亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        換熱設(shè)備螺旋和直細(xì)通道內(nèi)扇形凹穴對流體流動和傳熱的影響

        2017-07-12 18:45:38馮振飛林清宇劉鵬輝胡華宇黃祖強(qiáng)
        農(nóng)業(yè)工程學(xué)報 2017年11期
        關(guān)鍵詞:穴區(qū)迪恩摩阻

        馮振飛,朱 禮,林清宇,2,李 歡,劉鵬輝,胡華宇,楊 梅,黃祖強(qiáng)※

        (1. 廣西大學(xué)化學(xué)化工學(xué)院,南寧,530004; 2. 廣西大學(xué)廣西石化資源加工及過程強(qiáng)化技術(shù)重點(diǎn)實(shí)驗(yàn)室,南寧,530004;3. 華南理工大學(xué)機(jī)械與汽車工程學(xué)院,廣州,510641)

        換熱設(shè)備螺旋和直細(xì)通道內(nèi)扇形凹穴對流體流動和傳熱的影響

        馮振飛1,2,3,朱 禮1,林清宇1,2,李 歡1,劉鵬輝1,胡華宇1,楊 梅1,黃祖強(qiáng)1※

        (1. 廣西大學(xué)化學(xué)化工學(xué)院,南寧,530004; 2. 廣西大學(xué)廣西石化資源加工及過程強(qiáng)化技術(shù)重點(diǎn)實(shí)驗(yàn)室,南寧,530004;3. 華南理工大學(xué)機(jī)械與汽車工程學(xué)院,廣州,510641)

        為探究結(jié)構(gòu)表面(如凹穴)對換熱設(shè)備螺旋和直細(xì)通道內(nèi)流體流動和傳熱影響的差異,在這2種通道的兩側(cè)面加入扇形凹穴,并采用數(shù)值方法研究其在不同雷諾數(shù)下流動、傳熱、熵產(chǎn)以及綜合性能的影響。結(jié)果表明:凹穴對螺旋細(xì)通道內(nèi)流體的流動影響明顯,摩阻系數(shù)最大提高23%,而對傳熱和綜合性能幾乎沒有影響;低雷諾數(shù)時凹穴對直細(xì)通道內(nèi)流體的流動、傳熱和綜合性能的影響不明顯,而高雷諾數(shù)時影響顯著,摩阻系數(shù)和努塞爾數(shù)最大分別提高50%和45%,最大傳熱強(qiáng)化因子達(dá)1.27;凹穴可減少螺旋和直細(xì)通道內(nèi)流體流動和傳熱過程的熵產(chǎn),但在高雷諾數(shù)時才比較明顯地減少,且對直細(xì)通道的影響大于螺旋細(xì)通道,熵產(chǎn)增大數(shù)的最小值分別為0.34和0.73。研究結(jié)果可為微細(xì)通道換熱設(shè)備的性能改善提供參考。

        傳熱;換熱設(shè)備;流體;細(xì)通道;凹穴;熵產(chǎn)率;數(shù)值模擬

        0 引 言

        換熱設(shè)備廣泛應(yīng)用于化工、能源、農(nóng)業(yè)和航空航天等工業(yè)領(lǐng)域。它們進(jìn)行熱量交換時通常采用流體作為熱量交換的中間媒介,因此換熱設(shè)備里往往設(shè)有用于流體流動的通道。直通道和螺旋通道是這些設(shè)備里比較常用的2種通道,兩者相比最顯著的區(qū)別是流體在后者內(nèi)流動時會在離心力作用下形成二次流,進(jìn)而提高傳熱性能,但是流阻增加[1]。此外,螺旋通道結(jié)構(gòu)緊湊、單位體積的換熱面積大,因此廣泛應(yīng)用于夾套類反應(yīng)設(shè)備。然而,隨著工業(yè)技術(shù)和微型化技術(shù)的迅速發(fā)展,一些工程領(lǐng)域的先進(jìn)設(shè)備與器件的體積在不斷縮小,熱負(fù)荷也在不斷提高,致使常規(guī)尺度通道的換熱設(shè)備已無法滿足這些設(shè)備與器件的換熱需求。

        眾所周知,通道的換熱系數(shù)與其直徑成反比,通道直徑越小,傳熱系數(shù)就越高[2]。因此,使用微細(xì)通道的換熱設(shè)備可達(dá)到很高的傳熱系數(shù)。此外,這種設(shè)備還擁有結(jié)構(gòu)緊湊、質(zhì)量輕和工質(zhì)充注量少等優(yōu)點(diǎn)[3-6]。這些優(yōu)點(diǎn)在一定程度上滿足現(xiàn)代高科技發(fā)展所需的換熱要求。然而,學(xué)者們并不滿足現(xiàn)狀,他們想進(jìn)一步強(qiáng)化微細(xì)通道換熱設(shè)備的傳熱性能,以滿足更苛刻的換熱條件。強(qiáng)化傳熱方法可分為主動式和被動式,由于后者不需要增加額外的能源(除泵功外),因此更受學(xué)者們的關(guān)注[7]。通過結(jié)構(gòu)表面(如增加凹穴、肋柱等)來增強(qiáng)流體的換熱就屬于此種方式。這種方式已有很多學(xué)者[8-12]應(yīng)用到直微細(xì)通道中進(jìn)行研究,結(jié)果表明其能進(jìn)一步地提高直微細(xì)通道的換熱性能和綜合性能。盡管這種方式目前在螺旋微細(xì)通道中的研究尚未報道,但是在常規(guī)尺度螺旋通道的研究[13-16]已證實(shí)可以有效提高傳熱性能。這是因?yàn)檫@些螺旋通道的結(jié)構(gòu)一方面能增加傳熱面積;另一方面能改變通道內(nèi)流場的分布,進(jìn)而改變速度場和溫度場的協(xié)同程度,從而影響強(qiáng)化傳熱性能。扇形凹穴等結(jié)構(gòu)表面亦能增加螺旋通道傳熱面積,然而由于其形狀各異,導(dǎo)致對通道內(nèi)流場分布的影響也存在差異,進(jìn)而影響各自的強(qiáng)化傳熱性能。由于尺度效應(yīng)的存在,使得微細(xì)螺旋通道和常規(guī)尺度螺旋通道內(nèi)流體的流動特性會有所差異。這也促使研究者想探究這種強(qiáng)化方式會對螺旋微細(xì)通道產(chǎn)生怎樣的強(qiáng)化傳熱影響,以及與直微細(xì)通道的強(qiáng)化傳熱影響有何差異。這對微細(xì)通道換熱設(shè)備性能的改善具有一定指導(dǎo)意義。然而到目前為止,有關(guān)這方面的研究鮮見報道。

