張 寧,李云開(kāi),司哺春,申瑞霞,劉志丹※
(1. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院設(shè)施農(nóng)業(yè)工程農(nóng)業(yè)部重點(diǎn)實(shí)驗(yàn)室,環(huán)境增值能源實(shí)驗(yàn)室,北京 100083;2. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083)
電化學(xué)法對(duì)滴灌用再生水的殺菌和堿度硬度去除效果
張 寧1,李云開(kāi)2,司哺春1,申瑞霞1,劉志丹1※
(1. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院設(shè)施農(nóng)業(yè)工程農(nóng)業(yè)部重點(diǎn)實(shí)驗(yàn)室,環(huán)境增值能源實(shí)驗(yàn)室,北京 100083;2. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083)
針對(duì)再生水的使用過(guò)程中引起的滴頭堵塞問(wèn)題,該文采用低壓電化學(xué)手段研究防控灌水器堵塞的可行性。設(shè)計(jì)陽(yáng)極為Ti/SnO2+Sb2O3,陰極為不銹鋼的升流式電化學(xué)處理器,以北京再生水為進(jìn)水開(kāi)展試驗(yàn),測(cè)量處理前后水中的微生物總數(shù)、硬度、堿度等指標(biāo),計(jì)算殺菌率、硬度去除率、堿度去除率等。結(jié)果表明,在累計(jì)處理電壓小于100 h時(shí),殺菌率可以達(dá)到90%以上;在處理電壓為4 V,停留時(shí)間條件為48 h下,電化學(xué)處理器硬度去除率可以達(dá)到23.94%,堿度去除率達(dá)到66.85%,可以起到防控灌水器堵塞的作用。但該陽(yáng)極在累計(jì)處理時(shí)間達(dá)到320 h后,殺菌率和硬度去除率有顯著下降,穩(wěn)定性需進(jìn)一步提高;通過(guò)交流阻抗圖,發(fā)現(xiàn)在累計(jì)處理時(shí)間達(dá)到320 h時(shí)電極的擴(kuò)散內(nèi)阻要比對(duì)照組大。該研究證實(shí)了電化學(xué)法處理再生水和防控滴灌堵塞的可行性,可進(jìn)一步通過(guò)改進(jìn)電極材料提高電化學(xué)處理器的穩(wěn)定性。
電化學(xué);殺菌;堿度;再生水;滴灌
張 寧,李云開(kāi),司哺春,申瑞霞,劉志丹. 電化學(xué)法對(duì)滴灌用再生水的殺菌和堿度硬度去除效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):154-160. doi:10.11975/j.issn.1002-6819.2017.10.020 http://www.tcsae.org
Zhang Ning, Li Yunkai, Si Buchun, Shen Ruixia, Liu Zhidan. Sterilization and alkalinity-hardness removal effect by using electrochemical method for reclaimed water used in drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 154-160. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.10.020 http://www.tcsae.org
中國(guó)既是農(nóng)業(yè)大國(guó),又是水資源短缺的國(guó)家,農(nóng)業(yè)用水量約占全國(guó)用水量的73%[1],使用再生水進(jìn)行滴灌既可以保護(hù)環(huán)境、節(jié)約水資源,又可以提高水資源利用率,是實(shí)現(xiàn)生態(tài)環(huán)境可持續(xù)發(fā)展的合理灌水模式[2]。已有大量學(xué)者研究了再生水在滴灌中的應(yīng)用[3-5]。灌水器狹長(zhǎng)流道或微孔,對(duì)小流量、均勻準(zhǔn)確地輸送肥料或水分造成了一定的困難[6],另外再生水中的其他物質(zhì),也使灌水器堵塞問(wèn)題愈發(fā)嚴(yán)重。灌水器堵塞是由于物理、化學(xué)、生物等相互作用而造成的。國(guó)內(nèi)外有大量學(xué)者研究了再生水滴灌堵塞問(wèn)題,發(fā)現(xiàn)復(fù)雜的滴頭流道[7],再生水中的顆粒物[8]、營(yíng)養(yǎng)鹽分[9]、有機(jī)物[10]、微生物[11]等物質(zhì),均對(duì)灌水器的堵塞問(wèn)題產(chǎn)生一定的影響。近期有學(xué)者指出,再生水中顆粒物和微生物是滴灌灌水器堵塞的關(guān)鍵誘發(fā)因素[12-16],另外,Ca2+、Mg2+濃度對(duì)灌水器堵塞有著重要的影響,灌水器相對(duì)平均流量及灌水均勻度隨著Ca2+、Mg2+濃度的增加而降低,堵塞物質(zhì)干質(zhì)量隨著 Ca2+、Mg2+濃度增加而增加[17]。
