宋 偉,倪 龍,姚 楊
(1. 北方工業(yè)大學土木工程學院,北京 100144;2. 哈爾濱工業(yè)大學市政環(huán)境工程學院,哈爾濱 150090)
熱源井抽灌同井連續(xù)取/放熱特性試驗
宋 偉1,2,倪 龍2※,姚 楊2
(1. 北方工業(yè)大學土木工程學院,北京 100144;2. 哈爾濱工業(yè)大學市政環(huán)境工程學院,哈爾濱 150090)
針對抽灌同井連續(xù)運行特性的研究不足,利用單井循環(huán)地下?lián)Q熱系統(tǒng)砂箱試驗臺,以沈陽和上海2地采暖期和空調期的時間尺度為依據(jù),分別開展了連續(xù)取熱和連續(xù)放熱2種運行模式下抽灌同井運行特性的試驗研究。結果表明,抽灌同井在該試驗條件下對取熱工況更加敏感,取熱比放熱更為困難。在連續(xù)取熱工況下,含水層在受到外界初次干擾的影響更為明顯,第2個運行周期的累計取熱量降幅為6個運行周期累計取熱量降幅的57.1%。在熱/冷負荷占優(yōu)的地區(qū),應根據(jù)建筑負荷采取輔助手段及時對含水層進行熱量/冷量補給,保證熱泵機組高效運行。
井;地下水;水源熱泵系統(tǒng);抽灌同井;砂箱試驗;含水層;連續(xù)運行
抽灌同井作為單井循環(huán)地下?lián)Q熱系統(tǒng)的一種熱源井形式,最早于1992年應用在丹麥技術大學的一次足尺寸的試驗研究中[1]。由于課題負責人的變故,該項研究未能繼續(xù)深入,很長時間沒有相關的研究報道。張遠東對抽灌同井進行了相關模擬研究,其中包括地下水的參數(shù)、井的結構參數(shù)、抽水量等因素對含水層的溫度影響,但該模型并未得到試驗驗證[2]。倪龍等對抽灌同井進行了較深入的研究,包括季節(jié)儲能特性的分析[3],含水層參數(shù)對抽灌同井的影響[4],地下水滲流理論研究[5],熱負荷對系統(tǒng)的影響[6],多層含水層中系統(tǒng)的特性[7],井參數(shù)對系統(tǒng)的影響[8],以及相關的模擬研究[9]。王玉林等[10-11]對抽灌同井地下水三維非穩(wěn)定流動的三維數(shù)學模型通過Laplace變換、分離變量法以及傅里葉延拓等方法得出了水頭變化的解析表達式。
相關的理論與試驗[12-14]對單井循環(huán)地下?lián)Q熱系統(tǒng)的特性進行了探索性的研究,數(shù)學模型優(yōu)化[15-19]與實際運行特性[20-24]所研究的熱源井類型主要針對抽灌同井的原型—循環(huán)單井。通過對熱源井的熱力特性分析[25-28],抽灌同井由于中間隔斷區(qū)的存在,回水幾乎完全進入含水層,使得熱源井的熱貫通量較低,在單井循環(huán)地下?lián)Q熱系統(tǒng)中具有明顯優(yōu)勢。鑒于其連續(xù)運行試驗研究的缺乏,本文選取抽灌同井作為研究對象,根據(jù)沈陽和上海2地采暖期和空調期的時間尺度,開展了連續(xù)取熱和連續(xù)放熱2種不同運行模式下抽灌同井運行特性的試驗研究。
1.1 砂箱試驗臺
在地下水運動特性的研究中,通常將含水層遠端邊界考慮成等壓、等溫邊界。所以在試驗過程中,保持砂箱的等壓、等溫的邊界條件是實現(xiàn)可信模擬的關鍵。文中試驗臺通過初始水箱、高位水箱和橡塑保溫板等來維持砂箱的等壓、等溫邊界條件,模擬含水層邊界;采用電加熱器、負荷水箱和分體空調機來制造抽回水溫差,模擬熱源井承擔的建筑冷/熱負荷。單井循環(huán)地下?lián)Q熱系統(tǒng)的熱源井與抽灌同井結構圖如圖1所示,砂箱試驗臺系統(tǒng)圖如圖2所示,砂箱試驗臺各部件參數(shù)如表1所示。
