亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化

        2017-10-14 14:56:22趙龍山吳發(fā)啟戴全厚
        關(guān)鍵詞:洼地耕作坡面

        趙龍山,侯 瑞,吳發(fā)啟,戴全厚

        ?

        不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化

        趙龍山1,2,侯 瑞1,吳發(fā)啟2,戴全厚1

        (1. 貴州大學(xué)林學(xué)院,貴陽(yáng) 550025;2. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100)

        洼地蓄水是坡耕地重要的水文要素,由于它與坡耕地產(chǎn)流、土壤入滲能力有關(guān),故也是坡面水土流失研究的重要對(duì)象之一。為了進(jìn)一步認(rèn)識(shí)坡耕地洼地蓄水作用,該研究通過(guò)人工模擬降雨試驗(yàn)方法,對(duì)3種常用農(nóng)業(yè)耕作措施(人工鋤耕、人工掏挖、等高耕作)條件下地表填洼量特征與變化進(jìn)行了深入研究,以平整坡面為對(duì)照措施。研究結(jié)果表明,實(shí)施農(nóng)業(yè)耕作措施的粗糙坡面平均填洼量較平整坡面提高4~13倍,洼地蓄水量依次為等高耕作>人工掏挖>人工鋤耕>平整坡面;坡度對(duì)填洼量具有重要影響,洼地蓄水量隨著坡度的變化可以用冪函數(shù)關(guān)系表達(dá)(2>0.70)。對(duì)于粗糙坡面,當(dāng)坡度從15°增大到25°過(guò)程中,洼地蓄水量逐漸趨于穩(wěn)定,受坡度的影響變小;在耕作坡面上,由于降雨侵蝕造成地表微地形變化,地表糙度減小,洼地蓄水量減小,地表填洼量變化可以通過(guò)地表糙度變化進(jìn)行計(jì)算。

        土壤水分;侵蝕;降水;地表糙度;模擬降雨

        0 引 言

        地表填洼量是指地表相對(duì)低洼處蓄存的水量,用地表洼地蓄水量表示(surface depression storage, SDS),由于它與坡耕地產(chǎn)流產(chǎn)沙、土壤入滲能力有關(guān),故也是坡面水土流失研究的重要對(duì)象[1]。在水文學(xué)中,地表填洼量還是模擬坡面產(chǎn)流與退水過(guò)程的一個(gè)重要因子[2-3]。近年來(lái),隨著三維激光掃描技術(shù)在土壤侵蝕研究領(lǐng)域的廣泛應(yīng)用,針對(duì)填洼量及其相關(guān)內(nèi)容的研究逐漸增多[4-5],為坡面土壤侵蝕與產(chǎn)匯流理論的發(fā)展奠定了科學(xué)依據(jù)。

        在坡耕地上,由于耕作活動(dòng)的影響,地表土壤呈現(xiàn)一定的高低起伏,使地表形成許多大小不同的洼地。對(duì)于不同的農(nóng)業(yè)耕作措施,洼地的大小與空間分布特征具有一定差異[6]。在降雨產(chǎn)流過(guò)程中,洼地具有滯蓄徑流和沉積泥沙的作用,從而降低水土流失的發(fā)生[7-8]。大量的研究表明[9-11],在不同的產(chǎn)流階段,洼地作用不同,在降雨產(chǎn)流初期,洼地以蓄水作用為主,導(dǎo)致坡面產(chǎn)流延緩,增加降雨入滲的時(shí)間和潛在入滲量。Guzha[12]研究表明,在有洼地的坡面,土壤入滲率顯著高于平整坡面,且地表填洼量越大時(shí),對(duì)應(yīng)土壤的含水量也越大;在坡面產(chǎn)流后,徑流搬運(yùn)的部分泥沙在洼地沉積,洼地起到攔截泥沙的作用,進(jìn)而減小土壤流失量。同時(shí),在坡面產(chǎn)流過(guò)程中,對(duì)不同坡位上或不同大小的洼地,蓄水時(shí)間長(zhǎng)短不同,導(dǎo)致產(chǎn)流曲線呈現(xiàn)階梯式上升特征,因此洼地對(duì)產(chǎn)流量的影響還與洼地空間特征有關(guān)[13]。當(dāng)坡面產(chǎn)流達(dá)到穩(wěn)定后,地表填洼量對(duì)徑流特征的影響不明顯[14]。Darboux等[15-16]研究表明,地表填洼量是逐漸蓄滿的過(guò)程,它可以改變徑流方向,是一個(gè)重要的徑流模擬特征參數(shù)。