        本課題組研發(fā)了一種機(jī)械活化固相反應(yīng)器,并對多糖高聚物(如淀粉、植物纖維、甘蔗渣、木薯酒糟等)固相反應(yīng)進(jìn)行相關(guān)研究,發(fā)現(xiàn)固相反應(yīng)體系溫度控制和均勻性要求較高。據(jù)此,本課題組研究了不同截面螺旋通道的換熱性能[1],及周向平行細(xì)通道夾套的換熱和流動性能[17-18],以便改進(jìn)固相反應(yīng)器的傳熱裝置,進(jìn)而提高產(chǎn)物質(zhì)量。為了進(jìn)一步改善固相反應(yīng)器的傳熱性能,本文基于前期研究的基礎(chǔ)上在螺旋和直細(xì)通道內(nèi)增加扇形凹穴結(jié)構(gòu)(簡稱凹穴),并采用數(shù)值模擬的方法研究凹穴對螺旋和直細(xì)通道內(nèi)流體流動和傳熱的影響。具體是根據(jù)熱力學(xué)第一、第二定律對比分析不同雷諾數(shù)下凹穴對螺旋和直細(xì)通道內(nèi)流體流動、傳熱、熵產(chǎn)以及綜合性能的影響,旨在深入剖析凹穴對此2種通道影響的差異。

        1 模型描述

        1.1 幾何模型

        本研究的凹穴螺旋細(xì)通道(helical mini-channel with cavities,HMCC)立體模型及幾何尺寸如圖1所示。螺旋通道曲率半徑(通道截面中心到螺旋中心線的距離)Rc=27.5 mm,螺距S=8 mm,則對應(yīng)的螺旋線長度L=172.97 mm;通道高H=3 mm,寬W=3 mm,則當(dāng)量直徑Dh=2WH/(W+H)=3 mm。凹穴沿螺旋線布置,尺寸及布置的情況見圖1c,共21對,每對間距相等。本研究還建立扇形凹穴型直細(xì)通道(straight mini-channel with cavities,SMCC)、光滑螺旋細(xì)通道(helical mini-channel,HMC)和光滑直細(xì)通道(straight mini-channel,SMC)模型,其通道的橫截面尺寸及長度(螺旋線長度)與HMCC模型一致。其中SMCC模型(見圖2)的扇形凹穴幾何結(jié)構(gòu)及布置與HMCC模型一致。

        圖1 凹穴螺旋細(xì)通道幾何結(jié)構(gòu)示意圖Fig.1 Schematic diagram of helical mini-channel geometry with cavities

        1.2 數(shù)值模型

        本研究的數(shù)值計算域如圖3所示,固體域的材質(zhì)為鋁,流體域?yàn)槿ルx子水。為消除入口效應(yīng)和出口回流現(xiàn)象,設(shè)置進(jìn)出口過渡段。

        圖2 扇形凹穴型直細(xì)通道(SMCC)立體模型示意圖Fig.2 Schematic diagram of 3D model for straight mini-channel with cavities (SMCC) channel

        圖3 計算域Fig.3 Computational domain

        假設(shè)本計算模型為三維穩(wěn)態(tài)不可壓縮層流模型;流體和固體的物性為常數(shù);數(shù)值計算時忽略輻射傳熱、體積力、表面力和黏性耗散的影響。因此流體域的連續(xù)性方程、動量方程和能量方程可分別簡化為

        固體域的能量方程為

        式(1)-(4)中,下標(biāo)f和s分別表示流體和固體。U為流體速度矢量,m/s;p為壓力,Pa;T為溫度,K;μ,ρ,cp分別為流體相應(yīng)溫度的黏度、密度和比熱,單位分別為Pa·s,kg/m3,J/(kg·K);λ為熱導(dǎo)率,W/(m·K)。

        通道進(jìn)口設(shè)為均勻速度進(jìn)口邊界條件,進(jìn)口溫度Tin=300 K,進(jìn)口速度uin=0.05~0.6 m/s,由式(5)計算得到的雷諾數(shù)Re=168~2017;通道出口采用壓力出口邊界條件,相對出口壓力為0 Pa;螺旋細(xì)通道(HMCC和HMC)的內(nèi)螺旋面,與直細(xì)通道(SMCC和SMC)的底面均設(shè)為恒熱流邊界條件,基于其加熱面積不一致且保證加熱量相同的情況下,螺旋細(xì)通道和直細(xì)通道的熱流密度qw分別設(shè)為1.145 98×105和1×105W/m2;固體和流體接觸面設(shè)為固液交界面邊界條件,且無速度滑移和無滲透;其余壁面均設(shè)為絕熱壁面邊界條件。

        式中Dh為細(xì)通道的當(dāng)量直徑,m;Dh=2WH/(W+H),其中W和H分別表示細(xì)通道的寬和高,m。

        上述提及的控制方程組(連續(xù)性方程、動量方程和能量方程)由CFX軟件求解,求解時收斂殘差設(shè)為10-6。求解前需對計算域進(jìn)行網(wǎng)格劃分,然后采用有限體積法離散控制方程組。鑒于計算域模型的復(fù)雜性,采用六面體和四面體混合的網(wǎng)格模式對計算域進(jìn)行劃分,并根據(jù)文獻(xiàn)[17]的方法對模型的網(wǎng)格獨(dú)立性進(jìn)行驗(yàn)證。經(jīng)驗(yàn)證后HMCC,HMC,SMCC和SMC通道模型的最終網(wǎng)格數(shù)分別為285萬、246萬、310萬和299萬。根據(jù)進(jìn)口速度的變化情況,4種規(guī)格的細(xì)通道模型均設(shè)置12個工況,每一個工況對應(yīng)一個算例,共48個算例。