其中,砂箱箱體采用聚丙烯PPR板,砂箱外壁采用橡塑保溫,砂箱內壁四周加設不銹鋼絲網,砂箱內裝填洗滌干凈的粗砂,經篩分稱重,該規(guī)格粗砂中各類型砂子質量百分數(shù)分別為0.63%(Ф≤1 mm)、31.72%(1 mm<Ф<2 mm)、67.65%(Ф≥2 mm),Ф為砂子的粒徑。熱源井也采用聚丙烯PPR管開孔,在熱源井外壁纏繞一層不銹鋼濾網,100目,用于截留直徑在0.15 mm以上的砂粒。采用黃銅管模擬抽灌同井,其高度與含水層厚度相當,抽/回區(qū)間距為300 mm,抽水區(qū)和回水區(qū)開孔長度均為150 mm[29]。井的開孔區(qū)上下兩端各焊有直徑為70 mm的銅環(huán),并開槽加裝密封圈,模擬抽灌同井的中間隔斷區(qū)。
圖1 熱源井與抽灌同井結構圖Fig.1 Structure of thermal source well and pumping and recharging well
圖2 砂箱試驗臺系統(tǒng)圖示意圖Fig.2 Schematic diagram of sand tank experimental table system
表1 砂箱試驗臺各部件參數(shù)Table 1 Each component parameters of sand tank experiment
1.2 試驗方案
本文砂箱試驗臺幾何比例為1:100,根據(jù)相似理論,按照雷諾數(shù)相等推算,時間比例應為1:10 000,模擬全年8 760 h的試驗持續(xù)時間僅為53 min,因此冬季采暖期、夏季空調期和2個恢復期,每個運行工況的持續(xù)時間不到15 min。為了能夠更加清晰的觀察不同運行模式對抽灌同井的影響,增加累計取熱量和放熱量,經過前期試驗探索,適當延長系統(tǒng)運行時間,也能保證砂箱試驗臺遠端邊界不受影響。為此,將試驗持續(xù)時間增加1倍,近似取120 min。即將各工況時間比例放大到1:4 320,用120 min模擬實際工程中抽灌同井運行1 a。
對于給定的建筑負荷,含水層溫度的高低雖與初始地溫有很大的關系,但其溫度變化幅度與初始地溫關系不大,因此試驗過程中初始地溫保持不變。另外,本試驗臺提供的建筑負荷發(fā)生情況與實際抽灌同井系統(tǒng)有較大差別。在實際工程中,熱源井的負荷是為了滿足建筑的需要,與地區(qū)、天氣、建筑功能等有關,但基本與含水層初始地溫無關,且不具備重復性。然而本試驗臺中,負荷是通過砂箱中抽出的“地下水”與負荷水箱中的冷/熱水換熱產生的,與初始地溫關系較大。當負荷水箱中的冷/熱水溫度保持基本不變時,維持初始地溫不變,負荷的變化就不會很大,能夠創(chuàng)造近似的相同負荷,便于突出運行模式的影響。
本次試驗模擬抽灌同井的全年工況,負荷水箱溫度針對取熱工況和放熱工況分別設定為4和30 ℃,砂箱初始地溫設定為20 ℃,循環(huán)水泵流量設定為0.54 m3/h,砂箱滿水壓力為17.4 kPa。試驗設計時以沈陽和上海兩地采暖期和空調期時間分配為對象,分別進行連續(xù)取熱/放熱工況的試驗測試,每個試驗工況均分為6個周期,每個周期均為120 min,各工況的啟停時間按照各自地區(qū)采暖期、空調期和恢復期的相同時間比例確定,各工況的時間分配如表2所示,其中累計換熱量由下式計算
式中Tg為抽水溫度,℃;Tr為回水溫度,℃;t為時間,s;Q為熱源井的累計換熱量,kJ;Cw為水的容積比熱容,kJ/m3·℃;Qw,p為抽水流量,m3/s。
1.3 試驗步驟
試驗測試前,首先打開初始供水閥門A與初始回水閥門B,緩慢地自下而上充水,并經閥門B溢流進入初始水箱,該飽水過程一般約需24 h[30],充分排除砂箱中的氣泡。其次,調試試驗工況,關閉砂箱底部進水閥門A,打開閥門D,改由高位水箱供水,持續(xù)15 min,使砂箱中的“地下水”處于穩(wěn)定狀態(tài),溢水管始終保持有水流溢出,控制邊界水頭恒定。最后,打開抽灌同井的進出口閥門E和閥門F,開啟循環(huán)水泵,開始測試。
表2 沈陽和上海全年工況實際/模擬時間分配Table 2 Actual/simulation time distribution of annual operating condition in Shenyang and Shanghai
2.1 連續(xù)取熱工況