        以上分析表明,地表填洼量是研究地表產(chǎn)流與匯流過(guò)程的重要特征量。但是,在降雨侵蝕作用下,地表填洼量并不是固定不變,而是隨著地表微地形的變化而變化,而這種變化目前還不清楚。鑒于此,本研究以坡耕地采用的人工鋤耕、人工掏挖、等高耕作等土地管理措施為研究對(duì)象,通過(guò)人工模擬降雨試驗(yàn)的方法,對(duì)坡度、降雨侵蝕作用下地表填洼量特征進(jìn)行定量研究,以期為坡耕地水土流失過(guò)程與機(jī)理奠定科學(xué)基礎(chǔ)。

        1 材料與方法

        1.1 研究方法

        本研究采用室內(nèi)人工模擬降雨的試驗(yàn)方法。降雨設(shè)備用中國(guó)科學(xué)院水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室研制的側(cè)噴式模擬降雨系統(tǒng),降雨高度15 m,降雨均勻度大于80%,單個(gè)試驗(yàn)區(qū)有效降雨面積約36 m2。侵蝕槽規(guī)格2.0 m′1.0 m′0.5 m(長(zhǎng)′寬′深),侵蝕槽坡度可在0~40°范圍內(nèi)任意調(diào)節(jié)。

        試驗(yàn)土壤取自坡耕地表層土(0~20 cm),經(jīng)測(cè)定,土壤顆粒粒徑>0.05 mm占比2.82%,粒徑在0.01~0.05mm占比41.13%,粒徑<0.01 mm占比56.05%。

        土壤自然風(fēng)干后(土壤含水率控制在10%左右),先過(guò)10 mm篩,然后將土壤分層裝入侵蝕槽,槽內(nèi)土壤深度為0.4 m。在填裝土壤過(guò)程中,采用體積質(zhì)量隨機(jī)實(shí)測(cè)法,將侵蝕槽內(nèi)土壤容重控制在1.3 g/cm3左右,以使土層均勻且體積質(zhì)量接近土壤自然剖面。侵蝕槽裝土完成后,先利用木塊將表土整平,并將侵蝕槽坡度調(diào)至試驗(yàn)坡度,然后按傳統(tǒng)的耕作措施在坡面上進(jìn)行耕作,以模擬不同地表?xiàng)l件或地表糙度[17]。耕作措施包括人工鋤耕、人工掏挖和等高耕作,其中:1)人工鋤耕:沿地表以傳統(tǒng)方式鋤耕,深度4~5 cm;2)人工掏挖:采用镢頭掏挖地表,深度5~8 cm,間距20~25 cm;3)等高耕作:在坡面上垂直于坡面方向進(jìn)行橫向犁耕,形成溝和壟,壟高7~10 cm,壟距為30 cm。另外,本研究用未實(shí)施耕作,土壤表面呈平整狀態(tài)的坡面作為對(duì)照措施(平整坡面)。以上措施耕作模擬聘請(qǐng)長(zhǎng)期從事相同耕作與農(nóng)業(yè)生產(chǎn)的農(nóng)民進(jìn)行操作,以保證模擬耕作更接近實(shí)際生產(chǎn)。

        耕作措施模擬完成后,立刻用10 mm/h降雨強(qiáng)度對(duì)侵蝕槽內(nèi)土壤進(jìn)行30 min預(yù)降雨,降雨后將侵蝕槽靜置24 h再開始正式降雨試驗(yàn),以恢復(fù)地表土壤粘結(jié)力,降低人為干擾。對(duì)每個(gè)侵蝕槽,在降雨試驗(yàn)開始前和降雨后,都需測(cè)量地表填洼量。

        試驗(yàn)設(shè)計(jì)5個(gè)試驗(yàn)坡度:5°,10°,15°,20°和25°。試驗(yàn)降雨強(qiáng)度90 mm/h,降雨歷時(shí)60 min。試驗(yàn)共使用4個(gè)侵蝕槽,分別標(biāo)記為C1,C2,C3和C4,其中C1,C2和C3用來(lái)模擬人工鋤耕、人工掏挖和等高耕作,C4為平整坡面。對(duì)每一個(gè)措施,均從最小坡度5°開始依次完成5個(gè)坡度的試驗(yàn)。每個(gè)坡度試驗(yàn)完成后,侵蝕槽內(nèi)土壤全部更換新土,準(zhǔn)備下一次試驗(yàn)。每個(gè)坡度重復(fù)3次,重復(fù)試驗(yàn)程序同上。

