亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        黃土高原不同退耕年限刺槐林地土壤侵蝕阻力

        2017-07-07 00:43:34張光輝欒莉莉
        農(nóng)業(yè)工程學報 2017年10期
        關鍵詞:細溝林齡刺槐

        孫 龍,張光輝,王 兵,欒莉莉

        (1. 中國科學院水利部水土保持研究所/黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌712100;2. 中國科學院生態(tài)環(huán)境研究中心/城市與區(qū)域生態(tài)國家重點實驗室,北京 100085;3. 北京師范大學地理學與遙感科學學院,北京 100875;4. 西北農(nóng)林科技大學水土保持研究所/黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌712100)

        黃土高原不同退耕年限刺槐林地土壤侵蝕阻力

        孫 龍1,2,張光輝1,3※,王 兵4,欒莉莉3

        (1. 中國科學院水利部水土保持研究所/黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌712100;2. 中國科學院生態(tài)環(huán)境研究中心/城市與區(qū)域生態(tài)國家重點實驗室,北京 100085;3. 北京師范大學地理學與遙感科學學院,北京 100875;4. 西北農(nóng)林科技大學水土保持研究所/黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌712100)

        為了明確黃土高原植被恢復后不斷蓄積的枯落物對土壤分離過程的影響,論文選取 10、15、20、30、40a退耕年限刺槐林樣地及對照樣地,采集180個土壤樣品用于土壤分離試驗,在6組侵蝕動力條件下進行變坡水槽沖刷試驗,結果表明:隨著退耕年限的增大,刺槐林土壤結構趨于穩(wěn)定且疏松多孔,40年刺槐林地與對照樣地相比:容重降低12.9%、總孔隙度增加10.1%、毛管孔隙度增加62.4%,土壤有機質含量增加97.9%、水穩(wěn)性團聚體增加112.3%。土壤分離能力均值隨著林齡呈指數(shù)函數(shù)遞減(R2= 0.82、P< 0.05)。在退耕0~40年范圍內,在0~15 a內土壤分離能力下降迅速,對照、10 a刺槐林地、15年刺槐林地之間的土壤分離能力差異顯著(P< 0.05),退耕15 a以后土壤分離能力趨于穩(wěn)定。40 a林齡刺槐林細溝可蝕性比對照的細溝可蝕性降低 86.3%,臨界剪切力提高 10.1%。土壤臨界剪切力變化范圍在 4.15~4.78 Pa之間。細溝可蝕性的變化趨勢與土壤分離能力變化趨勢相似,相比臨界剪切力的變化,細溝可蝕性的變化更能反映土壤分離能力的變化情況。

        侵蝕;試驗;土壤;黃土高原;退耕還林;土壤分離能力;細溝可蝕性;臨界剪切力

        孫 龍,張光輝,王 兵,欒莉莉. 黃土高原不同退耕年限刺槐林地土壤侵蝕阻力[J]. 農(nóng)業(yè)工程學報,2017,33(10):191-197. doi:10.11975/j.issn.1002-6819.2017.10.025 http://www.tcsae.org

        Sun Long, Zhang Guanghui, Wang Bing, Luan Lili. Soil erosion resistance of black locust land with different ages of returning farmland on Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(10): 191-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.025 http://www.tcsae.org

        0 引 言

        土壤侵蝕過程包括土壤分離、泥沙輸移和泥沙沉積[1-3]。土壤分離是指土壤顆粒在雨滴擊濺或徑流沖刷作用下脫離土體、發(fā)生位移的過程[4]。由徑流沖刷引起的土壤分離導致的細溝侵蝕是坡面侵蝕泥沙的主要來源[5-7]。徑流沖刷引起的土壤分離過程主要通過土壤分離能力、土壤侵蝕阻力(細溝可蝕性、土壤臨界剪切力)來定量表征[8-10],受土壤近地表特性(土壤性質、根系、植被、枯落物、結皮等)的顯著影響[11-12]。

        隨著黃土高原植被群落的逐漸恢復,近地表特性(根系、枯落物、結皮等)顯著改變,土壤分離過程可能受到由不同近地表特性構成的多種系統(tǒng)的影響,如“根系-土壤”系統(tǒng)[9]、“生物結皮-土壤”系統(tǒng)[13]、“枯落物-土壤”系統(tǒng)[14]等。對于“根系-土壤”系統(tǒng),Wang等[15]研究了不同退耕年限(3~37a)草地的土壤分離過程,結果表明隨著退耕年限的增加,由于根系系統(tǒng)顯著發(fā)育導致土壤侵蝕阻力逐漸增大。后續(xù)Zhang等[9]、Yu等[16]的研究進一步證明了“根系-土壤”系統(tǒng)具有較高土壤侵蝕阻力。Liu等[13]研究了典型生物結皮蓋度對土壤分離的影響,結果表明生物結皮的覆蓋可有效增大土壤侵蝕阻力。Wang等[11]對黃土高原自然演替7a草地的研究結果表明,自然恢復草地的土壤分離能力與對照相比降低了98.9%,其中根系、“莖桿-枯落物”系統(tǒng)和生物結皮的貢獻率分別為53.7%、30.3%和14.9%。

