. Wang Liang, Wei Jianjun, Li Yan, et al. Development of peanut’s whole course mechanization in our country and the application in Xinjiang[J]. Chinese Agricultural Science Bulletin, 2014, 30(2): 161-168. (in Chinese with English abstract)

        [27] Williams E J, Drexler J S. A non-destructive method for detrmining peanut pod maturity[J]. Peanut Science, 1981, 8(2): 134-141.

        [28] Sanders T H, Lansden J A, Greene R L, et al. Oil characteristics of peanut fruit separated by a nondestructive maturity classification method[J]. Peanut Science, 1982, 9(1): 20-23.

        [29] Kelly Manufacturing CO. The most popular inverters in the world[EB/OL]. 2015-07-14. http://www.kelleymfg.com/prod ucts/peanut/ digger. aspx.

        [30] Amadas Industries. Peanut diggers[EB/OL]. 2015-07-14. http://www.amadas.com/agriculture/peanuts/peanut-diggers.

        [31] Kelly Manufacturing CO.. Peanut combine[EB/OL]. 2015-02-26.http://www.kelleymfg.com/products/peanut/com bine.aspx.

        [32] Colombo. 6-Row twin master peanut combine[EB/OL]. 2016-11-09. http://colombona.com/colombo-north-america-t win-master-peanut-combine/.

        [33] Colombo. 4-Row twin master peanut combine[EB/OL]. 2016-11-09. http://colombona.com/colombo-north-america-4 -row-twin-master-peanut-combine/.

        [34] Amadas Industries. Self-profelled peanut combine[EB/OL]. 2015-07-14. http://www.amadas.com/agriculture/peanuts/self- propelled-co-mbine.

        [35] Amadas Industries. Pull type peanut combine-6 row[EB/OL]. 2015-07-14. http://www.amadas.com/agriculture/peanuts/pull- type-peanut- combine.

        [36] Kelly Manufacturing CO. Vine conditioner and vine lifter[EB/OL]. 2015-02-06. http://www.kelleymfg.com/prod-u-cts/peanut/ vine_conditioner_lifter. aspx.

        [37] Amadas Industries. Crop lifter conditioner[EB/OL]. 2015-07-14. http://www.amadas.com/agriculture/peanutscro p-lifter-conditioner.

        [38] Amadas Industries. Crop transporters[EB/OL]. 2015-07-29. ht-tp://www.amadas.com/agriculture/peanuts/crop-transporters.

        [39] Colombo. Colombo dump cart 6500[EB/OL]. 2016-12-09. http:// colombona.com/colombo-dump-cart-cta-6500/.

        [40] Butts C L, Williams E J. Measuring airflow distribution in peanut drying trailers[J]. Applied Engineering in Agriculture, 2004, 20(3): 335-339.

        [41] Amadas Industries. Round module handler[EB/OL]. 2015-07-14. http://www.amadas.com/agriculture/cotton/round-module-handler.

        [42] Gary Roberson. A history of peanut mechanization [EB/OL]. 2014-11-17. http://www.bae.ncsu.edu/mission_history/agricultural_gallery. php.

        [43] Mooney B. Peanut digger and shaker: 2384763[P]. 1945- 09-11.

        [44] Ford W W. Peanut harvester: 1458044[P]. 1923-06-05.

        [45] Oliver K Hobbs. Digger-shaker:3989111[P]. 1971-03-08.

        [46] Mcclenny R J. Peanut or potato digger: 2383506[P]. 1945- 08-28.

        [47] Lilley M R. Windrowing fork arrangement for peanut digger: 3454100[P]. 1969-07-08.

        [48] John T Phillips. Peanut combine: 2788628[P]. 1957-04-16.

        [49] Hobbs O K. Peanut picking machine: 3156245[P]. 1964- 11-10.

        [50] Long W R. Pickup and threshing unit for peanut combine: 2974467[P]. 1961-03-14.

        [51] Long W R. Peanut combine: 3007475 [P]. 1961-11-07.

        [52] Whitfield C J. Peanut combine: 3545185[P]. 1970- 12-08.

        [53] Stanley A Brantley. Self-propelled peanut combine: 5980382[P]. 1999-11-09.

        [54] Hobbs O K. Peanut combine: 4136507[P]. 1979-01-30.

        [55] Agricultural Marketing Service. Annual crop summary[R]. Washington : United States Department of Agricultural, 1940-1981.