目前常用的解決滴灌堵塞的方法主要有加氯處理,毛管沖洗等。李久生等[18]用加氯的方法對(duì)灌水器進(jìn)行處理,發(fā)現(xiàn)可以殺死再生水中99.9%的細(xì)菌,而且可以使灌水均勻系數(shù)保持在 90%以上。宋鵬等[19]也研究了加氯及毛管沖洗對(duì)灌水器堵塞的控制效果,發(fā)現(xiàn)毛管沖洗、加氯、毛管沖洗配合加氯使胞外聚合物分別降低 28.0%、22.9%和63.9%。但加氯可能引起土壤中氯含量過(guò)高,影響作物的生長(zhǎng)和產(chǎn)量[20],并且會(huì)對(duì)環(huán)境造成污染;反復(fù)沖洗會(huì)造成水資源浪費(fèi)。
Gordon等[21]最先發(fā)現(xiàn)電化學(xué)方法對(duì)微生物的生長(zhǎng)有抑制作用,他們使用銅和鉑金屬來(lái)進(jìn)行微生物的富集,發(fā)現(xiàn)電化學(xué)方法可以減少微生物的附著情況。美國(guó)國(guó)家航空局發(fā)明了電子水處理技術(shù)[22],一般由陽(yáng)極和陰極構(gòu)成,與外界電源相接。在低壓的作用下,在陰極區(qū)會(huì)發(fā)生化學(xué)反應(yīng),使鈣鎂等離子在處理器內(nèi)生成沉淀,從水中脫離。低壓電化學(xué)法水處理技術(shù),只利用電能,綠色環(huán)保。
另外,在電壓作用下,水中會(huì)生成活性氯、活性自由基等物質(zhì)?;钚月燃碈l2、HClO、ClO-的總和,活性自由基是指水在處理過(guò)程中產(chǎn)生的如HO·、O2·、Cl·等物質(zhì)[22]。這些活性物質(zhì)會(huì)攻擊和破壞微生物的細(xì)胞膜結(jié)構(gòu)、核酸、蛋白質(zhì)及其他大分子物質(zhì),使細(xì)胞失活。Chung等[23]的研究表明,即使在氯離子濃度很低的情況下,電解所產(chǎn)生的活性氯也具有良好的殺菌效果。Diao等[24]發(fā)現(xiàn)活性自由基是電化學(xué)法能夠起到殺菌作用的主要成分。雖然有研究表明電化學(xué)法水處理可以抑制微生物生長(zhǎng)[25-28],但大部分研究都是培養(yǎng)單獨(dú)的菌群進(jìn)行試驗(yàn),尚未有關(guān)于電化學(xué)法對(duì)再生水處理效果的研究。
本文建立了一個(gè)圓柱形上升式電化學(xué)處理器,陽(yáng)極為Ti/SnO2+Sb2O3,陰極為不銹鋼,在實(shí)驗(yàn)室內(nèi)用電化學(xué)法對(duì)再生水進(jìn)行預(yù)處理,通過(guò)測(cè)量水樣處理前后的微生物總數(shù)、硬度等指標(biāo),研究用電化學(xué)法處理再生水的效果,以期提供一種滴灌用再生水的處理方法。
1.1 處理水質(zhì)
處理水質(zhì)從北京信通碧水再生水有限公司獲得,碧水再生水有限公司采用美國(guó)深池曝氣污水再生與回用生態(tài)處理工藝。待處理水質(zhì)從再生水有限公司取回后放置于實(shí)驗(yàn)室中,試驗(yàn)期間于 4 ℃條件下保存,試驗(yàn)前無(wú)需預(yù)處理。水質(zhì)特性如表1,滿足農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn)[29]。
表1 供試再生水的特性Table 1 Properties of reclaimed water for experiments
1.2 試驗(yàn)裝置及過(guò)程
本試驗(yàn)設(shè)計(jì)并制作了一套電化學(xué)系統(tǒng),如圖1所示。再生水經(jīng)由蠕動(dòng)泵進(jìn)入到電化學(xué)處理器內(nèi),待反應(yīng)后再流入出水瓶中,處理器陽(yáng)極為Ti/SnO2+Sb2O3,涂層成分為 SnCl4×H2O+SbCl3×5H2O+HCl+C2H5OH[30],陰極為不銹鋼,外殼為有機(jī)玻璃,處理器的陽(yáng)極和陰極分別與外界電壓控制系統(tǒng)的正極、負(fù)極相接,保證處理器內(nèi)形成穩(wěn)定的電場(chǎng)。處理器直徑為80 mm,高徑比為4∶1,體積為1.5 L。
本試驗(yàn)共分為3部分:1)固定處理時(shí)間為12 h,設(shè)置反應(yīng)電壓為0、0.5、2、4 V,只運(yùn)行R1反應(yīng)器,每組試驗(yàn) 3次重復(fù)(本文并未分析此時(shí)電壓的影響);2)固定外接電壓為4 V,設(shè)置處理時(shí)間分別為0、3、12、48 h,此時(shí)鈦陽(yáng)極累計(jì)處理時(shí)間在160 h左右,只運(yùn)行R1反應(yīng)器,每組試驗(yàn)進(jìn)行2次重復(fù);3)設(shè)置處理時(shí)間分別為0、6、12、24、48 h,此時(shí)鈦陽(yáng)極累計(jì)處理時(shí)間在320 h左右,為了消除電化學(xué)處理器本身對(duì)再生水水質(zhì)的影響,除了運(yùn)行R1外,又設(shè)置未通電的R2作為空白對(duì)照,每組試驗(yàn) 3次重復(fù)。鈦陽(yáng)極累計(jì)處理時(shí)間即處理時(shí)間的簡(jiǎn)單求和。試驗(yàn)時(shí)分別從進(jìn)水瓶和出水瓶中取樣100 mL進(jìn)行測(cè)試,用于獲得水樣的微生物總數(shù)、總硬度、總堿度以及氯離子濃度等指標(biāo)。
