李 揚(yáng),侯加林※,苑 進(jìn),趙新學(xué),劉雪美,張 麗
(1. 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271018;2. 山東省園藝機(jī)械與裝備重點(diǎn)實(shí)驗(yàn)室,泰安 271018;3. 山東科技大學(xué)資源與土木工程系,泰安 271019)
基于改進(jìn)PSO的模糊PID高枝修剪機(jī)械臂末端抑振算法與試驗(yàn)
李 揚(yáng)1,2,侯加林1,2※,苑 進(jìn)1,2,趙新學(xué)1,劉雪美1,2,張 麗3
(1. 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271018;2. 山東省園藝機(jī)械與裝備重點(diǎn)實(shí)驗(yàn)室,泰安 271018;3. 山東科技大學(xué)資源與土木工程系,泰安 271019)
針對(duì)設(shè)計(jì)的高枝修剪機(jī)械臂定位過(guò)程易產(chǎn)生振動(dòng),難以快速、準(zhǔn)確地將待修樹(shù)枝對(duì)入鋸切口的問(wèn)題,分析大臂展、高負(fù)載自重比臂架系統(tǒng)的柔性特征,在此基礎(chǔ)上研究末端修枝鋸的抑振控制方法,實(shí)現(xiàn)末端修枝鋸的快速精準(zhǔn)定位。首先介紹了高枝修剪機(jī)械臂結(jié)構(gòu)和工作原理,分析了臂架系統(tǒng)的柔性特征對(duì)末端修枝鋸定位產(chǎn)生的影響;其次通過(guò)結(jié)構(gòu)關(guān)系推導(dǎo)和有限元方法建立了機(jī)械臂的數(shù)學(xué)模型并進(jìn)行動(dòng)力學(xué)分析,并設(shè)計(jì)基于改進(jìn)粒子群離線優(yōu)化的模糊PID控制方法,實(shí)現(xiàn)了對(duì)末端修枝鋸的主動(dòng)抑振控制;最后分別在Simulink環(huán)境中和樣機(jī)系統(tǒng)上進(jìn)行了數(shù)值仿真和試驗(yàn)驗(yàn)證。綜合仿真和試驗(yàn)結(jié)果表明:該文設(shè)計(jì)的控制方法可以實(shí)現(xiàn)末端修枝鋸的主動(dòng)抑振,定位過(guò)程中修枝鋸能夠在短時(shí)間內(nèi)進(jìn)入穩(wěn)態(tài),超調(diào)量不足開(kāi)環(huán)狀態(tài)下的50%,震蕩調(diào)整時(shí)間小于1 s,經(jīng)1 s后振幅衰減至峰值的5%以下,從而達(dá)到了較好的末端抑振效果,改善了修枝鋸的定位性能,提高了高枝修剪機(jī)械臂的作業(yè)效率。相關(guān)研究可為其他具有一定相似柔性特征的機(jī)械提供末端抑振和精準(zhǔn)定位的控制經(jīng)驗(yàn)參考。
機(jī)械臂;林業(yè);振動(dòng)控制;振動(dòng)抑制;柔性特征;改進(jìn)粒子群;模糊PID
李 揚(yáng),侯加林,苑 進(jìn),趙新學(xué),劉雪美,張 麗. 基于改進(jìn)PSO的模糊PID高枝修剪機(jī)械臂末端抑振算法與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):49-58. doi:10.11975/j.issn.1002-6819.2017.10.007 http://www.tcsae.org
Li Yang, Hou Jialin, Yuan Jin, Zhao Xinxue, Liu Xuemei, Zhang Li. Experiment and vibration suppression algorithm for high-branch pruning manipulator based on fuzzy PID with improved PSO[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 49-58. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.007 http://www.tcsae.org