        運(yùn)用鏈條法測(cè)量不同耕作措施坡面的地表糙度,計(jì)算公式如下[18]:

        式中表示地表糙度,%;0和1分別表示鏈條的實(shí)際長(zhǎng)度和放置地面后鏈條的水平長(zhǎng)度,m。通過(guò)計(jì)算初始地表糙度(0)和雨后地表糙度(t)比值來(lái)表征降雨侵蝕作用下地表糙度變化。

        1.2 地表填洼量測(cè)量與分析

        本研究中,地表填洼量是指耕作后坡面洼地的最大蓄水量,其值通過(guò)在地表覆蓋塑料薄膜的方法進(jìn)行實(shí)測(cè)。主要是將農(nóng)用薄膜鋪在坡耕地表面以阻止水分入滲,從坡頂向坡面注水直至坡面全部凹陷處蓄滿水且從坡底集流口出水為止,記錄注水量與出水量,二者作差得最大蓄水量[19]。本研究將5個(gè)坡度下地表初始填洼量均值作為衡量耕作措施地表填洼量的數(shù)量指標(biāo)。

        地表填洼量變化分析公式如下:

        式中表示降雨侵蝕前后地表填洼量變化,%;DS表示雨后地表填洼量,mm;0表示初始地表填洼量,mm。若為正值,表示降雨侵蝕后地表實(shí)際填洼量較降雨前初始填洼量增加;反之,則表示減小。

        運(yùn)用最小二乘法原理對(duì)地表填洼量與地表糙度之間的關(guān)系進(jìn)行回歸分析,建立地表糙度與地表填洼量之間的函數(shù)關(guān)系。

        2 結(jié)果與分析

        2.1 不同耕作措施坡面地表填洼量特征

        不同耕作措施坡面地表填洼量特征結(jié)果見圖1。可以看出,與平整坡面相比,耕作措施顯著提高坡面地表填洼量。對(duì)不同耕作措施坡面,初始地表填洼量具有一定區(qū)別,但是,除在坡度為10°、15°和20°時(shí),等高耕作與人工鋤耕、人工掏挖之間有顯著差異外,其余坡度下差異不顯著??傮w上,在不考慮坡度影響下,等高耕作、人工掏挖和人工鋤耕坡面的平均填洼量分別為6.96、3.52和2.48 mm,是平整坡面填洼量的4~13倍。與平整坡面相比,耕作措施具有增加地表糙度的作用。鄭子成等[20]研究表明,在采取人工掏挖、等高耕作和人工鋤耕的坡面上地表糙度的大小與地表填洼量具有相似的趨勢(shì),即等高耕作>人工鋤耕>人工掏挖>平整坡面??梢?,在坡耕地上,耕作措施在增加地表糙度的同時(shí)顯著提高地表蓄水能力,這一特征為農(nóng)業(yè)耕作措施發(fā)揮水土保持作用提供了基本條件。

        注:不同小寫字母表示不同措施間差異顯著(P<0.05),相同字母表示差異不著性,下同。

        2.2 坡度對(duì)初始地表填洼量的影響

        對(duì)不同耕作措施坡面地表填洼量與坡度關(guān)系分析結(jié)果見圖2??梢钥闯?,坡度對(duì)地表填洼量影響較大,即隨著坡度增加,地表填洼量明顯減小。應(yīng)用最小二乘法對(duì)地表填洼量與坡度關(guān)系進(jìn)行分析發(fā)現(xiàn)地表填洼量隨坡度的減小特征可用冪函數(shù)表達(dá),即:

        =ab(2>0.78) (3)