圖1 電化學(xué)系統(tǒng)示意圖Fig.1 Schematic diagram of electrochemical system
1.3 測(cè)試方法
1.3.1 微生物總數(shù)
平板計(jì)數(shù)法[31]。將樣品稀釋后涂布到營(yíng)養(yǎng)瓊脂培養(yǎng)基上,放置于LT-CPS型恒溫培養(yǎng)箱(LEAD Tech)內(nèi),在37 ℃條件下培養(yǎng)24 h,數(shù)菌落數(shù),計(jì)算殺菌率S(%),計(jì)算公式如下:
式中A為進(jìn)水微生物總數(shù),cfu/mL;B為出水微生物總數(shù),cfu/mL。
1.3.2 總硬度
EDTA滴定法[31],以鉻黑T作指示劑,用EDTA溶液滴定,計(jì)算硬度去除率Y(%):
式中C為進(jìn)水總硬度,mmol/L;D為出水總硬度,mmol/L。
1.3.3 總堿度
電位滴定法[31]:玻璃電極為指示電極,甘汞電極為參比電極,用0.1 mol/L HCl溶液進(jìn)行滴定。
式中J為堿度去除率,%;E為進(jìn)水總堿度,mg/L;F為出水總堿度,mg/L。
1.3.4 氯離子濃度
電位滴定法[31],氯電極為指示電極,雙液接參比電極為參比電極,用AgNO3溶液進(jìn)行滴定。
式中L為氯離子去除率,%;G為進(jìn)水氯離子濃度,mg/L;H為出水氯離子濃度,mg/L。
1.3.5 交流阻抗
用上海辰華CHI660E電化學(xué)工作站測(cè)得。測(cè)試時(shí),使用一個(gè)電化學(xué)處理器,向內(nèi)添加磷酸鹽緩沖液,將電化學(xué)工作站的工作電極與電化學(xué)處理器的陽(yáng)極相連,輔助電極與陰極相連,加入甘汞參比電極,使電極插入到磷酸鹽緩沖液中,但不與陽(yáng)極、陰極直接接觸,并與電化學(xué)工作站的參比電極相連,掃描頻率為10–2~105Hz,振幅為0.01 V[32]。
2.1 低壓電化學(xué)處理對(duì)再生水特性的影響
表 2為低壓電化學(xué)法水處理對(duì)再生水殺菌率、硬度去除率以及堿度去除率的影響??梢钥闯?,當(dāng)鈦陽(yáng)極累計(jì)處理時(shí)間在160 h左右(R1 160 h)時(shí),殺菌率隨處理時(shí)間逐漸增加,因而微生物總數(shù)隨著處理時(shí)間的增加而減小,與Dargahi等[33]報(bào)道的結(jié)論一致,增加處理時(shí)間可以提高處理器的殺菌率,因?yàn)殡S著處理時(shí)間的增加,待處理水被電解的時(shí)間變長(zhǎng),產(chǎn)生的活性物質(zhì)變多,微生物總數(shù)減小。當(dāng)處理時(shí)間為48 h時(shí),殺菌率達(dá)到最大值,為76.23%。而當(dāng)鈦陽(yáng)極累計(jì)處理時(shí)間在320 h左右時(shí),微生物總數(shù)出現(xiàn)了增加的現(xiàn)象,在處理時(shí)間為12和24 h時(shí)殺菌率為正值,在處理時(shí)間為6和48 h時(shí),殺菌率為負(fù)值,說(shuō)明此時(shí)水樣中的微生物非但沒(méi)有減少,反而出現(xiàn)了增加的情況。另外,處理時(shí)間為48 h的試驗(yàn)結(jié)果小于處理時(shí)間為12或24 h的殺菌率,是因?yàn)樘幚頃r(shí)間為12和24 h的試驗(yàn)順序是早于處理時(shí)間為6 h和48 h的,也就是說(shuō)處理時(shí)間為12和24 h時(shí)的試驗(yàn)的鈦陽(yáng)極累計(jì)處理時(shí)間小于當(dāng)處理時(shí)間為6和48 h的累計(jì)處理時(shí)間。
表2 低壓電化學(xué)法水處理對(duì)再生水主要特性的影響Table 2 Effect of low-voltage electrochemical treatment on main properties of reclaimed water
不管處理時(shí)間如何變化,R2(空白)對(duì)照組(CK)的殺菌率始終為負(fù)值(表 2),意味著在沒(méi)有電化學(xué)法對(duì)再生水進(jìn)行處理時(shí),微生物在處理器內(nèi)是不斷生長(zhǎng)的。但R1的殺菌率始終大于CK的殺菌率,說(shuō)明電化學(xué)處理器仍然起到抑制微生物生長(zhǎng)的作用。
理論上,當(dāng)施加電壓超過(guò)1.229 V時(shí),便會(huì)使水電離出氫氣和氧氣[34],釋放出的氧可以改變水垢分子間的電子結(jié)合力,改變其晶體結(jié)構(gòu),使垢變得稀松多孔,提高水對(duì)硬度離子的溶解率[35]。因此本試驗(yàn)的電壓設(shè)置(4 V)對(duì)硬度有一定的去除作用(表2)。在鈦電極累計(jì)處理時(shí)間160 h左右時(shí),硬度去除率隨處理時(shí)間增加而增大,與Zhi等[36-37]結(jié)論相符,并且在處理時(shí)間為48 h時(shí),硬度去除率最大,為23.94%。在累計(jì)處理時(shí)間在320 h左右時(shí),樣品的總硬度隨處理時(shí)間的改變并不大,且與對(duì)照組 R2的硬度值差異不大。CK的硬度去除率在–6.43%~0.95%之間。CK的微弱變化,估計(jì)與樣品水樣的蒸發(fā)有關(guān)。另外,鈦陽(yáng)極累計(jì)處理時(shí)間在160 h左右時(shí),電化學(xué)處理器對(duì)硬度離子的去除效果優(yōu)于當(dāng)鈦陽(yáng)極累計(jì)時(shí)間為320 h時(shí)的效果。