        2 計算公式

        細(xì)通道的平均摩擦阻力系數(shù)(摩阻系數(shù))f為

        式中Δp為細(xì)通道段沿程的壓降,Pa;L為細(xì)通道段的長度(螺旋線長度),m。

        對于正在發(fā)展的層流,Shah等[19]發(fā)現(xiàn)矩形直通道的摩阻系數(shù)f可表達(dá)為

        式中Po為泊肅葉數(shù)。對于已充分發(fā)展的層流,泊肅葉數(shù)表達(dá)式為

        式中α為通道截面的寬高比,α小于或等于1。

        螺旋細(xì)通道的迪恩數(shù)(Dean number)De定義為

        對于螺旋通道內(nèi)充分發(fā)展的層流,Manlapaz和Churchill[20]提出摩阻系數(shù)的關(guān)聯(lián)式為

        式中m為系數(shù),取值與De有關(guān),當(dāng)De<20,20≤De≤40和De>40時,m分別取值為2,1和0;He為螺旋數(shù)(helical number),定義為

        式中Rc為螺旋通道曲率半徑(通道截面中心到螺旋中心線的距離),m;S為螺距,m。

        細(xì)通道的平均努塞爾數(shù)Nu定義為

        式中Aw為加熱面的面積,m2;Aif為固液接觸面的面積,m2;Tw為加熱面的平均溫度,K;Tout為細(xì)通道出口溫度,K。

        由能量守恒可得細(xì)通道進(jìn)出口的溫差為

        式中Ain為進(jìn)口的截面積,m2。

        3 結(jié)果與討論

        3.1 模型驗(yàn)證

        為檢驗(yàn)數(shù)值方法的準(zhǔn)確性和可靠性,本研究參照很多研究者[6-11,21-26]采用的方法來進(jìn)行檢驗(yàn)。此方法是將模型的數(shù)值結(jié)果與先前的文獻(xiàn)或理論公式的結(jié)果進(jìn)行對比。比如對于矩形直通道,文獻(xiàn)[8,25]將式(7)的計算結(jié)果與數(shù)值結(jié)果進(jìn)行對比來驗(yàn)證數(shù)值方法的有效性。需要指出的是式(7)中關(guān)鍵參數(shù)泊肅葉數(shù)Po(式(8)),其計算結(jié)果與文獻(xiàn)[27]的試驗(yàn)結(jié)果吻合良好,平均誤差1.9%。對于螺旋通道,文獻(xiàn)[28]將其試驗(yàn)結(jié)果與式(10)的計算結(jié)果對比發(fā)現(xiàn),兩者比較一致,平均誤差為6%。且式(10)也常被研究者[29-33]應(yīng)用于螺旋通道的熱力學(xué)分析。文獻(xiàn)[34]將等加熱量工況下通道進(jìn)出口溫差的試驗(yàn)結(jié)果與式(13)的計算結(jié)果進(jìn)行比較發(fā)現(xiàn),兩者吻合良好,平均誤差為2.0%。綜上表明,上述摩阻系數(shù)和通道進(jìn)出口溫差的理論公式是可靠的,進(jìn)一步而言,將光滑螺旋細(xì)通道(HMC)和直通道(SMC)的摩阻系數(shù)和進(jìn)出口溫差的模擬計算值與理論計算值進(jìn)行對比來驗(yàn)證本數(shù)值方法的有效性是可行的。圖4給出了HMC和SMC通道摩阻系數(shù)的模擬值與理論值對比的結(jié)果。計算SMC通道的摩阻系數(shù)時,考慮其流態(tài)為正在發(fā)展的層流,因此式(6)和式(7)的長度L應(yīng)包括進(jìn)出口過渡段的長度。

        圖4 光滑細(xì)通道摩阻系數(shù)模擬值與理論值的對比Fig.4 Comparison of simulation and theoretical data for friction factor in smooth mini-channels

        由圖4可見,在給定的雷諾數(shù)范圍內(nèi),HMC和SMC通道摩阻系數(shù)的模擬值與理論值吻合較好,最大相對誤差分別為17.6%和12.5%。圖5給出了HMC和SMC通道進(jìn)出口溫差的模擬值與理論值對比的結(jié)果。由圖5可見,在給定的雷諾數(shù)范圍內(nèi),HMC和SMC通道進(jìn)出口溫差的模擬值與理論值非常一致,最大相對誤差分別為0.07%和0.95%,這是因?yàn)閿?shù)值模擬時沒有熱損失的影響。綜上可見,本研究的數(shù)值方法能夠預(yù)測細(xì)通道內(nèi)流體的流動和傳熱性能。

        圖5 細(xì)通道進(jìn)出口溫差模擬值與理論值的對比Fig.5 Comparison of simulation and theoretical data for temperature difference between inlet and outlet in mini-channels

        3.2 流動特性分析

        由于流體黏性的作用,使得流體在通道內(nèi)流動時產(chǎn)生流動阻力。流動阻力的大小與通道的結(jié)構(gòu)有著密切的關(guān)系。因此新通道結(jié)構(gòu)的流動特性是考察其是否有應(yīng)用價值的一個重要指標(biāo)。圖6給出了4種結(jié)構(gòu)細(xì)通道摩阻系數(shù)隨雷諾數(shù)變化的關(guān)系。

        圖6 摩阻系數(shù)f與摩阻系數(shù)比值f/f0隨雷諾數(shù)Re的變化Fig.6 Variations of friction factor f and friction factor ratio f/f0with Reynolds number Re