        式中表示地表填洼量,mm;表示坡度,(°);和為回歸系數(shù)。對(duì)于不同的耕作措施,回歸系數(shù)相差較大,而冪指數(shù)較為接近,說(shuō)明坡度對(duì)不同耕作措施坡面地表填洼量的影響程度存在差異。初始地表填洼量越大,坡度的影響也越大。同時(shí),地表填洼量與坡度的冪函數(shù)關(guān)系也說(shuō)明坡度對(duì)地表填洼量的影響存在臨界坡度,當(dāng)坡度大于該臨界值后,坡度的影響減小,地表填洼量趨于穩(wěn)定值。對(duì)于平整坡面,當(dāng)坡度在10°~25°之間時(shí),平均填洼量在0.21~0.29 mm之間變化;對(duì)于人工鋤耕、人工掏挖和等高耕作等粗糙坡面,當(dāng)坡度從15°增大到25°過(guò)程中,平均填洼量趨于穩(wěn)定,隨坡度的變化減小。

        地表糙度是對(duì)耕作措施下坡面微地形特征進(jìn)行量化的指標(biāo),已有的研究表明地表糙度的大小與坡面水土流失具有一定關(guān)系[21]。在地表糙度與坡面產(chǎn)流產(chǎn)沙研究中,地表填洼量被認(rèn)為是影響產(chǎn)流產(chǎn)沙的一個(gè)重要抑制因子[22-23]。隨著地表糙度的增加,地表洼地蓄水能力逐漸增強(qiáng)[12,22],本研究也證實(shí)了這一觀點(diǎn)。同時(shí),我們也發(fā)現(xiàn)地表填洼量不僅與地表糙度有關(guān),還受坡度的影響,但是坡度對(duì)地表填洼量有一定的影響。在坡面水文過(guò)程模擬研究中,當(dāng)?shù)孛嫫露却笥谝欢〝?shù)值后,坡面蓄水能力不再受坡度影響,可以取定值。

        圖2 坡度對(duì)地表填洼量的影響

        2.3 降雨侵蝕對(duì)地表填洼量的影響

        對(duì)不同耕作措施坡面地表填洼量受降雨侵蝕的影響分析結(jié)果見圖3。可以看出,人工鋤耕、人工掏挖和等高耕作等粗糙坡面與平整坡面降雨侵蝕前后地表填洼量變化呈不同的變化特征。對(duì)于平整坡面,在連續(xù)降雨(降雨量90 mm)侵蝕作用后,5個(gè)坡度條件下雨后地表填洼量均較初始地表填洼量增大,增加量在30%以上;相反,對(duì)于等高耕作、人工掏挖和人工鋤耕坡面,地表填洼量均呈減小特征,最大減小量約60%。另外,對(duì)于粗糙坡面,除坡度為25°外,初始地表填洼量越大,相應(yīng)的地表填洼量減小量也越大。以上結(jié)果說(shuō)明降雨侵蝕作用對(duì)地表蓄水能力具有重要影響。

        統(tǒng)計(jì)分析表明,盡管在個(gè)別坡度下,不同耕作措施之間地表填洼量存在顯著差異,但是并無(wú)明顯規(guī)律。如,在坡度為5°和10°時(shí),人工掏挖和等高耕作之間并未顯著差異,但是在坡度為15°時(shí),又存在顯著差異。可見,對(duì)不同耕作措施坡面,坡度并未對(duì)地表填洼量變化產(chǎn)生顯著影響。

        對(duì)不同耕作措施地表糙度與地表填洼量變化關(guān)系進(jìn)行分析(圖4),可以看出,等高耕作、人工掏挖和人工鋤耕坡面雨后地表糙度(t)較初始地表糙度(0)減小。但是,在平整坡面上,t卻增大??梢?,地表填洼量的變化與地表糙度變化具有相似趨勢(shì),即對(duì)于地表糙度增加的平整坡面,地表填洼量呈增加趨勢(shì);相反,對(duì)地表糙度減小的粗糙坡面,地表填洼量呈減小的趨勢(shì)。究其原因,筆者認(rèn)為這與地表土壤侵蝕過(guò)程有關(guān)。對(duì)于粗糙坡面,受徑流和泥沙沉積影響,地表洼地逐漸被上坡來(lái)沙填平,同時(shí),侵蝕產(chǎn)流過(guò)程中形成的匯流網(wǎng)絡(luò)將分散的洼地逐漸連通,坡面排水性增強(qiáng),洼地的蓄水能力降低,導(dǎo)致地表填洼量減小[24-26];相反,對(duì)于平整坡面,侵蝕產(chǎn)流過(guò)程中坡面形成的魚鱗坑及匯流網(wǎng)絡(luò)反而增加了坡面的區(qū)域,導(dǎo)致地表填洼量呈增加的趨勢(shì)[27-28]。