堿度去除率的變化規(guī)律與殺菌率和硬度去除率不同(表2),在鈦陽(yáng)極累計(jì)處理時(shí)間約160 h時(shí),水樣中的堿度去除率值隨著處理時(shí)間的增加而增加,當(dāng)處理時(shí)間為48 h時(shí),堿度去除率最高,為66.85%。在鈦陽(yáng)極累計(jì)處理時(shí)間在320 h左右時(shí),水樣中的堿度值與原始水樣相比,也有所降低,但降低的幅度小于累計(jì)時(shí)間在160 h時(shí)的值。CK的堿度值降低非常明顯。
2.2 鈦電極累計(jì)處理時(shí)間對(duì)再生水特性的影響
低壓電化學(xué)處理對(duì)殺菌率的影響如圖2a所示,試驗(yàn)發(fā)現(xiàn),在前100 h內(nèi),電化學(xué)處理器對(duì)微生物的生長(zhǎng)有明顯的抑制作用,殺菌率可以達(dá)到 80%左右;在累計(jì)處理時(shí)間為100~200 h時(shí),殺菌率也在30%~75%之間。當(dāng)累計(jì)時(shí)間為200 h~320 h之間時(shí),殺菌率出現(xiàn)突變,在累計(jì)處理時(shí)間為288 h時(shí),殺菌率為18.57%,當(dāng)累計(jì)處理時(shí)間為312 h時(shí),殺菌率達(dá)到了94.13%,此時(shí)殺菌率開(kāi)始急速下降,并在累計(jì)處理時(shí)間為324 h時(shí)出現(xiàn)了殺菌率為負(fù)值,也就是出水中微生物總數(shù)大于未處理原水中微生物總數(shù)的情況。為探究出現(xiàn)殺菌率為負(fù)值的原因,試驗(yàn)時(shí)嘗試更換不銹鋼陰極,但對(duì)殺菌率影響不大,猜測(cè)出現(xiàn)問(wèn)題的原因在于鈦陽(yáng)極。
硬度去除率隨累計(jì)處理時(shí)間的變化規(guī)律如圖 2b所示,與殺菌率的類似,在累計(jì)處理時(shí)間小于200 h時(shí),電化學(xué)處理器可以去除水中的硬度離子,硬度去除率在0~24.47%之間,在反應(yīng)電壓為4 V、處理時(shí)間為48 h、累計(jì)處理時(shí)間為204 h時(shí),硬度去除率出現(xiàn)最大值,為24.47%。在累計(jì)處理時(shí)間在200~320 h內(nèi),硬度去除率出現(xiàn)正負(fù)值反復(fù)的情況,硬度去除率在–2.83%~0.67%之間;在累計(jì)處理時(shí)間大于320 h后,硬度去除率一直處于負(fù)值。此時(shí),電化學(xué)系統(tǒng)對(duì)硬度離子已無(wú)去除效果。
圖2 鈦電極累計(jì)處理時(shí)間對(duì)再生水特性的影響Fig.2 Effect of accumulated treatment time of titanium electrode on reclaimed water characteristics
堿度去除率的變化規(guī)律如圖2c所示,可以看到,在累計(jì)處理時(shí)間小于200 h時(shí),電化學(xué)法處理可以減小水樣中的堿度,并且存在2個(gè)峰值,分別為67.44%和63.37%。但在累計(jì)處理時(shí)間為200~320 h時(shí),水樣中堿度值幾乎沒(méi)有什么變化。在累計(jì)處理時(shí)間大于320 h后,堿度去除率又開(kāi)始上升。
觀察氯離子去除率的變化規(guī)律(圖 2d)可以得知,在累計(jì)處理時(shí)間小于50 h時(shí),氯離子去除率為負(fù)值,意味著氯離子濃度比未處理的原始再生水中氯離子濃度高。在累計(jì)處理時(shí)間在50~200 h之間時(shí),氯離子去除率在–10.75%~5.57%之間,基本高于未處理的原始再生水中氯離子濃度。但當(dāng)累計(jì)處理時(shí)間在200~350 h之間時(shí),氯離子去除率出現(xiàn)了波動(dòng),直到當(dāng)累計(jì)處理時(shí)間為330 h時(shí),氯離子去除率達(dá)到了–6.44%,由此時(shí)開(kāi)始,氯離子去除率隨著累計(jì)處理時(shí)間的增加而逐漸增大。宋衛(wèi)鋒等[38]試驗(yàn)表明,通過(guò)電化學(xué)處理后,水樣中的氯離子有微弱的下降;李明建等[39]發(fā)現(xiàn)氯離子濃度因水樣的蒸發(fā)濃縮有所升高。但本文的氯離子濃度變化與他人研究均有所不同,先增加后減小,初步猜測(cè)是因鈦陽(yáng)極涂層發(fā)生變化,使氯離子大量溶解到水中,造成氯離子濃度升高,氯離子去除率為負(fù)值,并隨著處理時(shí)間的增加,消耗了部分氯離子,從而使氯離子濃度下降,氯離子去除率為正值。