        不同于表土根系豐富的草地,林地因其枯落物的顯著蓄積會抑制植被萌發(fā)生長[17],導致林下存在很多無根區(qū)域。而枯落物不僅能夠在地表蓄積,還能通過降雨擊濺、泥沙沉積、土棲動物活動等過程混入表土[14,19],進而導致刺槐林地表土中不同程度地混合有枯落物[18-19],但目前關于“枯落物-土壤”系統(tǒng)對土壤分離過程影響的研究甚少。近期,Li等[18]在黃土高原紙坊溝小流域退耕約20年刺槐林地的研究結果表明,表土中枯落物密度與土壤分離能力間呈顯著負相關。Sun等[19]的試驗結果表明混合于表土中的枯落物能夠顯著提高土壤侵蝕阻力,降低土壤分離能力。一方面,混入表土的枯落物能夠通過其物理作用(類似于根系的物理網(wǎng)絡和捆綁作用)提高土壤穩(wěn)定性[11,19]。另一方面,枯落物會逐漸分解釋放有機物質,從而改變土壤性質,進而影響土壤分離過程[17-18,20-23],且隨著枯落物的分解其自身的物理特性也會發(fā)生變化,進而間接導致其物理作用的改變。

        隨著黃土高原“退耕還林還草工程”的有效實施,入黃泥沙顯著減少,研究植被群落近地表特性對土壤侵蝕阻力的影響及其機制十分必要,而在長時間尺度下,“枯落物-土壤”系統(tǒng)對土壤侵蝕阻力的影響機制尚不明確。本文通過選取不同退耕年限刺槐林地進行徑流沖刷試驗,明確“枯落物-土壤”系統(tǒng)土壤侵蝕阻力隨退耕年限的變化規(guī)律,研究結果有助于退耕條件下土壤侵蝕過程的理解與模擬和水土保持效益評估。

        1 材料與方法

        1.1 樣地選取

        刺槐因生長快、固氮能力強且適應干旱環(huán)境而被廣泛用于黃土高原植被恢復。隨著刺槐林地的逐漸恢復,枯落物蓄積量顯著增加[24-25],進而可能對土壤侵蝕過程產(chǎn)生影響。本研究在黃土高原安塞縣紙坊溝小流域選取林齡分別為10、15、20、30、40a的刺槐林地以及玉米樣地(0年,作為對照),樣地選取時間為2015年6月至7月。為了最大限度降低根系對試驗結果的影響,采集土樣時盡量避免可見根系。所選樣地均為黃綿土,黃綿土質地均一,均為粉砂壤土,且退耕前均為玉米地,耕作方式相近,因此認為具有可比性,樣地位置如圖1,樣地基本信息見表1。

        圖1 黃土高原樣地布設示意圖Fig.1 Schematic diagram of survey sites

        表1 取樣點基本信息Table 1 Basic information of sampling sites

        1.2 樣品采集

        將內徑10 cm、高5 cm的不銹鋼環(huán)刀垂直壓入土壤,當采樣環(huán)被土壤充分填滿時,蓋上采樣環(huán)上面的蓋子,用剖面刀將采樣環(huán)剖出,然后慢慢削去采樣環(huán)底部多余的土壤,放上棉布,再蓋上采樣環(huán)下面的蓋子,下蓋帶有小孔用于吸排水,并進行標碼。每個樣地采集土樣 30個,共計采集 180個土樣用于土壤分離試驗,土樣采集時間為2015年8月。

        同時現(xiàn)場測定土壤黏結力,并取土樣帶回實驗室測定土壤水分、容重、土壤質地、黏結力、團聚體、有機質、孔隙度等土壤理化參數(shù)[5,26]。同時調查地表枯落物蓄積量和表土中枯落物密度。土壤水分測定采用環(huán)刀(容積100 cm3)取樣烘干法,將6個土樣含水量的均值作為采樣點的初始土壤含水量,用于計算土樣沖刷前的質量。土壤容重也采用環(huán)刀(容積100 cm3)取樣烘干法,重復6次。土壤質地測定采用激光粒度儀法,重復4次。土壤黏結力采用便攜式黏結力儀(Durham Geo-enterprises,Inc.,UK)測定,重復12次,去掉最大值和最小值,取其均值作為該樣地的土壤黏結力。水穩(wěn)性團聚體的測定采用濕篩法,重復 3次。土壤有機質采用重鉻酸鉀外加熱法測定,重復 4次。土壤孔隙度的測定采用環(huán)刀浸透法,重復 5次[26]??萋湮镄罘e量測定采樣標準樣方調查法,在每個采樣點均勻布設9個1 m2樣方,收集地表蓄積的枯落物,于65 ℃下烘至質量恒定并測定質量。表土中枯落物密度測定采用水洗法,額外采集與用于土壤分離試驗樣品相同的土樣15個,置于1 mm篩上用水緩慢沖洗,將洗出的枯落物置于烘箱中在65 ℃下烘至質量恒定,測定質量并計算表層土壤中的枯落物密度。