        圖3 降雨后不同耕作措施坡面地表填洼量變化

        圖4 降雨后不同耕作措施坡面地表糙度變化

        為了進(jìn)一步闡明地表填洼量與地表糙度的關(guān)系,運(yùn)用最小二乘法原理對(duì)地表糙度變化與地表填洼量之間的關(guān)系進(jìn)行分析,二者存在如下數(shù)量關(guān)系:

        上式表明,降雨前后地表填洼量比值與地表糙度變化之間存在對(duì)數(shù)函數(shù)關(guān)系。

        根據(jù)公式(4),在獲得坡面某一時(shí)間段內(nèi)地表糙度變化,即可計(jì)算該時(shí)段后地表填洼量。為了驗(yàn)證這一關(guān)系的準(zhǔn)確性,用35組不同耕作措施坡面降雨資料(表1)對(duì)地表填洼量進(jìn)行模擬計(jì)算,并繪制地表填洼量預(yù)測(cè)值與實(shí)測(cè)值散點(diǎn)圖,結(jié)果見圖5。運(yùn)用最小二乘法原理回歸分析表明地表填洼量實(shí)測(cè)值與預(yù)測(cè)值之間存在顯著線性關(guān)系(<0.05),進(jìn)一步表明地表填洼量與地表糙度之間的數(shù)量關(guān)系,即通過(guò)降雨前后地表糙度比值可以計(jì)算地表填洼量。

        表1 降雨試驗(yàn)資料

        圖5 地表填洼量預(yù)測(cè)值與實(shí)測(cè)值準(zhǔn)確性分析

        3 結(jié) 論

        本研究通過(guò)人工模擬的試驗(yàn)方法,對(duì)不同耕作措施下坡耕地地表填洼量的特征與變化進(jìn)行了研究,得出如下結(jié)論:

        1)與無(wú)耕作措施的平整坡面相比,實(shí)施農(nóng)業(yè)耕作措施的粗糙坡面平均填洼量提高4~13倍,洼地蓄水量依次為等高耕作>人工掏挖>人工鋤耕>平整坡面。

        2)坡度對(duì)填洼量具有重要影響,隨著坡度的增加,洼地蓄水量呈冪函數(shù)規(guī)律逐漸減小。當(dāng)坡度大于15°后,粗糙坡面洼地蓄水量逐漸趨于穩(wěn)定,受坡度的影響變小。

        3)對(duì)不同耕作措施坡面,初始地表填洼量越大,在降雨侵蝕中地表填洼量變化也越大。但是,坡度對(duì)地表填洼量變化并未顯著影響。

        4)由于降雨侵蝕造成地表微地形變化,地表糙度減小,粗糙坡面洼地蓄水量減小,地表填洼量變化可以通過(guò)地表糙度變化進(jìn)行計(jì)算。

        [1] Planchon O, Esteves M, Silvera N, et al. Microrelief induced by tillage: Measurement and modelling of surface storage capacity[J]. Catena, 2001, 46(2/3): 141-157.

        [2] 芮孝芳. 產(chǎn)匯流理論[M]. 北京:水利電力出版社,1995.

        [3] 白清俊,劉亞相. 流域坡面綜合產(chǎn)流數(shù)學(xué)模型的研究[J]. 土壤侵蝕與水土保持學(xué)報(bào),1999,5(3):54-58. Bai Qingjun, Liu Yaxiang. Integrated model of runoff generation over valley slope surface[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(3): 54-58. (in Chinese with English abstract)

        [4] Chu Xuefeng, Yang Jun, Chi Yaping. Quantification of soil random roughness and surface depression storage: Methods, Applicability, and Limitations[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2012, 55(5): 1699-1710.

        [5] Martin Y, Valeo C, Tait M. Centimetre-scale digital representations of terrain and impacts on depression storage and runoff[J]. Catena, 2008, 75(2): 223-233.

        [6] 趙龍山,張青峰,宋向陽(yáng),等. 基于微尺度下DEM的黃土坡耕地地表坑洼特征研究[J]. 土壤學(xué)報(bào),2012,49(1):179-183. Zhao Longshan, Zhang Qingfeng, Song Xiangyang, et al. Study of characteristics of surface depressions in farmland on loess slope based on micro-DEM[J]. Acta Pedoloca Sinca, 2012, 49(1): 179-183. (in Chinese with English abstract)

        [7] Darboux F, Huang C H. Does soil surface roughness increase or decrease water and particle transfers?[J]. Soil Science Society of America Journal, 2005, 69(3): 748-756.