圖3給出了抽灌同井在連續(xù)取熱工況下6個周期抽水溫度的變化情況。該工況按照沈陽地區(qū)采暖期和空調期的時間分配進行試驗,每個周期冬季取熱時間為48.3 min,恢復期為71.7 min。從圖3中可以看出,6個周期的抽水溫度整體呈現(xiàn)下降趨勢。說明在模擬抽灌同井運行6 a的過程中,由于地下含水層自然恢復時所補充的熱量不足,導致抽灌同井的抽水溫度逐年降低。
圖3 連續(xù)取熱工況下的抽水溫度Fig.3 Temperature of outlet water in continuous heating condition
雖然各周期的抽水溫度呈逐年下降趨勢,但是在每個周期內,除第1個周期的抽水溫度一直下降外,其余運行周期的抽水溫度均先下降后略有上升。說明在第1個周期的試驗中,熱源井承擔的負荷較大,致使其抽水溫度逐漸下降;而在第2至第6個運行周期中,在系統(tǒng)運行平穩(wěn)后,其抽水溫度幾乎保持不變,說明在本周期內地下含水層所提供的熱量與當時所模擬的建筑負荷大小相當,并未導致抽水溫度一直下降。從而可以推斷,在此試驗條件不變的情況下繼續(xù)試驗,由于并沒有其他熱量對含水層進行補充,系統(tǒng)的抽水溫度還會繼續(xù)下降。
圖4給出了抽灌同井在連續(xù)取熱工況下6個周期的平均抽回水溫度的變化情況。從圖4中可以清晰的看出在6個測試周期內抽灌同井的平均抽回水溫度逐年下降。在模擬系統(tǒng)6 a的運行過程中,系統(tǒng)的平均抽水溫度從第1個周期的16.7 ℃逐漸降低到第6個周期的13.1 ℃,熱源井的平均抽水溫度降低了3.6 ℃,降低幅度達21.6%;系統(tǒng)的平均回水溫度從第1個周期的11.7 ℃逐漸降低到第6個周期的9.3 ℃,熱源井的平均回水溫度降低了2.4 ℃,降低幅度為20.5%。這說明抽灌同井在模擬熱負荷占優(yōu)地區(qū)的運行過程中,在自然恢復期內,地下含水層并不能恢復到最初狀態(tài)。平均抽水溫度的降低會影響熱泵機組的運行效率,所以在該地區(qū)需要特別注意這種抽水溫度逐年降低的情況,并采取輔助手段及時對地下含水層進行熱量補給,否則將導致整個熱泵系統(tǒng)無法正常運行。
圖4 連續(xù)取熱工況下的平均抽/回水溫度Fig.4 Mean temperature of outlet/inlet water in continuous heating condition
圖5 給出了抽灌同井在連續(xù)取熱工況下6個周期的累計取熱量的變化情況。從圖5中可以看出,在6個測試周期內抽灌同井的累計取熱量與平均抽水溫度一樣呈逐年下降趨勢。在模擬系統(tǒng)6 a的運行過程中,熱源井的累計取熱量從第1個周期的8 890.0 kJ逐漸降低到第6個周期的6 841.1 kJ,熱源井的累計取熱量降低了2 048.9 kJ,降低幅度高達23.0%。其中,第2個運行周期的累計取熱量為7 720.6 kJ,較第1個運行周期的累計取熱量降低了1 169.4 kJ,其降幅為6個運行周期累計取熱量降低幅度的57.1%,這也是第1個運行周期抽水溫度一直下降的原因,說明地下含水層在受到外界初次干擾的影響最為明顯。
圖5 連續(xù)取熱工況下的累計取熱量Fig.5 Accumulative heat absorption quantities in continuous heating condition
2.2 連續(xù)放熱工況
圖6給出了抽灌同井在連續(xù)放熱工況下6個周期抽水溫度的變化情況。該工況按照上海地區(qū)采暖期和空調期的時間分配進行試驗,夏季放熱時間為50 min,恢復期為70 min。從圖6中可以看出,6個周期的抽水溫度逐漸升高,說明在模擬抽灌同井運行6 a的過程中,由于地下含水層自然恢復時所補充的冷量不足,導致抽灌同井的抽水溫度逐年升高。從圖6中還可以看出,各個周期的抽水溫度不但呈逐年上升趨勢,在每個周期內,熱源井的抽水溫度也呈逐漸上升趨勢。說明在1個周期內,地下含水層所提供的冷量并不能滿足當時所模擬的建筑負荷的要求,從而導致抽水溫度急劇上升。與連續(xù)取熱工況類似,如果試驗條件不變試驗繼續(xù)進行,由于并沒有其他冷量對含水層進行補充,系統(tǒng)的抽水溫度還會繼續(xù)升高。