2.3 再生水處理過(guò)程中鈦電極交流阻抗的變化
交流阻抗圖一般由高頻區(qū)半圓(圖 3中實(shí)部阻抗在100 ?以內(nèi))和低頻區(qū)直線(圖3中實(shí)部阻抗在100 ?以外)組成。通過(guò)高頻區(qū)半圓可以得知溶液內(nèi)阻和電荷傳遞內(nèi)阻,通過(guò)低頻區(qū)直線可以得知擴(kuò)散阻抗,低頻區(qū)直線斜率與電解液離子在電極中的擴(kuò)散阻抗有關(guān),斜率越大說(shuō)明擴(kuò)散阻抗越小。R1和R2的交流阻抗圖如圖3所示,處理器R1的溶液內(nèi)阻和電荷轉(zhuǎn)移內(nèi)阻不明顯,且小于處理器R2。R1的擴(kuò)散阻抗明顯高于R2。
圖3 反應(yīng)器R1和R2的交流阻抗Fig.3 Electrochemical impedance spectroscopy of reactors R1 and R2
從理論上可以得知,施加電壓越大,處理效果越好,但過(guò)高的電壓會(huì)造成硬度離子去除不徹底或電極腐蝕的現(xiàn)象[22]。本文的電化學(xué)系統(tǒng)在陽(yáng)極累計(jì)處理時(shí)間達(dá)到320 h后,系統(tǒng)殺菌率、硬度去除率均下降,從圖2d和圖3可以看出,本文R1的鈦陽(yáng)極涂層不穩(wěn)定,涂層中的氯離子溶解到待處理水中,涂層成分發(fā)生變化,陽(yáng)極被腐蝕。造成R1擴(kuò)散內(nèi)阻變大,使得作用在水樣上的有效電壓減小,降低了陽(yáng)極的析氧電催化活性[40],從而影響了電化學(xué)處理器的整體殺菌率和去除硬度離子的效果。全貞花等曾發(fā)現(xiàn),系統(tǒng)產(chǎn)生的活性物質(zhì)會(huì)增加水的腐蝕性,從而導(dǎo)致系統(tǒng)銹蝕[41]。
有文獻(xiàn)曾發(fā)現(xiàn),在電化學(xué)體系中,細(xì)菌有可能是增長(zhǎng)的[42]。但因本文水樣取自實(shí)際的污水處理廠,微生物種類比較豐富,并不知道具體增加的原因,初步猜測(cè)是馴化了部分耐電菌,但具體結(jié)果仍需進(jìn)一步研究探討。
1)本文所建立的電化學(xué)處理器,陽(yáng)極為 Ti/SnO2+Sb2O3,陰極為不銹鋼,在短時(shí)間內(nèi)可以有效地減少再生水中的微生物;當(dāng)累計(jì)處理時(shí)間小于100 h時(shí),殺菌率可以達(dá)到80%以上;在電壓為4 V、處理時(shí)間為48 h時(shí),硬度去除率可以達(dá)到23.94%,堿度去除率達(dá)到66.85%,對(duì)于預(yù)防再生水滴灌時(shí)的物化、生物堵塞問(wèn)題有一定的潛在能力。
2)鈦基陽(yáng)極Ti/ SnO2+Sb2O3在短時(shí)間內(nèi)殺菌效果良好,但穩(wěn)定性不高,在累計(jì)處理時(shí)間大于320 h后,殺菌率和硬度去除率均有所降低,陽(yáng)極涂層成分發(fā)生變化,氯離子溶解到水中,交流阻抗表明陽(yáng)極擴(kuò)散內(nèi)阻變大。
3)初步證明用電化學(xué)法防控和處理再生水滴灌堵塞問(wèn)題是有潛力的,但仍需對(duì)陽(yáng)極材料進(jìn)行改良來(lái)提高系統(tǒng)的穩(wěn)定性、增加其壽命。
[參 考 文 獻(xiàn)]
[1]周博. 滴灌系統(tǒng)灌水器生物堵塞特性、評(píng)估及機(jī)理研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2016.Zhou Bo. Characterisitcs, Evaluation and Mechanism of Bio-clogging Process in Drip Irrigation Emitters[D]. Beijing:China Agricultural University, 2016. (in Chinese with English abstract)
[2]劉海軍,黃冠華,王鵬超,等. 再生水滴灌對(duì)滴頭堵塞的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(9):15-20.Liu Haijun, Huang Guanhua, Wang Pengchao, et al. Effect of drip irrigation with reclaimed water on emitter clogging[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 15-20. (in Chinese with English abstract)
[3]Khater A, Kitamura Y, Shimizu K, et al. Quantitative analysis of reusing agricultural water to compensate for water supply deficiencies in the Nile Delta irrigation network[J].Paddy and Water Environment, 2015, 13(4): 367-378.