        1.3 土壤分離試驗

        利用變坡水槽模擬沖刷進行土壤分離試驗(圖 2)。水槽長4 m、寬0.35 m、深0.3 m。水槽底部粘有一層試驗用土壤,使水槽底部糙率與試驗土樣糙率基本一致,同時還可保持試驗過程中水槽底部糙率的穩(wěn)定。在距水槽出口0.5 m處設置土樣放置室,直徑11 cm。水槽頂端有一深度為40 cm的進水消能池。水槽下端與支座連接,水槽頂端與滑輪相連,可調節(jié)水槽坡度,變化范圍為0°~25°。水流由供水系統(tǒng)供應,由蓄水池、沉沙池、水泵、分流箱、閥門組和輸水管道組成,通過調整閥門組,可調節(jié)水槽流量。水流通過水槽后,進入沉沙池,再返回蓄水池,如此循環(huán),為試驗過程提供穩(wěn)定、持續(xù)的供水。

        圖2 水槽裝置示意圖Fig.2 Schematic diagram of flume

        流量(Q,m2/s)由閥門組控制,變化在0.5~2.5 L/s之間。試驗前調整水槽坡度和流量,待水流穩(wěn)定后測定流速,表面流速用染色法測定,記錄染色水流流過距水槽下端0.6 m以上2 m長測速區(qū)所用的時間,用2除以時間得水流表面流速。斷面平均流速根據(jù)積分中值定理計算。試驗時監(jiān)測水流溫度,計算水流雷諾數(shù),根據(jù)水流流態(tài)選擇相應的流速修正系數(shù)計算水流平均流速(v,m/s)[27]。平均水深(h,mm)用流量、流速以及水槽寬(B,m)的關系式(公式1)計算。根據(jù)測定的平均流速、坡度(S,sin值)和計算出的平均水深,結合水的密度(ρ,kg/m3),通過公式(2)計算每次試驗時的水流剪切力(τ,Pa)。

        試驗前對試驗土樣進行飽和,將土樣靜置于水中,維持水面在土樣表面1 cm以下,8 h后取出土樣,于陰涼處排水12 h后用于沖刷試驗。沖刷試驗設定6組坡度-流量組合(10°-1.0 L/s、10°-2.0 L/s、15°-2.0 L/s、25°-1.5 L/s、25°-2 L/s、25°-2.5 L/s),得到 6 個不同的水流剪切力(5.4~17.4 Pa),每組坡度、流量組合下重復沖刷5個土樣。待土樣沖刷大約2 cm深度時停止沖刷試驗,記錄沖刷時間。將沖刷后的土樣放置于烘箱,105 ℃下烘至質量恒定。沖刷過程中在水槽出水口處安置1 mm2網(wǎng)眼的網(wǎng)兜收集被沖刷的枯落物,并置于烘箱,于65 ℃下烘至質量恒定并測定質量。土樣沖刷前的干質量用前期土壤含水量標定。土壤分離能力的計算公式為:

        式中,Dc為土壤分離能力,kg/(m2·s);Ww為土樣濕質量,g;Ws為土壤水分質量,g;Wd為試驗結束時土樣干質量,g;Wl為被沖刷出的枯落物干質量,g;t為沖刷時間,s;A為土樣環(huán)刀面積,cm2。

        土壤侵蝕阻力用于反映土壤抵抗細溝侵蝕的能力,包括土壤臨界剪切力和細溝可蝕性 2個參數(shù)。在 WEPP(water erosion prediction project)模型中,細溝可蝕性(Kr,s/m)和臨界剪切力(τc,Pa)被分別定義為土壤分離能力(Dc,kg/(m2·s))和水流剪切力(τ,Pa)線性擬合直線的斜率和在X軸上的截距[22],按照下式估算:

        1.4 數(shù)據(jù)分析

        數(shù)據(jù)的統(tǒng)計分析采用SPSS 19.0軟件進行。數(shù)據(jù)的正態(tài)性檢驗采用柯爾莫諾夫-斯米爾諾夫(Kolmogorov-Smirnov)檢驗方法。不同樣地土壤分離能力的差異性檢驗采用單因素方差分析方法(one-way ANOVA)。細溝可蝕性、臨界剪切力與土壤性質、枯落物之間的關系采用Pearson相關分析方法和曲線估計方法分析。土壤侵蝕阻力的模擬采用非線性回歸方法,回歸結果用模型決定系數(shù)(R2)和納什-薩克利夫模型有效性系數(shù)(Nash-Sutcliffe model efficiency,NSE)評估。

        2 結果與分析

        2.1 土壤理化性質

        不同林齡刺槐林地及對照的土壤的質地、孔隙度、容重、黏結力、有機質、水穩(wěn)性團聚體、枯落物的變化情況如表 2所示。土壤質地反映了土壤基本顆粒組成。土壤總孔隙度、容重、黏結力反映了土壤密實狀況。土壤毛管孔隙度、有機質、水穩(wěn)性團聚體反映了土壤結構狀況。

        由表2可知,在林齡40a內的刺槐林地,土壤砂粒、粉粒、黏粒的比例(質量分數(shù))基本一致,總體而言,不同林齡刺槐林地的土壤質地比較均一。其中砂粒、粉粒、黏粒質量分數(shù)的變化范圍分別為 25.6%~31.7%、60.4%~64.3%、7.9%~10.9%。