圖6 連續(xù)放熱工況下的抽水溫度Fig.6 Temperature of outlet water in continuous cooling condition
圖7 給出了抽灌同井在連續(xù)放熱工況下6個周期的平均抽回水溫度的變化情況。從圖7中可以清晰地看出在6個測試周期內,抽灌同井的平均抽回水溫度逐年升高。在模擬系統(tǒng)6 a的運行過程中,系統(tǒng)的平均抽水溫度從第1個周期的21.1 ℃逐漸升高到第6個周期的25.6 ℃,熱源井的平均抽水溫度升高了4.5 ℃,升高幅度達21.3%;系統(tǒng)的平均回水溫度從第1個周期的25.9 ℃逐漸升高到第6個周期的30.6 ℃,熱源井的平均回水溫度升高了4.7 ℃,升高幅度為18.1%。同連續(xù)取熱工況,抽灌同井在僅放熱運行過程中,靠地下含水層自然恢復也不能使其恢復至最初狀態(tài)。平均抽水溫度的升高同樣會影響熱泵機組的運行效率,所以在僅放熱運行時需要注意這種抽水溫度逐年升高的情況,并適當采取輔助手段及時對地下含水層進行冷量補給。
圖7 連續(xù)放熱工況下的平均抽/回水溫度Fig.7 Mean temperature of outlet/inlet water in continuous cooling condition
圖8 給出了抽灌同井在連續(xù)放熱工況下6個周期的累計放熱量的變化情況。從圖8中可以看出在6個測試周期內抽灌同井的累計放熱量呈逐年下降趨勢。在模擬系統(tǒng)6 a的運行過程中,系統(tǒng)的累計放熱量從第1個周期的9 923.2 kJ逐漸降低到第6個周期的9 324.9 kJ,熱源井的累計放熱量降低了598.3 kJ,降低幅度僅為6.0%,每個周期平均降幅1%。與該系統(tǒng)在沈陽地區(qū)運行模式中的6個周期累計取熱量降幅23.0%相比,地下含水層僅通過自然恢復期即能使自身得到較好的恢復??梢?,抽灌同井對取熱工況更加敏感,取熱比放熱更為困難。因此,在連續(xù)取熱工況條件下,應對含水層熱量的補充給予足夠的重視。
圖8 連續(xù)放熱工況下的累計放熱量Fig.8 Accumulative heat rejection quantities in continuous cooling condition
1)抽灌同井在模擬熱/冷負荷占優(yōu)的地區(qū)運行過程中,地下含水層在自然恢復期內均不能恢復到最初狀態(tài)。連續(xù)運行6個周期累計取熱量降幅23.0%,相比連續(xù)放熱工況,熱源井的累計放熱量降低幅度僅為6.0%,每個周期平均降幅1%。在該試驗條件下,該熱源井對取熱工況更加敏感,取熱比放熱更為困難。
2)在連續(xù)取熱/放熱工況中,系統(tǒng)運行6個周期的平均抽水溫度降低/升高的幅度分別為21.6%和21.3%。在連續(xù)取熱工況下,地下含水層在受到外界初次干擾的影響更為明顯。系統(tǒng)在第2個運行周期的累計取熱量降幅為六個運行周期累計取熱量降低幅度的57.1%。
3)在該試驗條件下,地下含水層所提供的熱量或冷量均不能滿足模擬建筑負荷的要求,并導致抽水溫度下降或急劇上升。在實際工程中,應根據(jù)建筑負荷采取輔助手段及時對地下含水層進行能量補給,保證熱泵機組高效運行。
[1] Sorensen S N, Reffstrup J. Prediction of long-term operational conditions for single-well groundwater heat pump plants[C]//The 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, USA, 1992.