[4]Christou Anastasis, Maratheftis Grivas, Elia Michael, et al.Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety,quality characteristics and antioxidant capacity of fruits[J].Agricultural Water Management, 2016, 173: 48-54.
[5]劉洪祿,馬福生,許翠平,等. 再生水灌溉對(duì)冬小麥和夏玉米產(chǎn)量及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):82-86.Liu Honglu, Ma Fusheng, Xu Cuiping, et al. Effect of irrigation with reclaimed water on quality and yield of winter heat and summer corn[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2010, 26(3): 82-86. (in Chinese with English abstract)
[6]劉春景,鄭加強(qiáng),周宏平,等. 滴灌滴頭水力性能預(yù)測(cè)模型[J]. 水利學(xué)報(bào),2010,41(11):1353-1359.Liu Chunjing, Zheng Jiaqiang, Zhou Hongping, et al.Prediction model for hydraulic performance of trickle irrigation emitters[J]. Journal of Hydraulic Engineering, 2010,41(11): 1353-1359. (in Chinese with English abstract)
[7]Capra A, Scicolone B. Emitter and filter tests for wastewater reuse by drip irrigation[J]. Agricultural Water Management,2004, 68(2): 135-149.
[8]Li Yunkai, Liu Yaoze, Li Guibing, et al. Surface topographic characteristics of suspended particulates in reclaimed wastewater and effects on clogging in labyrinth drip irrigation emitters[J]. Irrigation Science, 2012, 30(1): 43-56.
[9]姜珊,范興科,葉成恒,等. 不同水質(zhì)條件下灌水器抗堵塞性能研究[J]. 中國(guó)農(nóng)村水利水電,2010(5):25-28.Jiang Shan, Fan Xingke, Ye Chengheng, et al. Research on the anti-clogging performance of emitters with different water qualities[J]. China Rural Water and Hydropower,2010(5): 25-28. (in Chinese with English abstract)
[10]李云開(kāi),楊培嶺,許廷武,等. 滴灌灌水器堵塞的微生物學(xué)機(jī)理及控制模式研究進(jìn)展[M]//中國(guó)農(nóng)業(yè)工程學(xué)會(huì)農(nóng)業(yè)水土工程專業(yè)委員會(huì). 現(xiàn)代節(jié)水高效農(nóng)業(yè)與生態(tài)灌區(qū)建設(shè).云南:云南大學(xué)出版社,2010
[11]Ouaini Charbel Mahfoud Antoine El. Disruption of biofilms from sewage pipes under physical and chemical conditioning[J]. Journal of Environmental Sciences, 2009, 21(1): 120-126.
[12]閆大壯,楊培嶺,李云開(kāi),等. 再生水滴灌條件下滴頭堵塞特性評(píng)估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):19-24.Yan Dazhuang, Yang Peiling, Li Yunkai, et al. Evaluation of drip emitter clogging with reclaimed wastewater irrigation[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011,27(5):19-24.
[13]Gamri Souha, Soric Audrey, Tomas Séverine, et al. Biofilm development in micro-irrigation emitters for wastewater reuse[J]. Irrigation Science, 2014, 32(1): 77-85.
[14]Gilbert R G, Nakayama F S, Bucks D A, et al. Trickle irrigation: predominant bacteria in treated colorado river water and biologically clogged emitters[J]. Irrigation Science,1982(3): 123-132.
[15]周博,李云開(kāi),宋鵬,等. 引黃滴灌系統(tǒng)灌水器堵塞的動(dòng)態(tài)變化特征及誘發(fā)機(jī)制研究[J]. 灌溉排水學(xué)報(bào),2014,33(4/5):123-128.Zhou Bo, Li Yunkai, Song Peng, et al. Dynamic characteristics and inducing mechanism of emitter clogging in the drip irrigation system using Yellow River water[J].Journal of Irrigation and Drainage, 2014, 33(4/5): 123-128.(in Chinese with English abstract)
[16]王亞林,朱德蘭,張林,等. 滴灌毛管泥沙分布與灌水器堵塞試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):177-182.Wang Yalin, Zhu Delan, Zhang Lin, et al. Experiment on sediment distribution in lateral pipes and clogging of emitter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 177-182. (in Chinese with English abstract)
[17]王迪. 不同類型灌水器對(duì)再生水滴灌施肥的適宜性及堵塞機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué), 2014.Wang Di. Suitability of Different Drippers for Fertigating with Reclaimed Water and its Clogging Mechanism[D].Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[18]李久生,陳磊,栗巖峰. 加氯處理對(duì)再生水滴灌系統(tǒng)灌水器堵塞及性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(5):7-13.Li Jiusheng, Chen Lei, Li Yanfeng. Effect of chlorination on emitter clogging and system performance for drip irrigation with sewage effluent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2010, 26(5): 7-13. (in Chinese with English abstract)
[19]宋鵬,李云開(kāi),李久生,等. 加氯及毛管沖洗控制再生水滴灌系統(tǒng)灌水器堵塞[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):80-86.Song Peng, Li Yunkai, Li Jiusheng, et al. Chlorination with lateral flushing controling drip irrigation emitter clogging using reclaimed water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017, 33(2): 80-86. (in Chinese with English abstract)
[20]Hu Y, Oertli J J, Schmidhalter U. Interactive effects of salinity and macronutrient level on wheat. I. Growth[J].Journal of Plant Nutrition, 1997, 20(9): 1155-1167.