        由圖6可見,在相同雷諾數(shù)下,HMCC和HMC通道的摩阻系數(shù)都大于SMCC和SMC通道,表明流體在螺旋細(xì)通道內(nèi)流動產(chǎn)生的阻力大于直細(xì)通道。這是由于流體在螺旋細(xì)通道內(nèi)流動時,受到離心力作用,使得流體由通道內(nèi)側(cè)向外側(cè)擠壓然后又經(jīng)上下兩側(cè)流回內(nèi)側(cè),形成了一對迪恩渦(Dean vortex),這必然引起流阻的增加。由圖6還可見,HMC、HMCC和SMC細(xì)通道摩阻系數(shù)均隨雷諾數(shù)增大而減小,有趨于定值之勢。而SMCC通道的摩阻系數(shù)卻隨雷諾數(shù)增大先減小后略增大。此外還發(fā)現(xiàn),在研究的雷諾數(shù)范圍內(nèi),HMCC通道摩阻系數(shù)幾乎都大于HMC通道。而SMCC通道的摩阻系數(shù)在低雷諾數(shù)時與SMC通道差異不明顯,在高雷諾數(shù)時大于SMC通道。這些均表明扇形凹穴對螺旋細(xì)通道和直細(xì)通道的流動特性影響存在明顯差異。

        為進(jìn)一步分析它們之間的差異,圖6也給出了凹穴螺旋細(xì)通道與光滑螺旋細(xì)通道及凹穴直細(xì)通道與光滑直細(xì)通道的摩阻系數(shù)比值f/f0隨雷諾數(shù)變化的關(guān)系。由圖6可見,在低雷諾數(shù)(Re≤1008)時,直細(xì)通道摩阻系數(shù)比值小于1,最小值為0.96,表明凹穴對直細(xì)通道流動特性影響很?。欢诟呃字Z數(shù)(Re>1008)時,摩阻系數(shù)比值隨著雷諾數(shù)增大急劇增大,最大達(dá)1.5,表明凹穴對直細(xì)通道流動特性影響很大,摩阻系數(shù)最大增加50%。究其原因,就是在凹穴處流通截面積突然擴(kuò)大,流速突然變小,低雷諾數(shù)時流體本身的動能不足以帶走凹穴區(qū)的流體,進(jìn)而容易形成滯流區(qū),相當(dāng)于流體“滑”過凹穴區(qū),也就是說流體流動時與固體接觸面變少,自然流阻也變小[21];高雷諾數(shù)時流體動能變大,易帶走凹穴區(qū)的流體,進(jìn)而在凹穴區(qū)形成二次流區(qū),加劇流體擾動,且流體流動時與固體接觸面變大,增大流阻。由圖6還可見,在研究的雷諾數(shù)范圍內(nèi),螺旋細(xì)通道的摩阻系數(shù)比值隨雷諾數(shù)增大逐漸增大,最大值達(dá)到1.23。表明凹穴對螺旋細(xì)通道流動特性影響隨著流速的增大變得更為顯著,摩阻系數(shù)最大增加23%。這是由于無論是在通道的等截面區(qū)還是在凹穴區(qū),流體均受到離心力作用,即均存在迪恩渦,這意味著凹穴區(qū)的流體會在迪恩渦的作用下被帶走,使得低雷諾數(shù)下也不易形成滯流區(qū)。此外,流體流經(jīng)凹穴處時迪恩渦結(jié)構(gòu)發(fā)生變化,加劇了流體擾動,增大了流阻,且這種擾動程度明顯與流速有關(guān)。因此螺旋細(xì)通道的摩阻系數(shù)比值隨雷諾數(shù)增大逐漸增大。

        3.3 傳熱特性分析

        圖7給出了4種結(jié)構(gòu)細(xì)通道努塞爾數(shù)隨雷諾數(shù)變化的關(guān)系。由3.2節(jié)分析可知,在螺旋細(xì)通道內(nèi)由于迪恩渦的存在使得其流阻大于直細(xì)通道。然而,由圖7可見,正因迪恩渦的存在使得螺旋細(xì)通道的努塞爾數(shù)高于直細(xì)通道,則前者的傳熱性能優(yōu)于后者。這是因?yàn)榈隙鳒u的存在一方面加劇流體的擾動,促使冷熱流體的混合;另一方面減薄流動邊界層和熱邊界層的厚度。這些均可強(qiáng)化螺旋細(xì)通道內(nèi)流體及其與固體之間的傳熱。由圖7還可見,對于螺旋細(xì)通道,在相同雷諾數(shù)下,HMCC細(xì)通道努塞爾數(shù)略大于HMC細(xì)通道,且這種差異隨雷諾數(shù)的增大逐漸變大。而對于直細(xì)通道,低雷諾數(shù)時,SMCC與SMC細(xì)通道的努塞爾數(shù)幾乎重合;高雷諾數(shù)時,SMCC細(xì)通道的努塞爾數(shù)明顯高于SMC細(xì)通道。由此可見,扇形凹穴對螺旋細(xì)通道和直細(xì)通道的傳熱特性影響同樣存在差異。

        圖7 努塞爾數(shù)Nu與努塞爾數(shù)比值Nu/Nu0隨雷諾數(shù)Re的變化Fig.7 Variations of Nusselt number Nu and Nusselt number ratio Nu/Nu0with Reynolds number Re