        由表 2可知,隨著林齡的增大,刺槐林地土壤毛管孔隙度和總孔隙度都有明顯的增加趨勢。與玉米對照相比,退耕40a刺槐林林地的毛管孔隙度增加62.4%、總孔隙度增加10.1%。

        表土容重隨著林齡的增大逐漸減小,可能是由于枯落物分解、土棲動物活動等作用導致土壤結構改善、孔隙度增大的結果,孔隙度與容重相反的變化趨勢也說明了這一點。與玉米對照相比,退耕 40a 刺槐林林地的土壤容重減小12.9%。

        由表 2可知,土壤黏結力的變化表現(xiàn)為先增大后減小。最大值為退耕10年的6.72 kPa,最小值為退耕40a的6.12 kPa。

        由表2可知,隨著林齡的延長,土壤有機質逐漸增加。40a林齡的刺槐林比玉米對照的土壤有機質增加了97.9%。

        表2 不同樣地土壤屬性和枯落物密度Table 2 Soil properties and plant litter amount of different sites

        表 2顯示了水穩(wěn)性團聚體(質量分數(shù))隨林齡的變化趨勢。最大值為30a林齡的刺槐林地的67.47%,比玉米對照增大112.3%??傮w上隨著林齡的增大,水穩(wěn)性團聚體逐漸增加。40a林齡的刺槐林地,其水穩(wěn)性團聚體略低于30a林齡的刺槐林地。

        枯落物蓄積量整體上隨著林齡的增長呈增大趨勢,并有趨于穩(wěn)定的態(tài)勢。不同林齡刺槐林枯落物蓄積量的差異顯著性,相鄰的林齡處理之間差異不顯著,10a與20a相比差異顯著,但20a與30a、30a與40a差異不顯著,說明退耕30a后枯落物的蓄積比前20a緩慢。林齡為10、15、20、30、40a的刺槐林枯落物蓄積量分別是0.33、0.49、0.60、0.71、0.80 kg/m2,均值為 0.59 kg/m2。Logistic 生長曲線能很好地模擬枯落物蓄積量(La,kg/m2)與林齡(ta)的關系:

        林齡為10、15、20、30、40a的刺槐林其0~5 cm表土中枯落物密度分別為 0.07、0.17、0.32、0.29、0.17 kg/m2,均值為0.20 kg/m2。其中20a林齡的刺槐林表土中枯落物密度與以往的研究結果一致[18]。表土中枯落物密度(Ld,kg/m2)與林齡(ta)的關系可以用S型曲線模擬,并在退耕約20a后趨于穩(wěn)定值0.26 kg/m2:

        2.2 土壤分離能力

        圖3中箱形圖中間的黑線代表中值、白線代表均值、上下分位線分別代表95%和5%分位數(shù),黑點表示分位線以外的值,不同箱形圖標注的字母代表處理間的差異性,圖例前的字母代表枯落物種間的差異分析結果。玉米地及不同林齡刺槐林(10、15、20、30、40a)土壤分離能力變化范圍分別是0.49~3.93、0.13~1.89、0.08~1.05、0.07~0.60、0.04~0.56、0.05~0.55 kg/(m2·s),土壤分離能力均值分別為2.07、1.04、0.54、0.31、0.29、0.27 kg/(m2·s)。與對照(玉米地)相比,10~40a林齡刺槐林地土壤分離能力分別降低了49.8%、73.9%、85.0%、86.0%、87.0%。隨著退耕年限的延長或林齡的增加,土壤分離能力顯著降低,土壤分離能力均值(Dc,kg/(m2·s))隨著林齡(ta)的增大呈指數(shù)函數(shù)遞減:

        林齡為0~15a之間的刺槐林地,其土壤分離能力隨著林齡的增加迅速降低,對照、10a刺槐林地、15a刺槐林地之間的土壤分離能力差異顯著。退耕15a以后土壤分離能力趨于穩(wěn)定,退耕15、20、30、40a刺槐林土壤分離能力差異不顯著。說明枯落物對土壤分離能力的影響在這一時段內的變化較小或者處于動態(tài)平衡狀態(tài),即覆蓋、混合、分解 3方面作用對土壤分離能力的共同影響處于相對穩(wěn)定的階段。

        圖3 不同林齡刺槐林地土壤分離能力Fig.3 Soil detachment capacity of different aged black locust

        2.3 土壤侵蝕阻力

        土壤侵蝕阻力包含細溝可蝕性和土壤臨界剪切力。對照及5種林齡刺槐林細溝可蝕性變化(表3),最大值為玉米對照的0.29 s/m,最小值為40a林齡刺槐林的0.04 s/m。40a林齡細溝可蝕性比玉米對照的細溝可蝕性降低86.3%。細溝可蝕性受多種因素影響。相關分析顯示,細溝可蝕性與土壤容重、有機質、水穩(wěn)性團聚體、枯落物蓄積量、表土枯落物密度顯著相關,其中與枯落物蓄積量的顯著水平為P= 0.01,其他因子顯著水平為P= 0.05。細溝可蝕性與黏結力相關性不顯著。細溝可蝕性(Kr,s/m)隨著林齡(ta)的變化可用指數(shù)函數(shù)很好地模擬:

        表3 不同林齡刺槐林的土壤侵蝕阻力Table 3 Soil erosion resistance of different aged black locust stands

        臨界剪切力(表3)最大值為20a林齡刺槐林的4.78 Pa,最小值為玉米對照的4.15 Pa。40a林齡土壤臨界剪切力比玉米對照的臨界剪切力提高10.1%。相關分析顯示臨界剪切力只與表土中枯落物密度在P= 0.05水平上顯著相關。進一步回歸分析表明臨界剪切力隨著表土中枯落物密度的增加呈線性函數(shù)增加(R2= 0.67、P= 0.046)。說明在本研究中,隨著退耕年限的延長,土壤臨界剪切力的變化主要受表土中枯落物密度的影響。隨著退耕年限增加,

        細溝可蝕性的變化趨勢與土壤分離能力變化趨勢相似,相比臨界剪切力的變化,細溝可蝕性的變化更能反映土壤分離能力的變化情況。臨界剪切力(τc,Pa)隨著林齡(ta,yr)的變化可用S型曲線較好地模擬,并在退耕15年后趨于穩(wěn)定值為4.66 Pa:

        3 討 論

        總體而言,土壤隨著刺槐林齡的增加趨于疏松、多孔、有機質含量升高且結構更為穩(wěn)定。土壤黏結力的變化趨勢通常與容重變化趨勢一致,但本研究中黏結力的變化趨勢與土壤容重的變化趨勢并不一致,說明土壤固化過程并不是引起土壤黏結力變化的主要因子??萋湮锘烊氡硗镣ǔ?梢蕴岣咄寥鲤そY力[19],因此,黏結力的增加(表2)可能是由于枯落物混合導致的。而隨著林齡的增大,表土中枯落物密度隨之增加(表 2),但并不能繼續(xù)提高土壤黏結力(表2),甚至退耕40a刺槐林地的黏結力小于玉米地對照,可能的原因是玉米地土壤在降雨打擊作用下會充分固化,同時物理結皮也會得到充分發(fā)育,而林地表層土壤因林冠和枯落物的覆蓋土壤固化過程較弱,同時枯落物分解等作用導致土壤逐漸趨于疏松多孔,因此土壤黏結力趨于減小。有機質和水穩(wěn)性團聚體隨著林齡的變化趨勢類似,這一結果部分證實了過去的研究結論,即有機質的增加能夠增強土壤的團聚性、增強土壤結構的穩(wěn)定性,也增加了毛管孔隙度。

        40a林齡的刺槐林地,其水穩(wěn)性團聚體略低于30a林齡的刺槐林地,可能是由樣地坡面的坡向差異造成的,30a林齡樣地坡向為東南,40a林齡樣地坡向為西。從表2可以看出,40a林齡刺槐林地土壤黏粒含量低于其他林地,這可能是一方面原因。另一方面,40a林齡刺槐林地為陰坡,30a林齡的刺槐林地為陽坡,且坡度緩于40a林齡刺槐林地,因此可能導致或部分導致30年林齡的枯落物分解等生物化學作用,對土壤性質的影響程度略大于40a林齡的刺槐林地。在植被恢復初期,枯落物蓄積量快速增加,然后增加速度趨于減小,這一結果與Olson[28]、Ma等[29]的研究結論一致。欒莉莉等[25]研究了黃土丘陵區(qū)枯落物蓄積量沿降水梯度的分布特征,結果表明15年林齡的刺槐林枯落物蓄積量變化范圍是0.44~0.84 kg/m2,本研究15a林齡刺槐林地枯落物蓄積量在這一范圍內。劉宇等[30]在晉西黃土丘陵區(qū)調查的 22a林齡刺槐林地枯落物為0.68 kg/m2,略高于本研究20a林齡刺槐林的的0.60 kg/m2。

        通常情況下,細溝可蝕性與土壤容重間呈負相關關系,因為容重越大,土壤侵蝕阻力越大,越不容易被分離[31]。但本研究中細溝可蝕性與容重存在較好的正相關關系,顯然與之前的認識不符。容重受到了枯落物混合及枯落物分解作用的影響而逐漸降低,而容重的這種降低作用并沒有直接導致細溝可蝕性的增大,說明其他因子對細溝可蝕性的影響大于容重,即在枯落物混入表土條件下,土壤容重不再是影響細溝可蝕性的主導因子。

        根系對土壤性質的影響包括物理網(wǎng)絡、生物化學 2方面的作用[11]。而枯落物混入表土對土壤性質的影響也不能簡單等同于根系的物理網(wǎng)絡作用。因為根系可以在土壤大孔隙間發(fā)育,通過根系的物理捆綁作用和化學膠合作用增強土壤結構穩(wěn)定性[11]。而從長期來看,枯落物則通過分解作用釋放有機物質增加土壤孔隙、降低土壤容重、改善土壤結構。因此枯落物對土壤性質影響的內在機制不同于根系。Wang等[15]研究了黃土高原不同退耕年限的草地土壤分離過程的變化,發(fā)現(xiàn)細溝可蝕性隨著退耕年限逐漸降低,且在退耕年限超過28a后趨于穩(wěn)定,其中退耕28a和37a的草地細溝可蝕性均為0.003 s/m,相比農(nóng)地對照的0.116 s/m降低97.4%。而本研究中退耕30a和40a刺槐林地的細溝可蝕性均為0.04 s/m,相比農(nóng)地對照的0.29 s/m降低86.3%??梢娍萋湮锱c根系均能顯著降低細溝可蝕性,提高土壤侵蝕阻力。然而不難發(fā)現(xiàn),2個研究的農(nóng)地對照細溝可蝕性處在同一數(shù)量級,但是根系降低細溝可蝕性的作用比枯落物要大一個數(shù)量級。