        [8] Zhao Longshan, Huang Chihua, Wu Faqi. Effect of microrelief on water erosion and their changes during rainfall[J]. Earth Surface Processes and Landforms, 2016, 41(5): 579-586.

        [9] Huang J K, Lee K T. Influences of spatially heterogeneous roughness on flow hydrographs[J]. Advances in Water Resources, 2009, 32(11): 1580-1587.

        [10] Antoine M, Chalon C, Darboux F, et al. Estimating changes in effective values of surface detention, depression storage and friction factor at the interrill scale, using a cheap and fast method to mold the soil surface micro-topography[J]. Catena, 2012, 91(12): 10-20.

        [11] Zhao Longshan, Wang Linhua, Liang Xinlan, et al. Soil surface roughness effects on infiltration process of a cultivated slopes on the Loess Plateau of China[J]. Water Resources Management, 2013, 27(14): 4759-4771.

        [12] Guzha A C. Effects of tillage on soil microrelief, surface depression storage and soil water storage[J]. Soil & Tillage Research, 2004, 76(2): 105-114.

        [13] Chu Xuefeng, Yang Jun, Chi Yaping, et al. Dynamic puddle delineation and modeling of puddle-to-puddle filling-spilling-mergingsplitting overland flow processes[J]. Water Resources Research, 2013, 49(6): 3825-3829.

        [14] Darboux F, Gascuel-Odoux C, Davy P. Effects of surface water storage by soil roughness on overland-flow generation[J]. Earth Surface Processes and Landforms, 2002, 27(1): 223-233.

        [15] Darboux F, Davy P, Gascuel-Odoux C. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments[J]. Catena, 2001, 46(2/3): 125-139.

        [16] Gómez J A, Darboux F, Nearing M A. Development and evolution of rill networks under simulated rainfall[J]. Water Resources Research, 2003, 39(6): 1148-1162.

        [17] 趙龍山,張青峰,梁心藍(lán),等. 基于GIS的坡耕地?cái)?shù)字高程模型的建立與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):317-322. Zhao Longshan, Zhang Qingfeng, Liang Xinlan, et al. Establishment and application of DEM for loess slope land based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 317-322. (in Chinese with English abstract)

        [18] Saleh A. Soil roughness measurement: Chain method[J]. Journal of Soil and Water Conservation, 1993, 48(6): 527-529.

        [19] 宋冰,趙龍山. 微地形條件下地表填洼量計(jì)算方法研究[J]. 楊凌職業(yè)技術(shù)學(xué)院學(xué)報(bào),2011,10(3):5-7. Song Bing, Zhao Longshan. Calculation of surface depression storage under micro-topography condition[J]. Journal of Yangling Vocational & Technical College, 2011, 10(3): 5-7. (in Chinese with English abstract)

        [20] 鄭子成,何淑勤,吳發(fā)啟. 降雨條件下耕作方式對(duì)地表糙度的濺蝕效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):103-108. Zheng Zicheng, He Shuqin, Wu Faqi. Splash erosion effects of tillage practices on soil surface roughness under different rainfall conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 103-108. (in Chinese with English abstract)

        [21] Zhao Longshan, Liang Xinlan, Wu Faqi. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China[J]. Journal of Arid Land, 2014, 6(4): 400-409.

        [22] Kamphorst E C, Jettten V, Guerif J, et al. Predicting depressional storage from soil surface roughness[J]. Soil Science Society of America Journal, 2000, 64(5): 1749-1758.

        [23] Helming K, R?mkens M J M, Prasad S N. Surface roughness related of runoff and soil loss: A flume study[J]. Soil Science Society of America Journal, 1998, 62(1/2): 243-250.

        [24] Gómez J A, Nearing M A. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment[J]. Catena, 59(3): 253-266.