        由圖7可見,在整個雷諾數(shù)范圍內(nèi),螺旋細(xì)通道的努塞爾數(shù)比值都大于1,但最大值僅為1.06,表明凹穴對螺旋細(xì)通道傳熱性能的影響不明顯,傳熱效果最大僅提高6%。在凹穴螺旋細(xì)通道內(nèi),流體流經(jīng)凹穴區(qū)的過程中,由于流道截面積發(fā)生改變,使得流體受到離心力的作用也發(fā)生變化,以至于穩(wěn)定的迪恩渦結(jié)構(gòu)被破壞,然后再形成。在此過程中,原束縛在迪恩渦里的流體逃逸出來,加劇了冷熱流體在徑向的混合,進(jìn)而強(qiáng)化了傳熱[35]。此外在凹穴區(qū),流體的噴射和節(jié)流效應(yīng)、熱邊界層的破壞與再發(fā)展,都會提高傳熱性能。然而,這些強(qiáng)化傳熱效果持續(xù)性很短,因?yàn)榱黧w從凹穴區(qū)進(jìn)入到光滑通道段后,在離心力作用下很快又形成了穩(wěn)定的迪恩渦,致使部分流體被束縛在迪恩渦內(nèi),從而弱化了流體在徑向的混合和傳熱。因此,凹穴不能很大程度地提高螺旋細(xì)通道的傳熱性能。對于直細(xì)通道,在低雷諾數(shù)(Re<1 008)時,努塞爾數(shù)比值小于1,最小值為0.95,表明凹穴對直細(xì)通道傳熱特性影響很小;而在高雷諾數(shù)(Re≥1 008)時,比值隨著雷諾數(shù)增大急劇增大,最大達(dá)1.45,表明凹穴對直細(xì)通道傳熱特性影響很大,傳熱效果最大提高45%。由3.2節(jié)分析可知,低雷諾數(shù)時,凹穴區(qū)的流體滯流,相當(dāng)于形成傳熱死區(qū)。而在高雷諾數(shù)時,凹穴區(qū)形成漩渦,促使凹穴區(qū)的熱流體與主流區(qū)的冷流體混合,強(qiáng)化了傳熱。此外,由于直細(xì)通道光滑段無明顯改變流動行為的作用力(如離心力)存在,致使流體經(jīng)過凹穴區(qū)時的噴射和節(jié)流效應(yīng)、熱邊界層的破壞與再發(fā)展效果持續(xù)性更久。上述的這些強(qiáng)化傳熱效果都隨著雷諾數(shù)的增大得以加強(qiáng)。因此凹穴對直細(xì)通道的傳熱強(qiáng)化效果在高雷諾數(shù)時更為顯著。

        3.4 綜合性能分析

        由上述分析可知,凹穴對螺旋細(xì)通道不僅能強(qiáng)化傳熱,而且增加了流阻。在高雷諾數(shù)條件下,凹穴強(qiáng)化直細(xì)通道傳熱的同時,增大了流阻。為評價凹穴對細(xì)通道綜合性能的影響,引入傳熱強(qiáng)化因子(η),以權(quán)衡傳熱強(qiáng)化和流阻增加的關(guān)系。傳熱強(qiáng)化因子定義為在相同泵功條件下強(qiáng)化通道與光滑通道的傳熱系數(shù)之比。即此參數(shù)的定義式為

        式中下標(biāo)PP為泵功。當(dāng)η值大于1時,表明傳熱強(qiáng)化量大于流阻增量,即凹穴結(jié)構(gòu)能有效地提高細(xì)通道的綜合性能。反之,凹穴結(jié)構(gòu)是無效的、不經(jīng)濟(jì)的。

        圖8給出了凹穴細(xì)通道傳熱強(qiáng)化因子隨雷諾數(shù)的變化。由圖8可見,在整個雷諾數(shù)范圍內(nèi),HMCC通道傳熱強(qiáng)化因子變化不大,表明凹穴結(jié)構(gòu)對螺旋細(xì)通道綜合性能影響不明顯,且在高雷諾數(shù)時出現(xiàn)輕微惡化現(xiàn)象。結(jié)合圖6和圖7可知,流阻增量抑制著傳熱強(qiáng)化量。由圖8還可見,SMCC通道傳熱強(qiáng)化因子在低雷諾數(shù)時變化不大,且略小于1;在高雷諾數(shù)時急劇增大,最大值達(dá)1.27。表明凹穴結(jié)構(gòu)只在高雷諾數(shù)條件下才能提高直細(xì)通道的綜合性能。

        圖8 傳熱強(qiáng)化因子η隨雷諾數(shù)Re的變化Fig.8 Variation of heat transfer augmentation factor η with Reynolds number Re

        3.5 熵產(chǎn)特性分析

        眾所周知,流體在通道內(nèi)流動和傳熱過程是不可逆過程,都有一定的方向性。為分析凹穴對螺旋和直細(xì)通道內(nèi)流體流動和傳熱的不可逆性,本文采用熵產(chǎn)原理進(jìn)行研究。Bejan[36]根據(jù)熱力學(xué)第二定律推導(dǎo)出通道內(nèi)任一微元體流動和傳熱過程的熵產(chǎn)模型

        式中SG、ST、SP分別為局部體積總熵產(chǎn)、傳熱引起的熵產(chǎn)和流動引起的熵產(chǎn),W/(m3·K );下標(biāo)i和j為坐標(biāo)方向。

        為了直觀地比較凹穴細(xì)通道和光滑直細(xì)通道內(nèi)流體流動和傳熱過程的不可逆性,定義無量綱總熵產(chǎn)率和熵產(chǎn)增大數(shù)。其表達(dá)式分別為

        式中S*G為無量綱總熵產(chǎn)率;V為流體域體積,m3;M為質(zhì)量流量,g/s;cp為流體比熱,J/(kg·K);NS,a為熵產(chǎn)增大數(shù);下標(biāo)0代表光滑細(xì)通道。當(dāng)熵產(chǎn)增大數(shù)小于1,表明凹穴結(jié)構(gòu)能減少通道內(nèi)流體流動和傳熱過程的不可逆損失,即凹穴結(jié)構(gòu)能提高細(xì)通道的能量綜合利用程度。