[2] 張遠東. 單(多)井抽灌對淺部地溫場的影響研究[D]. 北京:中國科學院地質與地球物理研究所,2004. Zhang Yuandong. Thermal Impact of Energy Abstraction on Geo-Temperature Field of Shallow Groundwater Aquifers by Single Well, Double and Muti-Well Systems[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2004. (in Chinese with English abstract)
[3] 倪龍,姜益強,姚楊,等. 抽灌同井季節(jié)性儲能分析[J]. 哈爾濱工業(yè)大學學報,2010,42(8):1287-1291. Ni Long, Jiang Yiqiang, Yao Yang, et al. Analyses of seasonal thermal energy storage for a pumping & recharging well[J]. Journal of Harbin Institue of Technology, 2010, 42(8): 1287-1291. (in Chinese with English abstract)
[4] 倪龍,馬最良. 含水層參數(shù)對同井回灌地下水源熱泵的影響[J]. 天津大學學報,2006,39(2):229-243. Ni Long, Ma Zuiliang. Effect of aquifer parameters on groundwater heat pump with pumping and recharging in the same well[J]. Journal of Tianjin University, 2006, 39(2): 229-243. (in Chinese with English abstract)
[5] 倪龍,馬最良. 同井回灌地下水源熱泵地下水滲流理論研究[J]. 太陽能學報,2006,27(12):1219-1224. Ni Long, Ma Zuiliang. Study on the seepage theory for groundwater heat pump with pumping & recharge in the same well[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1219-1224. (in Chinese with English abstract)
[6] 倪龍,馬最良. 熱負荷對同井回灌地下水源熱泵的影響[J].暖通空調,2005,35(3):12-14. Ni Long, Ma Zuiliang. Effect of heating load on the groundwater source heat pump system with pumping and recharging in same well[J]. HV&AC, 2005, 35(3): 12-14. (in Chinese with English abstract)
[7] 倪龍,馬最良. 多層含水層中同井回灌地下水源熱泵特性分析[J]. 建筑熱能通風空調,2005,24(3):10-13. Ni Long, Ma Zuiliang. The analyses of characteristic on groundwater heat pump with pumping & recharging in the same well in multilayer aquifer[J]. Building Energy & Environment, 2005, 24(3): 10-13. (in Chinese with English abstract)
[8] 倪龍,馬最良. 井參數(shù)對同井回灌地下水源熱泵的影響[J].流體機械,2006,34(3):65-69. Ni Long, Ma Zuiliang. Effection of well parameters on groundwater heat pump with pumping & recharging in the same well[J]. Fluid Machinery, 2006, 34(3): 65-69. (in Chinese with English abstract)
[9] Ni Long, Li Haorong, Jiang Yiqiang, et al. A model of groundwater seepage and heat transfer for single-well ground source heat pump systems[J]. Applied Thermal Engineering, 2011, 31(14/15): 2622-2630.
[10] 王玉林. 承壓地下水開采井流模型及其滲流理論研究[D].杭州:浙江大學,2011. Wang Yulin. Studies on Models and Theories for Well Flow Due to Confined Water Exploitation[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)
[11] 王玉林,謝康和,李傳勛,等. 抽-灌同軸非完整井承壓層非穩(wěn)定流模型及解析解[J]. 水利學報,2012,43(1):60-67. Wang Yulin, Xie Kanghe, Li Chuanxun, et al. A mathematical model and its analytical solution for confined aquifer subjected to pumping and recharge implemented by a single partially penetrating well[J]. Journal of Hydraulic Engineering, 2012, 43(1): 60-67. (in Chinese with English abstract)
[12] 倪龍,姜益強,姚楊,等. 循環(huán)單井與含水層的原水交換[J].太陽能學報,2010,31(6):743-748. Ni Long, Jiang Yiqiang, Yao Yang, et al. Original groundwater exchange of a standing column well with aquifer[J]. Acta Energiae Solaris Sinica, 2010, 31(6): 743-748. (in Chinese with English abstract)
[13] Lee K S. Modeling on The cyclic operation of standing column wells under regional groundwater flow[J]. Journal of Hydrodynamics, 2011, 23(3): 295-301.