        [25] 鄭子成,吳發(fā)啟,何淑勤,等. 片蝕與細(xì)溝間侵蝕過(guò)程中地表微地形的變化[J]. 土壤學(xué)報(bào),2011,48(5):931-937. Zheng Zicheng, Wu Faqi, He Shuqin, et al. Chang in surface micro-relief during the course of sheet erosion and inter-rill erosion[J]. Acta Pedologica Sinca, 2011, 48(5): 931-937. (in Chinese with English abstract)

        [26] 鄭子成,吳發(fā)啟,何淑勤,等. 地表糙度對(duì)徑流和產(chǎn)沙影響的室內(nèi)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(10):19-24. Zheng Zicheng, Wu Faqi, He Shuqin, et al. Effects of soil surface roughness on runoff and sediment discharges with laboratory experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(10): 19-24. (in Chinese with English abstract)

        [27] Borselli L, Torri D. Soil roughness, slope and surface storage relationship for impervious areas[J]. Journal of Hydrology, 2010, 393(3/4): 389-400.

        [28] Moreno R G, Requejo A S, Altisent J M D, et al. Significance of soil erosion on soil surface roughness decay after tillage operations[J]. Soil & Tillage Research, 2011, 117(1): 49-54.

        [29] 趙龍山,宋向陽(yáng),梁心藍(lán),等. 黃土坡耕地耕作方式不同時(shí)微地形分布特征及水土保持效應(yīng)[J]. 中國(guó)水土保持科學(xué),2011,9(2):64-70. Zhao Longshan, Song Xiangyang, Liang Xinlan, et al. Micro-relief characteristics of loess sloping farmland under different tillage practices and its effects of soil and water conservation[J]. Science of Soil and Water Conservation, 2011, 9(2): 64-70. (in Chinese with English abstract)

        [30] 梁心藍(lán),趙龍山,吳佳,等. 地表糙度與徑流水力學(xué)參數(shù)響應(yīng)規(guī)律模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):123-131. Liang Xinlan, Zhao Longshan, Wu Jia, et al. Simulation of response law for soil surface roughness and hydraulics parameters of runoff [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 123-131. (in Chinese with English abstract)

        [31] 梁心藍(lán),趙龍山,吳佳,等. 模擬條件下不同耕作措施和雨強(qiáng)對(duì)地表糙度的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(24):4840-4849. Liang Xinlan, Zhao Longshan, Wu Jia, et al. Effects of different tillage treatments and rainfall intensities on soil surface roughness under simulated condition[J]. Scientia Agricultura Sinica, 2014, 47(24): 4840-4849. (in Chinese with English abstract)

        Characteristics and change of surface depression storage on sloping land with different tillage practices

        Zhao Longshan1,2, Hou Rui1, Wu Faqi2, Dai Quanhou1

        (1.550025,; 2.712100,)

        Surface depression storage, which is enhanced by various tillage practices, is an important hydrological element in the sloping land. Because surface depression storage is related to overland flow production and soil infiltration capacity, therefore, it is also one of the important factors to influence soil and water losses in the sloping land. The objective of this study was to measure the changes in surface depression storages and to analyze the characteristics of surface depression storage in the sloping land with 3 tillage practices, i.e. shallow hoeing, deep hoeing and contour ploughing. These are tillage practices commonly occurring on the Loess Plateau of China. A smooth surface served as the control measure. The tillage practices were simulated in soil box with a length of 2 m, a width of 1 m and a depth of 0.5 m. A total of 5 slope gradients were used for rainfall application in this study. Soil surface roughness of sloping land was measured and calculated using a chain method. The rainfall application was conducted using a simulator with 4 spray nozzles. The nozzles were mounted on the position of 15 m above the ground. The rainfall intensity was 90 mm/h, and the rainfall duration was 60 min. In general, surface depression storage is quantified by the maximum depressional storage, which can be calculated using various empirical equations containing roughness indices or be estimated using digital techniques. In this study, surface depression storage was measured using a field measurement method. The results showed that surface depression storages in the sloping land with tillage practices were more than 4 times that on the smooth surfaces. For the different tillage practices, the surface depression storage differed and the order of surface depression storages was contour ploughing > deep hoeing > shallow hoeing > smooth surface. The surface depression storage decreased with the increasing cumulative rainfall. For examples, the surface depression storage decreased by 41%, 28% and 15% for contour ploughing, deep hoeing and shallow hoeing treatments respectively after a successional rainfall event of 90 mm compared to the initial values before the rain. Moreover, the slope steepness of the sloping land also affected the amount of depressional storage. Regression analysis showed that the changes in surface depression storage with the slope steepness of the sloping land could be described by a power function (2> 0.70) for the shallow hoeing, deep hoeing, contour ploughing and smooth surface treatments. Once the slope steepness was more than 15°, the change rate of depression storage markedly decreased and then remained in a stable state, implying that slope had a critical role on the tilled surface. Beyond the critical slope steepness, the differences in change characteristics of depression storage between smooth surface and tilled surfaces declined fast. The changes in surface depression storage could be predicted by the ratio of soil surface roughness before and after rainfall. Overall, the surface depression is important characteristic in the sloping land. Tillage practices can increase the amount of water stored in surface depressions. However, both accumulated rainfall and slope gradient lead to the decrease of actual surface depression storage under some conditions. The results provide a mechanistic understanding on how tillage affects surface depression storage.