        圖9給出了4種結(jié)構(gòu)細(xì)通道的無量綱總熵產(chǎn)率隨雷諾數(shù)的變化。由圖9可見,在相同雷諾數(shù)下,螺旋細(xì)通道(HMCC、HMC)的無量綱總熵產(chǎn)率明顯低于直細(xì)通道(SMCC、SMC),表明螺旋細(xì)通道的能量綜合利用程度高于直細(xì)通道。這主要是因?yàn)榍罢叩膫鳠嵝阅軆?yōu)于后者,從而減少在傳熱過程中的有用能損失。由圖9還可見,在低雷諾數(shù)時,HMCC與HMC通道的熵產(chǎn)率幾乎相當(dāng),SMCC與SMC通道的亦如此;而在高雷諾數(shù)時,HMCC通道的熵產(chǎn)率略低于HMC通道,SMCC通道的熵產(chǎn)率明顯低于SMC通道。這表明凹穴結(jié)構(gòu)對螺旋和直細(xì)通道內(nèi)流體流動和傳熱過程的熵產(chǎn)影響明顯不一樣。圖9也定量描述了它們之間影響的差異。由圖9可見,HMCC和SMCC通道熵產(chǎn)增大數(shù)的范圍分別為0.96~0.73和1.0~0.34,除了一個數(shù)據(jù)點(diǎn)外,其他數(shù)據(jù)點(diǎn)都小于1,表明凹穴結(jié)構(gòu)確實(shí)能夠提高細(xì)通道的能量綜合利用程度,然而僅在高雷諾數(shù)時才更有效。HMCC通道的熵產(chǎn)增大數(shù)的最小值為SMCC通道的2.15倍,表明凹穴對直細(xì)通道的不可逆損失減少率約為螺旋細(xì)通道的2倍。換言之,直細(xì)通道與螺旋細(xì)通道相比,凹穴結(jié)構(gòu)更能提高前者能量的有效利用程度。

        圖9 總熵產(chǎn)率SG*與熵產(chǎn)增大數(shù)NS,a隨雷諾數(shù)Re的變化Fig.9 Variations of total entropy generation rate SG*and augmentation entropy generation number NS,awith Reynoldsnumber Re

        4 結(jié) 論

        1)對于螺旋細(xì)通道,凹穴明顯增大流阻,最大提高23%;而凹穴對傳熱性能幾乎沒有影響。對于直細(xì)通道,低雷諾數(shù)時凹穴能夠略減少流阻和稍弱化傳熱;而高雷諾數(shù)時凹穴明顯急劇增大流阻和傳熱性能,摩阻系數(shù)和努塞爾數(shù)最大分別提高50%和45%。

        2)凹穴并不能提高螺旋細(xì)通道的綜合性能;盡管低雷諾數(shù)時凹穴稍降低直細(xì)通道的綜合性能,但高雷諾數(shù)時凹穴明顯提高直細(xì)通道的綜合性能,最大傳熱強(qiáng)化因子達(dá)到1.27。

        3)熵產(chǎn)特性分析表明,凹穴能減少螺旋和直細(xì)通道流動和傳熱過程的不可逆損失,即能提高它們的能量綜合利用率;然而凹穴對直細(xì)通道的不可逆損失減少率大于螺旋細(xì)通道,前者的最大減少率約為后者的兩倍。

        [1] 馮振飛,朱禮,何榮偉,等. 不同截面螺旋通道的熱阻及熵產(chǎn)特性對比分析[J]. 化學(xué)工程,2016,44(9):18-23. Feng Zhenfei, Zhu Li, He Rongwei, et al. Comparative analysis of characteristics of thermal resistance and entropy generation in helical channels with various cross sections [J]. Chemical Engineering (China), 2016, 44(9): 18-23. (in Chinese with English abstract)

        [2] Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limitations[J]. Journal of Electronic Packaging, 2011, 133(4): 041002-1-041002-31.

        [3] Mudawar I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021012-1-021012-15.

        [4] 馮振飛,羅小平,周建陽,等. 微通道內(nèi)納米制冷劑流動沸騰傳熱預(yù)測模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(8):346-355. Feng Zhenfei, Luo Xiaoping, Zhou Jianyang, et al. Prediction model for flow boiling heat transfer of nanorefrigerant in microchannels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 346-355. (in Chinese with English abstract)

        [5] 閆素英,李洪陽,史志國,等. 太陽能電池冷卻用微通道散熱器內(nèi)納米流體換熱特性[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(13):212-217. Yan Suying, Li Hongyang, Shi Zhiguo, et al. Heat transfer characteristics of nanofluid in microchannel applied on solar cell cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 212-217. (in Chinese with English abstract)

        [6] 鄭捷慶,何宏舟,袁嘉隆,等. 矩形微通道熱沉內(nèi)變物性工質(zhì)的流動與換熱特性[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22):205-210. Zheng Jieqing, He Hongzhou, Yuan Jialong, et al. Flow and heat transfer characteristics in rectangular microchannel heat sinks using coolant with variable thermal property [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 205-210. (in Chinese with English abstract)

        [7] Xia G, Zhai Y, Cui Z. Characteristics of entropy generation and heat transfer in a microchannel with fan-shaped reentrant cavities and internal ribs[J]. Science China Technological Sciences, 2013, 56(7): 1629-1635.

        [8] Li Y F, Xia G D, Ma D D, et al. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2016, 98: 17-28.

        [9] Chai L, Xia G D, Wang H S. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls[J]. Applied Thermal Engineering, 2016, 92: 32-41.

        [10] 賈玉婷,夏國棟,馬丹丹,等. 水滴型凹穴微通道流動與傳熱的熵產(chǎn)分析[J]. 機(jī)械工程學(xué)報,2017,53(4):141-148. Jia Yuting, Xia Guodong, Ma Dandan, et al. Entropy generation analysis of flow and heat transfer in microchannel with droplet reentrant cavities[J]. Journal of Mechanical Engineering, 2017, 53(4): 141-148. (in Chinese with English abstract)

        [11] 翟玉玲,夏國棟,崔珍珍. 間隔扇形凹穴型微通道流動與傳熱的數(shù)值模擬[J]. 北京工業(yè)大學(xué)學(xué)報,2014,40(4):627-633. Zhai Yuling, Xia Guodong, Cui Zhenzhen. Numerical simulation of flow and heat transfer in a microchannel with interrupted fan-shaped reentrant cavities[J]. Journal of Beijing University of Technology, 2014, 40(4): 627-633. (in Chinese with English abstract)

        [12] Xia G, Ma D, Zhai Y, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure[J]. Energy Conversion and Management, 2015, 105: 848-857.