[14] Vasile M. Experimental investigation of the reliability of residential standing column heat pump systems without bleed in cold climates[J]. Applied Thermal Engineering, 2013, 52(1): 230-243.
[15] Bose J E, Ledbetter C W, Partin J R. Experimental results of a low-cost solar-assisted heat pump system using earth coil and Geo-Thermal Well Storage[C]//The 4th Annual Heat Pump Technology Conference, Stillwater, OKC, USA, 1979.
[16] Braud H, Klimkowski H, Oliver J. Earth source heat exchanger for heat pumps[J]. ASAE Transactions, 1983, 26: 1818-1822.
[17] Mei V C, Fisher S K. Vertical concentric tube ground-coupled heat exchangers[J]. ASHRAE Transactions, 1983, 89(2B): 391-406.
[18] Mikler V. A Theoretical and Experimental Study of The Energy Well Performance[D]. Master thesis, Pennsylvania State University, 1993.
[19] Yuill G K, Mikler V. Analysis of the effect of induced groundwater flow on heat transfer from a vertical open-hole concentric-tube thermal well[J]. Ashrae Transactions, 1995, 101(1): 173-185.
[20] Orio C D. Geothermal heat pumps and standing column wells[J]. Geothermal Resources Council Transactions, 1994, 18: 375-379.
[21] Orio C D. Design, use & example of standing column wells[C]//IGSPHA Technical Meeting, Stillwater, OKC, USA, 1995.
[22] Orio C D.Geothermal heat pump applications industrial/commercial[J]. Energy Engineering, 1999, 96(3): 58-66.
[23] Orio C D, Johnson C N, Rees S J, et al. A Survey of standing column well installations in North America[J]. Ashrae Transactions, 2005, 111(2): 109-121.
[24] Orio C D, Johnson C N, Poor K D. Geothermal standing column wells: Ten years in a new England school[J]. Ashrae Transactions, 2006, 112(2): 57-64.
[25] 宋偉,倪龍,姚楊. 單井循環(huán)系統(tǒng)在不同初始地溫下的特性[J]. 哈爾濱工程大學學報,2014,35(3):342-346. Song Wei, Ni Long, Yao Yang. Characteristics of single well systems in different initial aquifer temperatures[J]. Journal of Harbin Engineering University. 2014, 35(3): 342-346. (in Chinese with English abstract)
[26] 宋偉,倪龍,姚楊. 不同抽回間距的單井循環(huán)地下水源熱泵系統(tǒng)試驗[J]. 農業(yè)工程學報,2014,30(2):205-211. Song Wei, Ni Long, Yao Yang. Experiment on single well groundwater heat pump systems in different distances between pumping and injection screens[J]. Transactions ofthe Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 205-211. (in Chinese with English abstract)
[27] 宋偉,倪龍,姚楊. 單井循環(huán)地下水源熱泵換熱特性CFD模擬與驗證[J]. 農業(yè)工程學報,2015,31(24):201-206. Song Wei, Ni Long, Yao Yang. CFD Simulation and experiment of heat exchanger characteristic for single well cycling underground heat pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 201-206. (in Chinese with English abstract)
[28] 宋偉,倪龍,姚楊. 單井循環(huán)地下水源熱泵熱源井排放實驗[J]. 太陽能學報,2016,37(11):2843-2848. Song Wei, Ni Long, Yao Yang. Thermal well bleed experiment for single well cycling groundwater heat pump[J]. Acta Energiae Solaris Sinica, 2016, 37(11): 2843-2848. (in Chinese with English abstract)
[29] 倪龍,宋偉,唐明宇,等. 單井循環(huán)地下?lián)Q熱系統(tǒng)初步試驗研究[J]. 建筑科學,2012,28(增刊2):195-197. Ni Long, Song Wei, Tang Mingyu, et al. Preliminary experimental study on single well cycling ground heat exchanger system[J]. Building Science. 2012, 28(Supp.2): 195-197. (in Chinese with English abstract)
[30] 陳崇希,萬軍偉,詹紅兵,等. “滲流-管流耦合模型”的物理模擬及其數(shù)值模擬[J]. 水文地質工程地質,2004(1):1-8. Chen Chongxi, Wan Junwei, Zhan Hongbin, et al. Physical and numerical simulation of seepage-pipe coupling model[J]. Hydrogeology & Engineering Geology. 2004(1): 1-8. (in Chinese with English abstract)
Experiment on characteristics of continuous heat absorption/release for pumping and recharging in same thermal well
Song Wei1,2, Ni Long2※, Yao Yang2
(1. School of Civil Engineering, North China University of Technology, Beijing 100144, China; 2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)