[21]Gordon A S, Gerchakov S M, Udey L R. the Effect of polarization on the attachment of marine-bacteria to copper and platinum surfaces[J]. Canadian Journal Microbiology,1981, 27(7): 698-703.
[22]徐浩. 電子水處理技術(shù)[J]. 工業(yè)水處理,2009,8(29):5-9 Xu Hao. Electronic water treatment technology[J]. Industrial Water Treatment, 2009, 8(29): 5-9. (in Chinese with English abstract)
[23]Chung C M, Tobino T, Cho K, et al. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation [J]. Water Research, 2016, 96:52-61.
[24]Diao H F, Li X Y, Gu J D, et al. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction[J]. Process Biochemistry, 2004, 39(11) :1421-1426.
[25]Chen Junping, Yang Changzhu, Zhou Jiahua, et al. Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor[J]. Chemical Engineering Journal, 2007, 128(2/3): 177-180.
[26]Perez-Roa R E, Anderson M A, Rittschof D, et al. Inhibition of barnacle (Amphibalanus amphitrite) cyprid settlement by means of localized, pulsed electric fields[J]. Biofouling, 2008,24(3): 177-184.
[27]Kunitomo S, Obo T. Biofouling prevention with a pulsed discharge[J]. IEEE International Pulsed Power Conference,2003,2:1286-1289.
[28]Abou-Ghazala A, Schoenbach K H. Biofouling prevention with pulsed electric fields[J]. Ieee Transactions on Plasma Science, 2000, 28(1): 115-121.
[29]農(nóng)田灌溉水質(zhì)標(biāo)準(zhǔn):GB5084-2005[S].
[30]吳星五, 趙國(guó)華, 高廷耀. 電化學(xué)法水處理新技術(shù):降解有機(jī)廢水[J]. 環(huán)境科學(xué)學(xué)報(bào), 2000, 20(Z): 80-84.Wu Xingwu, Zhao Guohua, Gao Tingyao. New electrochemical technique of water treatment: Disinfection and algae killing[J]. Acta Scientiae Circumstantiae, 2000, 20(Z):80-84. (in Chinese with English abstract)
[31]國(guó)家環(huán)境保護(hù)總局. 水和廢水監(jiān)測(cè)分析方法:第四版[M].北京:中國(guó)環(huán)境出版社,2014.
[32]He Yanhong, Liu Zhidan, Xing Xinhui, et al. Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell[J]. Biochemical Engineering Journal, 2015, 94: 39-44.
[33]Dargahi Mahdi, Hosseinidoust Zeinab, Tufenkji Nathalie, et al.Investigating electrochemical removal of bacterial biofilms from stainless steel substrates[J]. Colloids and Surfaces B:Biointerfaces, 2014, 117: 152-157.
[34]Dean J A. Longe's handbook of chemistry[M]. New York:McGraw-Hill, 1999.
[35]戴繼嵐. 電子水處理和靜電水處理原理與應(yīng)用:上[J]. 建筑技術(shù)通訊:給水排水,1992(1):57-60.Dai Jilan. Principles and applications of electronic and electrostatic water treatment:Ⅰ[J]. Building Technology Communication: Water & Wastewater, 1992(1): 57-60. (in Chinese with English abstract)
[36]Zhi Suli, Zhang Keqiang. Hardness removal by a novel electrochemical method[J]. Desalination, 2016, 381: 8-14.
[37]劉運(yùn)潔,王春明,全貞花,等. 低壓電子水處理方法的阻垢特性[J]. 工程熱物理學(xué)報(bào),2009,30(1):153-155.Liu Yunjie, Wang Chunming, Quan Zhenhua, et al.Experimental investigation on antifouling performance with low-voltage electronic technic[J]. Journal of Engineering Thermophysics, 2009, 30(1): 153-155. (in Chinese with English abstract)
[38]宋衛(wèi)鋒,朱又春,肖云開(kāi), 等. 低壓脈沖阻垢技術(shù)的試驗(yàn)研究[J]. 工業(yè)水處理,2003,23(5):21-23.Song Weifeng, Zhu Youchun, Xiao Yunkai, et al. Study on the low-voltaged impulse anti-scaling technology[J].Industrial Water Treatment, 2003, 23(5): 21-23. (in Chinese with English abstract)
[39]李明建,彭熾筠. 電子場(chǎng)水處理技術(shù)阻垢效果研究[J]. 重慶環(huán)境科學(xué),1998,20(3):40-44.Li Mingjian, Peng Chiyun. Studies of preventing scale with the electron field water treatment[J]. Chongqing Environmental Science, 1998, 20(3): 40-44. (in Chinese with English abstract)
[40]寧慧利,辛永磊,許立坤,等. 含石墨烯IrO2-Ta2O5涂層鈦陽(yáng)極性能改進(jìn)研究[J]. 稀有金屬材料與工程,2016,45(4):946-951.Ning Huili, Xin Yonglei, Xu Likun, et al. Properties of IrO2-Ta2O5coated titanium anodes modified with graphene[J]. Rare Metal Materials and Engineering, 2016,45(4): 946-951. (in Chinese with English abstract)
[41]全貞花,王春明,李兵,等. 低壓靜電用于循環(huán)冷卻水阻垢的實(shí)驗(yàn)研究[J]. 凈水技術(shù),2007,26(6):30-33.Quan Zhenhua, Wang Chunming, Li Bing, et al.Experimental study of circulating cooling water scale inhibition by low voltage electrostatic[J]. Water Purification Technology, 2007, 26(6): 30-33. (in Chinese with English abstract)
[42]Perez-Roa R E, Tompkins D T, Paulose M, et al. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms[J]. Biofouling, 2006, 22(5/6): 383-390.