樹(shù)木修枝是森林撫育的主要措施之一,對(duì)樹(shù)木的生長(zhǎng)、成材以及森林防火等具有非常積極的意義[1-3]。國(guó)外機(jī)械化修枝研究起步較早,配套較為齊全[4-5],8 m以下的側(cè)枝多采用手工工具搭配伸縮臂,也有機(jī)械將剪枝工具固定在升降平臺(tái)之上,通過(guò)升降機(jī)升降進(jìn)行高空輔助作業(yè)[6]。國(guó)內(nèi)修枝機(jī)械起步較晚,但近年來(lái)已取得了一些研究成果。如辛繼紅等[7]設(shè)計(jì)了一種背負(fù)式修枝機(jī);楊乾華等[8]設(shè)計(jì)了一種電動(dòng)修枝機(jī);焦恩璋等[9]設(shè)計(jì)了一種車(chē)載式高枝修剪機(jī),以高空作業(yè)車(chē)(雙折臂式或伸縮臂式)為基礎(chǔ),在機(jī)械臂末端安裝修枝鋸、擺動(dòng)機(jī)構(gòu)實(shí)現(xiàn)樹(shù)木修枝,但須有配套的專(zhuān)用汽車(chē),液壓系統(tǒng)復(fù)雜,整機(jī)成本很高,操作相對(duì)復(fù)雜;華南熱帶作物機(jī)械研究所[10]設(shè)計(jì)制造了 3SG-8型升降修剪機(jī),工作臺(tái)最大起升高度為8.5 m,操作員可以通過(guò)安裝在工作臺(tái)上的操縱手柄來(lái)控制工作臺(tái)的位置,提高了工作效率和作業(yè)質(zhì)量。
為填補(bǔ)中國(guó)8 m以上修枝機(jī)行業(yè)的空白,本文設(shè)計(jì)了一種操作簡(jiǎn)單、成本較低的移動(dòng)式高大樹(shù)木修枝機(jī)械,能方便拖曳至林區(qū)作業(yè),修枝高度達(dá)到15 m,作業(yè)半徑達(dá)到6 m,最大修枝直徑10 cm[11-12]。但在鋸切定位過(guò)程中,由于機(jī)械臂展長(zhǎng),具有一定柔性特征,修枝鋸定位時(shí)易產(chǎn)生振動(dòng),難以將待修樹(shù)枝對(duì)入鋸口。
本文重點(diǎn)研究修剪機(jī)械臂的柔性特征及末端振動(dòng)抑制問(wèn)題,推導(dǎo)結(jié)構(gòu)關(guān)系式并采用有限元法在Simulink環(huán)境中進(jìn)行修枝臂系統(tǒng)動(dòng)力學(xué)建模和分析;設(shè)計(jì)模糊 PID控制器,將基于改進(jìn)粒子群參數(shù)整定方法用于數(shù)值模型仿真,智能優(yōu)化模糊論域,實(shí)現(xiàn)PID控制器的參數(shù)調(diào)節(jié),進(jìn)而抑振修枝鋸的振動(dòng);最后在Simulink和實(shí)際環(huán)境中分別進(jìn)行了虛擬仿真和樣機(jī)試驗(yàn),驗(yàn)證本文提出的基于改進(jìn)PSO和模糊PID方法對(duì)高枝修剪機(jī)械臂末端抑振的有效性。
林業(yè)高枝修剪機(jī)械的臂架結(jié)構(gòu)如圖 1所示。臂架基座被固定在1個(gè)升降平臺(tái)的回轉(zhuǎn)轉(zhuǎn)盤(pán)上,機(jī)械臂共3節(jié),每節(jié)由1個(gè)關(guān)節(jié)驅(qū)動(dòng)繞軸心旋轉(zhuǎn),第3節(jié)臂末端安裝修枝鋸。關(guān)節(jié)旋轉(zhuǎn)由電動(dòng)缸伸縮配合連桿動(dòng)作驅(qū)動(dòng),順序定義3個(gè)關(guān)節(jié)轉(zhuǎn)角分別為1q(°)、2q(°)、3q(°),轉(zhuǎn)動(dòng)范圍由電動(dòng)缸伸長(zhǎng)范圍決定。實(shí)際系統(tǒng)中采用535、350、390 mm伸長(zhǎng)量的電動(dòng)缸(GL20-05型,上海光劍自動(dòng)化設(shè)備有限公司),由臺(tái)達(dá)ASDA-A2伺服器配伺服電機(jī)驅(qū)動(dòng),采用單向220 V AC電源供電,形成的轉(zhuǎn)角范圍分別為:
圖1 臂架機(jī)械結(jié)構(gòu)示意圖Fig.1 Arm frame mechanical structure diagram
為了實(shí)現(xiàn)對(duì) 3臺(tái)伺服器的協(xié)調(diào)控制,實(shí)際設(shè)計(jì)系統(tǒng)人機(jī)交互界面采用基于Window XP操作系統(tǒng)的工業(yè)平板電腦為主控單元,開(kāi)發(fā)基于 MFC(microsoft foundation classes)的控制應(yīng)用程序,將臂架系統(tǒng)的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)正逆解算法集成,并采用RS-485總線與3臺(tái)伺服器通訊,驅(qū)動(dòng)伺服電機(jī)實(shí)現(xiàn)機(jī)械臂系統(tǒng)的姿態(tài)定位和作業(yè)控制,完成修枝鋸自動(dòng)化修枝工作。
修枝鋸定位控制問(wèn)題本質(zhì)上是修枝臂的逆動(dòng)力學(xué)控制問(wèn)題,即給定機(jī)械臂工作空間末端理想位置以及機(jī)械臂的初始狀態(tài)求解力矩t(t),使得實(shí)際末端位置x(t)在有限時(shí)間內(nèi)逼近但由于高枝修剪機(jī)展幅寬、負(fù)載自重比大,屬于剛?cè)狁詈咸匦越Y(jié)構(gòu),存在一定的柔性。這種柔性特征易使臂架在定位作業(yè)時(shí)產(chǎn)生振動(dòng),不利于末端修枝鋸的精確定位。
就其臂架系統(tǒng)的動(dòng)力學(xué)特性而言,3個(gè)機(jī)械臂負(fù)載自重比大,容易彎曲變形,建模時(shí)必須考慮機(jī)械臂的柔性特征。但柔性體系統(tǒng)本身是一個(gè)非線性、時(shí)變的分布參數(shù)系統(tǒng),理論上具有無(wú)限多個(gè)自由度,系統(tǒng)建模難度大,難以在建模精度和模型復(fù)雜性之間平衡。本節(jié)采用有限元法對(duì)臂架系統(tǒng)進(jìn)行建模,可以將微分方程離散化,有利于采用Simulink編制程序進(jìn)行計(jì)算機(jī)輔助求解和仿真,進(jìn)而得到良好的控制效果和較高的控制效率。
2.1 修枝臂結(jié)構(gòu)關(guān)系
機(jī)械結(jié)構(gòu)決定了機(jī)械臂關(guān)節(jié)角度與電動(dòng)缸長(zhǎng)度存在一一對(duì)應(yīng),在電動(dòng)缸滿(mǎn)足功率負(fù)荷要求的前提下(樣機(jī)設(shè)計(jì)之初已通過(guò)虛擬樣機(jī)優(yōu)化設(shè)計(jì)確定了每節(jié)臂架電動(dòng)缸最大輸出功率不大于0.4 kW,即能夠滿(mǎn)足各節(jié)機(jī)械臂的負(fù)載要求[11]),伸縮量及伸縮速度決定電動(dòng)缸實(shí)時(shí)輸出功率,也決定了關(guān)節(jié)轉(zhuǎn)矩的大小,因此在采用有限元法對(duì)機(jī)械臂進(jìn)行動(dòng)力學(xué)建模之前,應(yīng)將關(guān)節(jié)角度轉(zhuǎn)換為電動(dòng)缸伸長(zhǎng)量,進(jìn)而決定姿態(tài)調(diào)整時(shí)實(shí)時(shí)輸出功率與電動(dòng)缸伸縮速度之間的對(duì)應(yīng)關(guān)系。
2.1.1 關(guān)節(jié)角θ1與電動(dòng)缸1長(zhǎng)度L1的對(duì)應(yīng)關(guān)系