        4 結 論

        1)隨著退耕年限的增大,刺槐林土壤結構趨于穩(wěn)定且疏松多孔,40年刺槐林地相比對照樣地容重降低12.9%、孔隙度增大(總孔隙度增大10.1%、毛管孔隙度增大 62.4%),土壤有機質含量升高 97.9%、水穩(wěn)性團聚體增加112.3%。

        2)土壤分離能力均值隨著林齡的增大呈指數(shù)函數(shù)遞減(R2= 0.82、P= 0.013)。在退耕40年內,前15年土壤分離能力下降迅速,對照(0年)、10年刺槐林地、15年刺槐林地之間的土壤分離能力差異顯著,退耕15年以后土壤分離能力趨于穩(wěn)定。40年林齡刺槐林細溝可蝕性比玉米對照的細溝可蝕性降低 86.3%,臨界剪切力提高10.1%。土壤臨界剪切力變化范圍在4.15~4.78 Pa之間。

        3)相比對照,“枯落物-土壤”系統(tǒng)具有較大的土壤侵蝕阻力。但從相近的退耕年限來看,其土壤侵蝕阻力低于“根系-土壤”系統(tǒng),因此在相同侵蝕力條件下(如覆蓋在地表枯落物被風力、徑流等外力搬移后),“枯落物-土壤”系統(tǒng)比“根系-土壤”系統(tǒng)更易于發(fā)生土壤分離。

        [1]Toy T J, Foster G R, Renard K G. Soil erosion: Processes,prediction, measurement, and control[M]. John Wiley & Sons,2002.

        [2]張光輝. 坡面水蝕過程水動力學研究進展[J]. 水科學進展,2001,12(3):395-402.Zhang Guanghui. Advances in study of runoff detachment processes based on hydraulics[J]. Advances in Water Science,2001, 12(3): 395-402. (in Chinese with English abstract)

        [3]Lal R. Soil erosion research methods[M]. CRC Press, 1994.

        [4]Owoputi L, Stolte W. Soil detachment in the physically based soil erosion process: a review[J]. Transactions of the ASAE,1995, 38(4): 1099-1110.

        [5]Li Zhenwei, Zhang Guanghui, Geng Ren, et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China[J]. Biosystems Engineering, 2015, 129: 248-257.

        [6]Nachtergaele J, Poesen J. Spatial and temporal variations in resistance of loess-derived soils to ephemeral gully erosion[J].European Journal of Soil Science, 2002, 53(3): 449-463.

        [7]Gyssels G, Poesen J, Nachtergaele J, et al. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones[J]. Soil and Tillage Research, 2002, 64(3): 189-201.

        [8]Zhang Guanghui, Liu Baoyuan, Liu Guobin, et al.Detachment of undisturbed soil by shallow flow[J]. Soil Science Society of America Journal, 2003, 67(3): 713-719.

        [9]Zhang Guanghui, Tang Keming, Sun Zilong, et al. Temporal variability in rill erodibility for two types of grasslands[J].Soil Research, 2014, 52(8): 781-788.

        [10]Knapen A, Poesen J, De Baets S. Seasonal variations in soil erosion resistance during concentrated flow for a loess?derived soil under two contrasting tillage practices[J]. Soil and Tillage Research, 2007, 94(2): 425-440.

        [11]Wang Bing, Zhang Guanghui, Zhang Xunchang, et al. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland[J]. Soil Science Society of America Journal, 2014, 78(2): 589-597.

        [12]Wang Bing, Zhang Guanghui, Shi Yangyang, et al. Effects of near soil surface characteristics on the soil detachment process in a chronological series of vegetation restoration[J].Soil Science Society of America Journal, 2015, 79(4): 1213-1222.

        [13]Liu Fa, Zhang Guanghui, Sun Long, et al. Effects of biological soil crusts on soil detachment process by overland flow in the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 2016, 41(7): 875-883.

        [14]Sun Long, Zhang Guanghui, Luan Lili, et al. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China[J]. Catena, 2016, 145: 239-245.

        [15]Wang Bing, Zhang Guanghui, Shi Yangyang, et al. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China[J].Earth Surface Processes and Landforms, 2013, 38(14):1725-1734.

        [16]Yu Yaochuang, Zhang Guanghui, Geng Ren, et al. Temporal variation in soil detachment capacity by overland flow under four typical crops in the Loess Plateau of China[J].Biosystems Engineering, 2014, 122: 139-148.

        [17]Xiong Shaojun, Nilsson C. Dynamics of leaf litter accumulation and its effects on riparian vegetation: a review[J]. The Botanical Review, 1997, 63(3): 240-264.