Sterilization and alkalinity-hardness removal effect by using electrochemical method for reclaimed water used in drip irrigation
Zhang Ning1, Li Yunkai2, Si Buchun1, Shen Ruixia1, Liu Zhidan1※
(1.Laboratory of Environment-Enhancing Energy and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering,China Agricultural University, Beijing100083,China; 2College of Water Resources and Civil Engineering, China Agricultural University, Beijing100083,China)
Reclaimed water is becoming more and more important for irrigation due to water deficits, however, the ions and microbes in reclaimed water can lead to physiochemical or biological fouling of drip irrigation. There are physical, chemical,biological methods on controlling emitter clogging. In principle, electrolysis supply allows electrical forces to inhibit the formation of fouling. Electrochemical water treatment technology is a clean and environmentally friendly method to prevent emitter clogging compared to chlorination added in reclaimed water because it only uses electricity as power and few poisonous materials are produced. This study investigated the sterilization and alkalinity-hardness removal effect of electrochemical water treatment technology for reclaimed water in order to provide a possible method for reclaimed water treatment used in drip irrigation that could prevent emitter clogging. An electrochemical system was designed, which included a power supply, a pump, a cylindrical upflow low-voltage electrolysis reactor and inlet and effluent bottles. The electrolysis reactor used Ti/ SnO2+Sb2O3and stainless steel as the anode and cathode, and the volume of electrolysis reactor was 1.5 L, the high-aspect ratio was 4:1. The following 2 experiments are designed: 1) the treatment time was 12 h, and the voltage was maintained at 0.5, 2 and 4 V; 2) the voltage was 4 V, and the treatment time was maintained at 3, 6, 12, 24, 48 h; all the experiments were repeated 3 times. The total number of bacteria, total hardness, total alkalinity, pH value, concentration of chlorine was measured before and after electrochemical water treatment. And then we calculated the sterilization rate, removal rate of hardness, the removal rate of alkalinity, the variation of chlorine to evaluate the possibility of electrochemical methods in dealing with ions and microbes. The results showed that besides the applied voltage and treatment time, the accumulated treatment time was also a key factor for electronic water treatment technology. When the accumulated treatment time was below 100 h, the amount of bacteria was very low, and the sterilization rate was more than 80%. The biggest removal rate of hardness and the alkalinity was 23.94% and 66.85%, respectively, which was found when the applied voltage was 4 V and the treatment time was 48 h, and at the same time the accumulated treatment time was 160 h. This result demonstrated that electrochemical water treatment technology had a positive effect on controlling emitter clogging. With the increasing of accumulated treatment time, especially when the accumulated treat time was more than 320 h, there was a significant decline on sterilization rate and removal rate of hardness. The amount of bacteria was increased, and the sterilization rate was below 0 correspondingly. The anode (Ti/SnO2+Sb2O3) was not stable for long-term operation especially when the accumulated treat time was more than 320 h. The sterilization rate and removal rate of hardness and alkalinity was better when the accumulative treatment time was 160 h than it was 320 h. Further study is needed to improve the robustness of the electrolysis reactor and find the reason why Ti/ SnO2+Sb2O3anode lost effectiveness. To apply the electrochemical water treatment in practice, the improvement of anode materials and performance is also needed. The lowcost of electrochemical water treatment provides an economic basis for its application. This primary investigation demonstrated the electrochemical method has the potential for the inhibition of irrigation fouling.
electrochemistry; sterilization; alkalinity; reclaimed water; drip irrigation
10.11975/j.issn.1002-6819.2017.10.020
O657.1; S273.5
A
1002-6819(2017)-10-0154-07
2016-10-12
2017-04-10
水利部公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201401078);大北農(nóng)教育基金會(huì)(1091-2415001)
張 寧,女,河北承德人,主要從事電化學(xué)法水處理研究。北京中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:zhang_ning@cau.edu.cn
※通信作者:劉志丹,男,河南人,副教授,博士,博士生導(dǎo)師,主要從事廢棄物和污水處理、環(huán)境增值能源的研究。北京 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:zdliu@cau.edu.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:劉志丹(E041200655S)。