        [56] John Beasley, David Jordan, Robert Lemon. Agricultural

        practices for peanut growing and harvesting[N]. American Peanut Council Good Management Practices, 2002 (1): 1-12.

        [57] Graeme Wright, Lionel Wieck, Pat Harden. Peanut production guide[EB/OL]. 2013-09-24.www.pca.com.au.

        [58] Kelly Manufacturing CO.. American peanut row spacing chart[EB/OL]. 2008-11-05. http://www.kelleymfg.com/prod-ucts/peanut/American%20Peanut%20Row%20Spacing%20Chart.pdf.

        [59] Kipling S Balkcom, Francisco J Arriaga, Kris B Balkcom, et al. Single-and twin-row peanut production within narrow and wide strip tillage systems[J]. Agronomy Journal, 2010, 102(2): 507-512.

        [60] John D Gassett, Ladon J D, Dustin G D, et al. Georgia 2014 peanut, cottom, and tobacco performance tests[R]. Georgia: University of Georgia, 2015.

        [61] Hobbs O K. Peanut digger: 3319720[P]. 1967-05-16.

        [62] Afshin Azmoodeh Mishamandani, Shamsollah Adbollahpoor, Hossein Navid, et al. Comparing of peanut harvesting loss in mechanical and manual methods[J]. International Journal of Advanced Biological and Biomedical Research(IJABBR), 2014, 2(5): 1475-1483.

        [63] Scott Miller. Clemson automates peanut digger for improved yields[N]. Public Service and Agriculture, 2015-09-16.

        [64] Andrew C Warner, Kendall R Kirk, James S Thomas, et al. Variable depth peanut digger: Part I–design and testing[C]// American Society of Agricultural and Biological Engineers (ASABE), 2014: 1-6.

        [65] Andrew C Warner, James S Thomas, Kendall R Kirk, et al. Variable depth peanut digger: Ppart II–digging loss analysis[C]//American Society of Agricultural and Biological Engineers(ASABE), 2014: 1-6.

        [66] Zerbato C, Silva V F A, Torres L S, et al. Peanut mechanized digging regarding to plant population and soil water level[J]. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18(4): 459-465.

        [67] Pearman. Harvesting machine: 3059703[P]. 1962-10-23.

        [68] Pearman Corporation. Pearman 8-row model 608 digger-shaker-inverter[EB/OL].1995-05-22. http://www.pearm ancorp.com/ 8rowa. html.

        [69] Pearman Corporation. Pearman peanut digger- shaker- inverter[EB/OL]. 1995-05-22. http://www.pearmancrop.com/ expo96. html.

        [70] Pearman Corporation. Pearman model 600 digger-shaker- inverters are designed to save peanuts[EB/OL]. 1995-05-22. http://www.pearmancrop.com/ex9inval.html.

        [71] Bader M. Peanut digger and combine efficiency[R]. Georgia: University of Georgia, 2009.

        [72] 樂林. 科學(xué)研究工作必須政治掛帥[J]. 中國(guó)農(nóng)業(yè)科學(xué),1960(4):52-54.

        [73] 劉艾莉. 美國(guó)Hobbs-663型花生挖掘機(jī)[J]. 糧油加工與食品機(jī)械,1980(3):60-61.

        [74] 劉艾莉. 利斯頓-1580型花生聯(lián)合收獲機(jī)研學(xué)簡(jiǎn)訊[J]. 糧油加工與食品機(jī)械,1982(7):56-57.

        [75] 山東赴臺(tái)灣農(nóng)機(jī)考察團(tuán). 臺(tái)灣的農(nóng)業(yè)機(jī)械化[J]. 山東農(nóng)機(jī)化,2002(12):23-24.

        [76] 肖林樺. 臺(tái)灣農(nóng)業(yè)機(jī)械化與農(nóng)機(jī)工業(yè)[J]. 糧油加工與食品機(jī)械,1995(2):31-32.

        [77] 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所. 我所研制的四行半喂入花生聯(lián)合收獲機(jī)趨于成熟[EB/OL]. 2014-11-10. http://www. nriam.com/sp_web/cla-sslist.asp?classid=32&subclassid=32&-infoid=4165.

        [78] 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所. 我所研制出國(guó)內(nèi)首臺(tái)八行花生撿拾聯(lián)合收獲機(jī)[EB/OL]. 2014-11-07. http://www.nria--m.com/sp_ web/classlist.asp?classid=32&subclassid=32&inf-oid=4163.