Groundwater heat pump system is an ideal approach to heat and cool the building due to its attractive advantages. When using groundwater as a primary energy source in combination with heat pump, the groundwater is pumped from the pumping area, heated/cooled in the heat exchanger of the heat pump, and then reinjected into the irrigation area. Single well groundwater heat pump (SWGWHP) is a new member of groundwater heat pump, which has become increasingly popular for using because of the economic advantages. In general, SWGWHP includes standing column well (SCW), pumping & recharging well (PRW), and forced external circulation standing column well (FECSCW). Their pumping and injection pipes are placed in a same well, the low part of which is pumping water and the top part recharging water. The SCW needs to drill hole in the bedrock directly, and then most of the water circulates in the well bore and the heat exchange takes place in the well wall, while small part of water goes out of the borehole and exchanges the heat with aquifer raw water. There are some clapboards in PRW that make the thermal well divided into 3 parts, i.e. injection zone (in the top part), seal zone (in the middle part), and production zone (in the low part). The FECSCW is similar to PRW. The difference between them is that the diameter of borehole in FECSCW is larger than the one in PRW. Moreover, the gap of borehole in FECSCW is filled with sorted gravel. Through previous research on the thermal features of three kinds of thermal wells, PRW has obvious advantages in 3 kinds of SWGWHP. Because its middle partition area exists, the backwater is reinjected into the aquifer completely, while thermal transfixion occurs rarely. In view of less experimental research on continuous operation, this paper selects the PRW as the research object. According to the heating/cooling period in Shenyang and Shanghai, 2 different modes of continuous operation in PRW have been carried out using a physical simulation experimental sandbox of SWGWHP, which can accurately reflect the actual physical phenomena. In this experimental research, time of operating condition has been distributed by heating season, air-conditioning season, and recovery season, while 2 test conditions are continuous heating mode and continuous cooling mode. In the heat/cold load dominant area, the results show that the aquifer can’t be restored to its original state during the natural recovery period. In continuous heating conditions of 6 cycles, the decreasing amplitude of accumulative heat absorption quantities of 6 cycles reaches 23.0%. Compared to the cooling condition, the decreasing amplitude of accumulative heat rejection quantities in 6 cycles is only 6.0%. These data show that the PRW is more sensitive in heating mode, while the heat absorption is more difficult than heat rejection. Additionally, in continuous heating condition, the aquifer is more obvious in the initial disturbance. The reduced amplitude of cumulative heat in the second operating cycle is 57.1% of all reduced amount in 6 cycles. Thus, in the heat/cold load dominant area, it is necessary to carry on the energy recharge to the aquifer in time according to the building load, in order to ensure the system in a long-term reliable operation.
wells; groundwater; heat pump systems; pumping and recharging well; experimental sandbox; aquifer; continuous operation
10.11975/j.issn.1002-6819.2017.11.032
TK529
A
1002-6819(2017)-11-0248-06
宋 偉,倪 龍,姚 楊. 熱源井抽灌同井連續(xù)取/放熱特性試驗[J]. 農業(yè)工程學報,2017,33(11):248-253.
10.11975/j.issn.1002-6819.2017.11.032 http://www.tcsae.org
Song Wei, Ni Long, Yao Yang. Experiment on characteristics of continuous heat absorption/release for pumping and recharging in same thermal well[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 248-253. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.032 http://www.tcsae.org
2017-01-03
2017-02-27
國家自然科學基金資助項目(41002085, 41602278);中國博士后科學基金資助項目(2016M601129);供熱供燃氣通風及空調工程北京市重點實驗室研究基金資助課題;北方工業(yè)大學青年拔尖人才培育計劃資助項目(XN018032)
宋 偉,男,講師,博士,主要從事淺層地熱能的開發(fā)與利用。北京 北方工業(yè)大學土木工程學院,100144。Email:stillwater2013@163.com※通信作者:倪 龍,男,副教授,博士生導師,主要從事熱泵空調的應用研究。哈爾濱 哈爾濱工業(yè)大學市政環(huán)境工程學院,150090。
Email:nilonggn@163.com