        [13] Rainieri S, Bozzoli F, Cattani L, et al. Compound convective heat transfer enhancement in helically coiled wall corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2013, 59: 353-362.

        [14] Simonis V, Poskas P, Ragaisis V. Enhancement of heat transfer and hydraulic drag in gas-cooled helical channels with artificial roughness on convex wall[J]. Nuclear Engineering and Design, 2012, 245: 153-160.

        [15] Zach R A. Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall [J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 3928-3939.

        [16] Wang F, Wang G W. Heat transfer augmentation and entropy generation analysis of a helically coiled tube with internal longitudinal fins[J]. Chemical Engineering & Technology, 2011, 34(11): 1876-1882.

        [17] 馮振飛,何榮偉,朱禮,等. 周向平行細(xì)通道夾套的換熱特性[J]. 過程工程學(xué)報. 2015,15(6):901-908. Feng Zhenfei, He Rongwei, Zhu Li, et al. Heat transfer characteristics of a jacket with circumferential parallel minichannels[J]. The Chinese Journal of Process Engineering, 2015, 15(6): 901-908. (in Chinese with English abstract)

        [18] 朱禮,馮振飛,何榮偉,等. 并聯(lián)細(xì)通道夾套內(nèi)流量分配、流場及阻力特性研究[J]. 廣西大學(xué)學(xué)報:自然科學(xué)版,2016,41(3):847-856. Zhu Li, Feng Zhenfei, He Rongwei, et al. Study on flow distribution,flow field and flow resistance in jackets with parallel mini-channels[J]. Journal of Guangxi University: Nat Sci Ed, 2016, 41(3): 847-856. (in Chinese with English abstract)

        [19] Shah R K, London A L. Laminar Flow Forced Convection in Ducts[M]. Academic Press, New York, 1978: 431-455.

        [20] Manlapaz R L, Churchill S W. Fully developed laminar convection from a helical coil[J]. Chemical Engineering Communications, 1981, 9(1/2/3/4/5/6): 185-200.

        [21] Xia G, Chai L, Zhou M, et al. Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities[J]. International Journal of Thermal Sciences, 2011, 50(3): 411-419.

        [22] Xia G D, Chai L, Wang H Y, et al. Optimum thermal design of microchannel heat sink with triangular reentrant cavities[J]. Applied Thermal Engineering, 2011, 31(6/7): 1208-1219.

        [23] 劉趙淼,逄燕,申峰. 幾何尺寸對矩形微通道液體流動和傳熱性能的影響[J]. 機(jī)械工程學(xué)報,2012,46(16):139-145. Liu Zhaomiao, Pang Yan, Shen Feng. Effects of geometry on liquid flow and heat transfer in microchannels [J]. Journal of Mechanical Engineering, 2012, 46(16): 139-145. (in Chinese with English abstract)

        [24] Zhai Y L, Xia G D, Liu X F, et al. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis[J]. International Journal of Heat and Mass Transfer, 2014, 68: 224-233.

        [25] Xia G D, Zhai Y L, Cui Z Z. Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs[J]. Applied Thermal Engineering, 2013, 58 (1/2): 52-60.

        [26] Sheik Ismail L, Ranganayakulu C, Shah R K. Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins [J]. International Journal of Heat and Mass Transfer, 2009, 52(17/18): 3972-3983.

        [27] Mokrani O, Bourouga B, Castelain C, et al. Fluid flow and convective heat transfer in flat microchannels[J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1337-1352.

        [28] Pimenta T A, Campos J B L M. Friction losses of Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil[J]. Experimental Thermal and Fluid Science, 2012, 36: 194-204.

        [29] Ahadi M, Abbassi A. Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties[J]. Energy, 2015, 82: 322-332.

        [30] Ko T H, Ting K. Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube[J]. Energy, 2006, 31: 2142-2152.

        [31] Shokouhmand H, Salimpour M R. Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature[J]. International Communications in Heat and Mass Transfer, 2007, 34: 753-761.

        [32] Ko T H. Thermodynamic analysis of optimal curvature ratio for fully developed laminar forced convection in a helical coiled tube with uniform heat flux[J]. International Journal of Thermal Sciences, 2006, 45: 729-737.

        [33] Ko T H. Thermodynamic analysis of optimal mass flow rate for fully developed laminar forced convection in a helical coiled tube based on minimal entropy generation principle[J]. Energy Conversion and Management, 2006, 47: 3094-3104.

        [34] Qu W, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2002, 45(12): 2549-2565.

        [35] Tohidi A, Ghaffari H, Nasibi H, et al. Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube[J]. Applied Thermal Engineering, 2015, 86: 91-105.

        [36] Bejan A. Entropy Generation Minimization[M]. New York: CRC Press, 1996: 47-92.

        Effects of fan cavities on fluid flow and heat transfer in helical and straight mini-channels of heat exchanger

        Feng Zhenfei1,2,3, Zhu Li1, Lin Qingyu1,2, Li Huan1, Liu Penghui1, Hu Huayu1, Yang Mei1, Huang Zuqiang1※
        (1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; 2. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; 3. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China)