        [79] 王東偉,尚書旗,韓坤. 4HJL-2型花生聯(lián)合收獲機(jī)摘果機(jī) 構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):15-25. Wang Dongwei, Shang Shuqi, Han Ku. Desing and test of picking mechanism in 4HJL-2 peanut combines[J]. Transactions of the Chinese Society of Agricutural Engineering (Transactions of the CSAE), 2013, 29(14): 15- 25. (in Chinese with English abstract)

        [80] 胡志超,彭寶良,尹文慶,等. 4LH2型半喂入自走式花生聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(3):148-153. Hu Zhichao, Peng Baoliang, Yin Wenqing, et al. Design of 4HL-2 type half-feed and self-propelled peanut combine[J]. Transactions of the Chinese Society of Agricutural Engineering (Transactions of the CSAE), 2008, 24(3): 148-153. (in Chinese with English abstract)

        [81] 胡志超,陳有慶,王海鷗,等. 振動(dòng)篩式花生收獲機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):114–117. Hu Zhichao, Chen Youqing, Wang Haiou, et al. Design and experimental research on vibrating type peanut harvester[J]. Transactions of the Chinese Society of Agricutural Engineering (Transactions of the CSAE), 2008, 24(10): 114-117. (in Chinese with English abstract)

        [82] 關(guān)萌,沈永哲,高連興,等. 花生起挖晾曬后的果柄機(jī)械特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):87–93. Guan Meng, Shen Yongzhe, Gao Lianxing, et al. Mechanical properties of peanut peg after digging and drying[J]. Transactions of the Chinese Society of Agricutural Engineering (Transactions of the CSAE), 2014, 30(2): 87-93. (in Chinese with English abstract)

        [83] 楊然兵,范玉濱,尚書旗. 動(dòng)力圓盤式花生挖掘裝置的設(shè)計(jì)與效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30 (10):29–36. Yang Ranbing, Fan Yubin, Shang Shuqi. Design and effect test of dynamic disk digging equipment of peanut combine[J]. Transactions of the Chinese Society of Agricutural Engineering (Transactions of the CSAE), 2014, 30(10): 29-36. (in Chinese with English abstract)

        Development course of peanut harvest mechanization technology of the United States and enlightenment to China

        Gao Lianxing1, Chen Zhongyu1,2※, Charles Chen3, C. L. Butts4

        (1.110866,;2.224005,; 3.36849,;4.31742,)

        Peanut is a very important crop forfood and edible oil in the world. China is the largest peanut producer in total annual production accounted for about 40.26% and the second-largest in peanut planting area accounted for about 16.68% in the world. China, India and Nigeria, United States, Argentina and Brazil all are major important peanut exporters in the world. In the United States, the peanut area planted only accounted for about 2.46%, but total annual peanut production accounted for about 6.11% and export peanut accounted for 16.03% in 2016, which make the United States become a leading country of peanut production and exportation nation in the word. Based on comprehensively analysis, the main reasons why a country becomes strongest peanut production nation is that high level harvest mechanization plays an important role for peanut production. Harvesting is a key part in peanut production, it accounts for more than 50 percent labor employment of the whole process. However, in the USA, the application of peanut harvest mechanization was implemented in 1950’s that dramatically changed peanut harvesting practices. The peanut harvest mechanization mode has two stages in USA. Two pieces of equipment developed in the late 1940’s contributed to the major changes in harvesting practices in the USA, those include a peanut shaker-windrower and peanut combine. A peanut shaker-windrower was further advanced to Digger-Shaker-Inverter in the early 1970’s, which can turn the plants upside down and place two rows together in a windrow to cure. The second piece of equipment is a peanut combine that picks up the peanuts plants from the windrow after they are dried to a safe moisture level, picks off the pods, and deposits the cleaned pods into bulk tanks. After combining, the peanuts are placed in a curing facility where low humidity air is forced through the peanuts to evaporate the excess moisture. With the advances of peanut harvest mechanization technology, the United States has been leading its peanut production with high yield, high quality, high efficiency and more international market competitive advantages. Nevertheless, the initial harvest machinery in the United States ran into problem of dense, heavy peanut foliage that reduces separation efficiency for combine. With blades added into converter for coultering or vine clipping and the varieties with reducing peanut foliage through breeding effort, the current harvest machinery is well adopted by peanut growers in the USA. However, compared to the USA, the adaptation rate of peanut harvest machinery in China is extremely low and the advance of peanut harvest machinery is far behind what we expected. In this paper, by systematic analysis on large number of literatures and documents, we reviewed the developing history of peanut harvest machinery in the USA and summarized the strategies that integrated machinery advantage into production practices through agronomic cultivation and breeding. The successful development experience of peanut harvest machinery in the USA will serve as a guideline for developing adoptable China’s peanut harvest machines that are suitable for different cultivation practices, different peanut plants of botanical types, and different growing conditions such as soil types, growing seasons, and scales of peanut field.