        [18]Li Zhenwei, Zhang Guanghui, Geng Ren, et al. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau[J].Geomorphology, 2015, 248: 264-272.

        [19]Sun Long, Zhang Guanghui, Liu Fa, et al. Effects of incorporated plant litter on soil resistance to flowing water erosion in the Loess Plateau of China[J]. Biosystems Engineering, 2016, 147: 238-247.

        [20]Casermeiro M, Molina J, De La Cruz Caravaca M, et al.Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate[J]. Catena, 2004, 57(1): 91-107.

        [21]Durán Zuazo V, Rodríguez Pleguezuelo C. Soil?erosion and runoff prevention by plant covers. A review[J]. Agronomy for Sustainable Development, 2008, 28(1): 65-86.

        [22]Blanco-Canqui H, Lal R. Crop residue removal impacts on soil productivity and environmental quality[J]. Critical reviews in plant science, 2009, 28(3): 139-163.

        [23]Karlen D, Wollenhaupt N, Erbach D, et al. Long?term tillage effects on soil quality[J]. Soil and Tillage Research, 1994,32(4): 313-327.

        [24]寇萌,焦菊英,尹秋龍,等. 黃土丘陵溝壑區(qū)主要草種枯落物的持水能力與養(yǎng)分潛在歸還能力[J]. 生態(tài)學報,2015,35(5):1-18.Kou Meng, Jiao Juying, Yin Qiulong, et al. Water holding capacity and potential nutrient return capacity of main herb species litter in the hill-gully Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(5): 1-18. (in Chinese with English abstract)

        [25]欒莉莉,張光輝,孫龍,等. 黃土高原區(qū)典型植被枯落物蓄積量空間變化特征[J]. 中國水土保持科學,2015,13(6):48-53.Luan Lili, Zhang Guanghui, Sun Long, et al. Spatial variation in water-holding properties of typical plant litters in the loess hilly region[J]. Journal of Soil and Water Conservation, 2015,13(6): 48-53. (in Chinese with English abstract)

        [26]孫龍. 枯落物對土壤分離過程的影響及其季節(jié)變化特征[D]. 北京:中國科學院大學,2016.Sun Long. Soil Detachment Process and Its Temporal Variation Under the Influence of Plant Litter[D]. Beijing:University of Chinese Academy Sciences, 2016. (in Chinese with English abstract)

        [27]Luk S, Merz W. Use of the salt tracing technique to determine the velocity of overland flow[J]. Soil technology,1992, 5(4): 289-301.

        [28]Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2):322-331.

        [29]Ma Yini, Filley T R, Szlavecz K, et al. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages[J]. Soil Biology and Biochemistry,2014, 69: 212-222.

        [30]劉宇,張洪江,張友焱,等. 晉西黃土丘陵區(qū)不同人工林枯落物持水特性研究[J]. 水土保持通報,2013,(6):69-74.Liu Yu, Zhang Hongjiang, Zhang Youyan, et al. Water holding capacity characteristics under litters of different kinds of planted forests in loess hilly region of western Shanxi province[J]. Bulletin of Soil and Water Conservation,2013, (6): 69-74. (in Chinese with English abstract)

        [31]Knapen A, Poesen J, De Baets S. Rainfall-induced consolidation and sealing effects on soil erodibility during concentrated runoff for loess-derived topsoils[J]. Earth Surface Processes and Landforms, 2008, 33: 444-458.

        Soil erosion resistance of black locust land with different ages of returning farmland on Loess Plateau

        Sun Long1,2, Zhang Guanghui1,3※, Wang Bing4, Luan Lili3
        (1.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling712100, China;2.State Key Laboratory of Urban and Regional Ecology,Research Center for Eco?Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China;3.School of Geography, Beijing Normal University, Beijing100875, China;4.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling712100, China)