        soil moisture; erosion; precipitation; surface roughness; simulated rainfall

        10.11975/j.issn.1002-6819.2017.12.032

        S157.1

        A

        1002-6819(2017)-12-0249-06

        2016-08-17

        2017-05-25

        國(guó)家自然科學(xué)基金項(xiàng)目(41601293);貴州省科技計(jì)劃項(xiàng)目(黔科合基礎(chǔ)[2016]1027;黔科合[2016]支撐2835號(hào));貴州省教育廳青年科技人才成長(zhǎng)項(xiàng)目(黔教合KY字[2016]114)

        趙龍山,男(漢族),甘肅古浪人,副教授,博士,主要從事水土保持與生態(tài)環(huán)境建設(shè)方面研究。貴陽(yáng) 貴州大學(xué)林學(xué)院,550025。Email:longshanzh@163.com

        趙龍山,侯 瑞,吳發(fā)啟,戴全厚. 不同農(nóng)業(yè)耕作措施下坡耕地填洼量特征與變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):249-254. doi:10.11975/j.issn.1002-6819.2017.12.032 http://www.tcsae.org

        Zhao Longshan, Hou Rui, Wu Faqi, Dai Quanhou. Characteristics and change of surface depression storage on sloping land with different tillage practices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 249-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.032 http://www.tcsae.org

        猜你喜歡
        洼地耕作坡面
        洼地排澇體系存在的問(wèn)題及解決對(duì)策探討
        沖積扇油氣管道坡面侵蝕災(zāi)害因子分析
        非洲 直銷的投資洼地
        超音速流越過(guò)彎曲坡面的反問(wèn)題
        認(rèn)證,拯救“品質(zhì)洼地”
        耕作深度對(duì)紫色土坡地旋耕機(jī)耕作侵蝕的影響
        玉米保護(hù)性耕作的技術(shù)要領(lǐng)
        面板堆石壩墊層施工及坡面防護(hù)
        峰叢洼地農(nóng)作物面向?qū)ο笮畔⑻崛∫?guī)則集
        遙感信息(2015年3期)2015-12-13 07:26:54
        草地耕作技術(shù)在澳大利亞的應(yīng)用
        土壤與作物(2015年3期)2015-12-08 00:46:58
        无夜精品久久久久久| 无码人妻精品一区二区三区9厂| 久久久久人妻精品一区蜜桃 | 99er视频| 亚洲妇女av一区二区| 亚洲熟女一区二区三区250p| 国产女主播白浆在线观看| 女人被做到高潮免费视频| 国产一区二区三区免费精品| 婷婷五月综合丁香在线| 久久精品无码一区二区三区不| 日韩精品一区二区三区含羞含羞草| 国产人妻熟女呻吟在线观看| 国产乱码精品一区二区三区四川人 | 成av免费大片黄在线观看 | 青青青草国产熟女大香蕉| 区一区二区三区四视频在线观看 | 熟妇人妻av无码一区二区三区| 丁香六月久久| 国内偷拍精品一区二区| 亚洲夜夜性无码| 亚洲欧洲精品成人久久曰影片| 天堂AV无码AV毛片毛| av在线男人的免费天堂| 国产精品一区二区三区专区| 中文日韩亚洲欧美制服| 亚洲 日韩 在线精品| 中国黄色偷拍视频二区| 超碰人人超碰人人| 欧美疯狂做受xxxxx高潮| 蜜桃av无码免费看永久| 一区二区国产视频在线| 激情内射亚洲一区二区三区| 国产色综合天天综合网| 亚洲无码激情视频在线观看| 亚洲国产天堂久久综合网| 免费大黄网站| 久久久久久久妓女精品免费影院| 日本在线无乱码中文字幕| 丰满人妻猛进入中文字幕| 午夜福利院电影|