        agricultural mechinery; mechanization; harvester; peanut; combine; the United States;evolution process;enlightenment

        10.11975/j.issn.1002-6819.2017.12.001

        S225.7+3

        A

        1002-6819(2017)-12-0001-9

        2017-04-25

        2017-06-07

        國(guó)家自然科學(xué)基金項(xiàng)目(51575367);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0702100);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金項(xiàng)目(20122103110009)

        高連興,男,漢族,遼寧興城人,教授,博士生導(dǎo)師,主要從事農(nóng)產(chǎn)品收獲與加工機(jī)械研究。沈陽沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,110866。 Email:lianxing_gao@126.com

        陳中玉,男,漢族,遼寧盤錦人,講師,主要從事農(nóng)產(chǎn)品收獲與加工機(jī)械研究。鹽城鹽城工業(yè)職業(yè)技術(shù)學(xué)院汽車工程學(xué)院,224005。 Email:chenzhongyu_1981@126.com

        高連興,陳中玉,Charles Chen,C. L. Butts.美國(guó)花生收獲機(jī)械化技術(shù)衍變歷程及對(duì)中國(guó)的啟示[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):1-9. doi:10.11975/j.issn.1002-6819.2017.12.001 http://www.tcsae.org

        Gao Lianxing, Chen Zhongyu, Charles Chen, C. L Butts. Development course of peanut harvest mechanization technology of the United States and enlightenment to China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 1-9. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.001 http://www.tcsae.org

        猜你喜歡
        摘果莢果收獲機(jī)
        不同基因型箭筈豌豆裂莢特性研究
        種子(2023年8期)2023-11-15 10:42:20
        甘蔗收獲機(jī)提升機(jī)構(gòu)的運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)分析
        花生聯(lián)合收獲機(jī)摘果裝置的研究進(jìn)展
        紫云英莢果成熟度對(duì)落莢及種子產(chǎn)量的影響
        花生除雜(清選)分級(jí)機(jī)的設(shè)計(jì)與研究
        干濕兩用花生摘果機(jī)的研究與應(yīng)用
        拖拉機(jī)與玉米收獲機(jī)的保養(yǎng)與維修
        整稈式甘蔗收獲機(jī)斷尾機(jī)構(gòu)虛擬試驗(yàn)研究
        谷王聯(lián)合收獲機(jī)結(jié)構(gòu)特點(diǎn)及操作要求
        摘蘋果
        精品无码国产自产在线观看水浒传| 中字亚洲国产精品一区二区| 亚洲中文字幕精品久久久久久直播| 青青草成人原视频在线播放视频| 青青草国产在线视频自拍| 成人精品视频一区二区三区尤物| 国内少妇人妻丰满av| 白白视频在线免费观看| 久久精品亚洲精品国产区| 无码爆乳护士让我爽| 猫咪免费人成网站在线观看| 亚洲午夜无码视频在线播放| 亚洲一本二区偷拍精品| 国产aⅴ无码专区亚洲av| 亚洲国产精品久久久久秋霞影院| 久久99精品中文字幕在| 久久精品一区一区二区乱码| 大地资源高清在线视频播放 | 国产亚洲精久久久久久无码| 美女黄频视频免费国产大全| 国产高清人肉av在线一区二区| 日本成本人片免费网站| 四月婷婷丁香七月色综合高清国产裸聊在线| 少妇特殊按摩高潮惨叫无码| 国产三级在线观看免费| 99国产精品无码专区| 国产一区资源在线播放| 亚洲成aⅴ人片久青草影院| 亚洲精品夜夜夜| 日韩精品视频在线一二三| 日韩一区二区三区久久精品| 97精品超碰一区二区三区| 久久国产精品-国产精品| 无夜精品久久久久久| 久久色悠悠综合网亚洲| 亚洲美女自拍偷拍视频| 国产好大好硬好爽免费不卡| 国产成人无码A区在线观| 国产三级c片在线观看| 乱老年女人伦免费视频| 国产一在线精品一区在线观看|