        Plant litter has been accumulated greatly along with vegetation restoration on the Loess Plateau. Besides covering soil surface, plant litter can be incorporated into topsoil under natural circumstances by soil splash, sediment deposition, and soil-dwelling animal activities. The distribution (covering soil surface or incorporated into surface soil) and the decomposition of plant litter can modify soil physical properties (including soil detachment capacity and soil erosion resistance) which are closely related to soil detachment process by overland flow. This study was conducted to investigate the effect of vegetation restoration on soil detachment process for black locust (Robinia pseudoacaciaL.) stand with different ages of returning farmland on the Loess Plateau. The experiments were performed in the Zhifanggou small watershed (36°46'28"-36°46'42"N,109°13'46"-109°16'03"E) in August, 2015. After a complete watershed survey, altogether 6 sampling sites were selected,including 1 corn (Zea maysL.) field and 5 black locust stands of 10, 15, 20, 30, and 40 years. Soil samples were collected from the top 5 cm soil layer using a circular steel ring with 10.0 cm diameter and 5.0 cm depth. Soil detachment was measured in a 4.0 m long, 0.35 m wide flume. Prior to the test of soil detachment capacity, soil samples were saturated in a container for 8 h and drained for 12 h. Then the soil samples were inserted into a hole (0.5 m away from the outlet of flume) on the flume bed and were scoured by flowing water under designed flow shear stress. A total of 180 soil samples were collected from different aged black locust stands and scoured under 6 flow shear stresses. In this study, 6 combinations of flow rates and slopes were applied to obtain 6 different flow shear stresses (5.4-17.4Pa) with similar intervals. Rill erodibility is defined as the increase in soil detachment capacity per unit increase in flow shear stress. Critical shear stress is a threshold parameter defined as the value above which a rapid increase in soil detachment capacity per unit increase in shear stress occurs. When the measured detachment capacity was plotted against the flow shear stress, rill erodibility and critical shear stress could be determined from the slope of the fitted straight line and its intercept on theXaxis. The results showed that the density of plant litter in 0-5 cm surface soil was 0.07, 0.18, 0.32, 0.29 and 0.17 kg/m2for 10, 15, 20, 30, and 40-year-old black locust stands, respectively, with the mean value of 0.20 kg/m2. The 40-year-old black locust stands had more capillary porosities, soil organic matter, and water stable aggregates, and smaller soil bulk density. Soil detachment capacity decreased by 49.8%, 73.9%, 85.0%, 86.0%, and 87.0% for 10, 15, 20, 30, and 40-year-old black locust stands, respectively, compared to the control. The soil detachment capacity decreased significantly over time as an exponential function (R2=0.97,P=0.006). The control (corn field) had the biggest rill erodibility (0.29 s/m), and the 40-year-old black locust stand had the smallest rill erodibility (0.04 s/m). Compared to the control, the rill erodibility for 40-year-old black locust stand was reduced by 86.3%. The black locust stand with 20 years had the biggest critical shear stress (4.78 Pa), and the control had the smallest critical shear stress (4.15 Pa). The critical shear stress increased by 10.1% for 40-year-old black locust stand compared to the control. The critical shear stress increased significantly with litter density as a linear function (R2=0.67,P=0.046). Rill erodibility was better than critical shear stress in the respect of reflecting the variation of soil detachment. The soil-plant litter system has a larger erosion resistance to flowing water than the control. Importantly, the soil-root system may have a larger structural stability and erosion resistance to flowing water than soil-plant litter system.

        erosion; experiment; soils; Loess Plateau; farmland afforestation; soil detachment capacity; rill erodibility; critical shear stress

        10.11975/j.issn.1002-6819.2017.10.025

        S157.1

        A

        1002-6819(2017)-10-0191-07

        2016-09-05

        2017-04-05

        中國科學院“百人計劃”;國家自然科學基金(41530858,41271287)

        孫 龍,男,山東臨沂人,博士,博士后,主要從事水土保持與土壤侵蝕研究。北京 中國科學院生態(tài)環(huán)境研究中心,100085。

        Email:lsun@rcees.ac.cn

        ※通信作者:張光輝,男,甘肅靜寧人,博士,教授,主要從事土壤侵蝕與水土保持研究。北京 北京師范大學,100875。Email:ghzhang@bnu.edu.cn

        猜你喜歡
        細溝林齡刺槐
        黑土坡面細溝形態(tài)及剖面特征試驗研究
        檫樹優(yōu)樹半同胞子代測定林樹高性狀遺傳變異研究
        刺槐造林技術及病蟲害防治方法探究
        陜北子洲“7?26”暴雨后坡耕地細溝侵蝕及其影響因素分析
        刺槐樹
        細溝發(fā)育與形態(tài)特征研究進展
        刺槐造林和病蟲害防治技術探討
        不同林齡紅松人工林優(yōu)樹選擇技術的研究
        防護林科技(2016年9期)2016-09-27 01:34:21
        遼東山區(qū)不同林齡落葉松人工林土壤理化特征
        防護林科技(2016年5期)2016-09-05 01:19:43
        刺槐無性系生態(tài)適應性差異研究
        欧美成人猛片aaaaaaa| 日韩精品极品视频在线免费| 久久少妇高潮免费观看| 亚洲精品一区久久久久一品av| 四虎国产精品免费久久| 日韩av在线毛片| 人妻少妇激情久久综合| 97人妻人人揉人人躁九色| 六月婷婷久香在线视频| 最新精品国偷自产在线婷婷| 中文字幕日韩精品亚洲精品| 婷婷精品国产亚洲av麻豆不片| 无码骚夜夜精品| 亚洲男人堂色偷偷一区| 精品蜜桃av免费观看| 成人麻豆日韩在无码视频| 亚洲精品国产第一区二区尤物| 国产呦系列视频网站在线观看| 国产av剧情久久精品久久| 久久婷婷人人澡人人爽人人爱| 色综合自拍| 国产黄色看三级三级三级| 久久青青草原国产毛片| 精品午夜福利无人区乱码一区| 亚洲av高清在线观看三区| 大尺度极品粉嫩嫩模免费| 免费无码av一区二区| 国产精品一区二区暴白浆| 成av人片一区二区三区久久| 国产精品亚洲第一区二区三区| 国产精品人妻一码二码尿失禁 | 亚欧免费视频一区二区三区| 女优av性天堂网男人天堂| 国产精品无码久久综合| 日韩无码无播放器视频| 色青青女同性恋视频日本熟女| 亚洲性无码av中文字幕| 免费无码毛片一区二区三区a片| 亚洲av永久青草无码精品| 国产精品久色婷婷不卡| 国产精品久久久久影院|