        With the rapid development of microminiaturization technology and the urgent requirements of industrial field, the sizes of many devices are reduced continually. This causes the thermal load to increase sharply when the device is working, and further leads to the decreasing of the working stability gradually. So the conventional heat exchanger can’t meet the heat transfer requirement for these micro-devices. Thus, the micro/mini-channel heat exchanger emerges as the times require. This exchanger has many advantages, such as compact structure, high efficiency for heat dissipation, low power consumption and few coolant requirements. These advantages motivate many researchers to conduct numerous studies on the micro/mini-channel heat exchanger continuously to further enhance heat transfer performance. Adding cavities, fins or ribs on the wall of the channel is a solution for enhancing heat transfer performance in the micro/mini-channel heat exchanger. As we know, the helical and straight channels are widely applied to the heat exchanger. The difference between both channels is the existence of secondary flow in former, inducing heat transfer enhancement. Therefore, it is important to understand the effects of cavities or fins on the fluid flow and heat transfer enhancement in the helical and straight micro/mini-channel heat exchangers. As a consequence, the cavities are added on the both sidewalls of helical and straight mini-channels in this work, and the effects of the cavities on the fluid flow and heat transfer in the helical and straight mini-channels are studied using numerical simulation method. Specifically, the comparative analysis in the effects of cavities on the flow, heat transfer, entropy generation and overall performance in the helical and straight mini-channels is performed based on the first and second thermodynamics law. This aims to analyze the different effects of cavities on both mini-channels. The cross-sections for both mini-channels are the same, and the width and height of this cross-section are 3 and 3 mm, respectively. The working conditions include the Reynolds number of 168-2017, the heat flux density of 1.145 98×105and 1×105W/m2for helical and straight mini-channels, respectively, based on the condition of different heating area and same power input. The numerical results show that for helical mini-channel, the cavities can increase flow resistance, and the maximum increasement reaches up to 23%. But they have no obvious influence on heat transfer performance. For straight mini-channel, the cavities can slightly reduce flow resistance and heat transfer performance when the Reynolds number is less than 1 008. However, they rapidly increase flow resistance and heat transfer performance when the Reynolds number is greater than 1 008, and the friction factor and Nusselt number grow to 50% and 45% respectively. In the whole Reynolds number range, the cavities can’t improve the overall performance in the helical mini-channel. Although the cavities slightly weaken the overall performance in the straight mini-channel at low Reynolds number, they obviously enhance the overall performance at high Reynolds number, and the maximum heat transfer augmentation factor grows to 1.27. The results of entropy generation analysis indicate that the cavities can reduce irreversible loss in the flow and heat transfer process for helical and straight mini-channels, thereby improving effective utilization of thermal energy. However, the decrement rate of irreversible loss for straight mini-channel with the cavities is greater than that for helical mini-channel, for the former’s decrement rate is about 2 times that of the latter. This work provides a reference for improving the performance of heat exchanger with mini/micro-channels.

        heat transfer; heat exchanger; fluids; mini-channel; cavity; entropy generation; numerical simulation

        10.11975/j.issn.1002-6819.2017.11.033

        TK124

        A

        1002-6819(2017)-11-0254-08

        馮振飛,朱 禮,林清宇,李 歡,劉鵬輝,胡華宇,楊 梅,黃祖強(qiáng). 換熱設(shè)備螺旋和直細(xì)通道內(nèi)扇形凹穴對流體流動和傳熱的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):254-261.

        10.11975/j.issn.1002-6819.2017.11.033 http://www.tcsae.org

        Feng Zhenfei, Zhu Li, Lin Qingyu, Li Huan, Liu Penghui, Hu Huayu, Yang Mei, Huang Zuqiang. Effects of fan cavities on fluid flow and heat transfer in helical and straight mini-channels of heat exchanger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 254-261. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.033 http://www.tcsae.org

        2016-11-10

        2017-05-15

        國家自然科學(xué)基金 (51463003);廣西自然科學(xué)基金(2014GXNSFBA118051,2016GXNSFAA380210,2016GXNSFAA380217);廣西石化資源加工及過程強(qiáng)化技術(shù)重點(diǎn)實(shí)驗(yàn)室主任基金(2015Z012);南寧市科技攻關(guān)項(xiàng)目(20155345)

        馮振飛,男,廣西博白人,講師,博士生,主要從事強(qiáng)化傳熱與節(jié)能研究。南寧 廣西大學(xué)化學(xué)化工學(xué)院,530004。Email:zffeng@gxu.edu.cn※通信作者:黃祖強(qiáng),男,廣西陸川人,教授,博士,博士生導(dǎo)師,從事機(jī)械活化固相反應(yīng)體系及其設(shè)備開發(fā)等研究。南寧 廣西大學(xué)化學(xué)化工學(xué)院,530004。Email:huangzq@gxu.edu.cn

        猜你喜歡
        穴區(qū)迪恩摩阻
        全民公敵
        吉米問答秀
        市政橋梁預(yù)應(yīng)力管道摩阻系數(shù)測試研究
        江西建材(2018年4期)2018-04-10 12:37:20
        人狗奇緣
        天時、穴位、藥物、地球磁場穴區(qū)全息對應(yīng)
        今日健康(2016年5期)2017-01-23 07:25:50
        搓筷子可防病
        娛樂圈游戲
        計算隱式摩阻系數(shù)方程數(shù)值解的簡便方法
        考慮扶正器影響的套管摩阻計算方法研究
        降低壓裂施工摩阻技術(shù)研究
        中文字幕国产欧美| 精品国产乱码久久久久久1区2区| 亚洲国产线茬精品成av| 亚洲免费无毛av一区二区三区| 中文一区二区三区无码视频| 尤物蜜芽福利国产污在线观看 | 在线高清亚洲精品二区| 久久精品日韩免费视频| 国产成人自拍视频视频| 亚洲一区二区三区激情在线观看| 国产视频激情视频在线观看| 永久免费观看的黄网站在线| 国产蜜桃传媒在线观看| 亚洲精品第四页中文字幕| 国产精品国产三级国产专区不| 久久久精品毛片免费观看| 风韵人妻丰满熟妇老熟女视频| 一区二区三区中文字幕脱狱者| 亚洲成人福利在线视频| 91精品国产综合久久熟女| 久久国产在线精品观看| 欧美a级在线现免费观看| 成人爽a毛片免费视频| 色欲网天天无码av| 三年在线观看免费大全下载| 国产熟女露脸大叫高潮| 国产成人综合亚洲精品| 88国产精品视频一区二区三区| 国产成人av一区二区三区无码| 国产精品天堂| 亚洲成a∨人片在线观看无码| 精品久久久久久电影院| 日韩AV无码中文无码AV| 色综合久久五十路人妻| 亚洲毛片一区二区在线| 人妻精品在线手机观看| 插鸡网站在线播放免费观看| 五月丁香六月综合缴清无码 | 女人无遮挡裸交性做爰| 成人欧美一区二区三区在线| 亚洲国产成人精品无码区在线秒播 |