對(duì)第1關(guān)節(jié)幾何關(guān)系進(jìn)行分析,其幾何結(jié)構(gòu)圖如圖2所示。
圖2 第1關(guān)節(jié)幾何結(jié)構(gòu)示意圖Fig.2 First joint geometry diagram
可以得到
考慮到圖2中d13是定角,因此機(jī)械臂1的轉(zhuǎn)角為
為了方便計(jì)算,機(jī)械設(shè)計(jì)時(shí)令
整理可得
其中
2.1.2 關(guān)節(jié)角θ2與電動(dòng)缸2長(zhǎng)度L2的對(duì)應(yīng)關(guān)系
對(duì)第2關(guān)節(jié)幾何關(guān)系進(jìn)行分析,其幾何結(jié)構(gòu)圖如圖3所示。
圖3 第2關(guān)節(jié)幾何結(jié)構(gòu)示意圖Fig.3 Second joint geometry diagram
可以得到
考慮到d21和d22是定角,因此機(jī)械臂在OXY坐標(biāo)中的轉(zhuǎn)角q2(t)為
2.1.3 關(guān)節(jié)角θ3與電動(dòng)缸3長(zhǎng)度L3的對(duì)應(yīng)關(guān)系
對(duì)第3節(jié)臂幾何關(guān)系進(jìn)行分析,其幾何結(jié)構(gòu)圖如圖4所示。
可以得到
圖4 第3關(guān)節(jié)幾何結(jié)構(gòu)Fig.4 Third joint geometry diagram
2.2 柔性特征下的動(dòng)力學(xué)建模
確定了機(jī)械臂關(guān)節(jié)轉(zhuǎn)角與電動(dòng)缸伸長(zhǎng)量之間的關(guān)系,就能夠得到機(jī)械臂輸入轉(zhuǎn)矩與電動(dòng)缸伸縮量控制的對(duì)應(yīng)關(guān)系。下面采用有限元法對(duì)臂架系統(tǒng)進(jìn)行動(dòng)力學(xué)建模。如圖5所示,在機(jī)械臂i上建立旋轉(zhuǎn)坐標(biāo)系原點(diǎn)O¢i固定于機(jī)械臂之間的驅(qū)動(dòng)關(guān)節(jié)中心,¢為械臂i的初始端切線方向。
圖5 柔性機(jī)械臂坐標(biāo)空間Fig.5 Flexible manipulator coordinate space
圖5中ig表示機(jī)械臂i繞驅(qū)動(dòng)關(guān)節(jié)實(shí)際轉(zhuǎn)過(guò)的角度,且容易得到
2.3 修枝臂動(dòng)力學(xué)模型實(shí)現(xiàn)
在確保電動(dòng)缸功率能夠滿(mǎn)足作業(yè)要求基礎(chǔ)上,電動(dòng)缸實(shí)際輸出轉(zhuǎn)矩與電動(dòng)缸伸長(zhǎng)量相關(guān)并分別由式(4)、(6)、(10)、(14)給出??梢钥吹?,盡管式(4)、(6)、(10)中關(guān)節(jié)轉(zhuǎn)角與電動(dòng)缸伸長(zhǎng)量的幾何關(guān)系具有相同的表達(dá)形式,且式(14)明確了輸出轉(zhuǎn)矩 與電動(dòng)缸控制參量之間的對(duì)應(yīng)關(guān)系,但由于幾何關(guān)系式本身是超越方程,求導(dǎo)之后計(jì)算尤為復(fù)雜。此外,有限元模型本身構(gòu)建也較為繁瑣,計(jì)算量大,這些因素都影響了對(duì)模型進(jìn)行數(shù)值求解。Simulink作為MATLAB最重要的組件之一,提供了一個(gè)動(dòng)態(tài)系統(tǒng)建模、仿真和綜合分析的集成環(huán)境,不需要大量編寫(xiě)程序就能夠構(gòu)造出復(fù)雜系統(tǒng),非常適合此類(lèi)系統(tǒng)的建模和仿真計(jì)算[13-16]。利用 Simulink庫(kù)中提供的基本模塊,分別構(gòu)造電動(dòng)缸伸長(zhǎng)量到機(jī)械臂轉(zhuǎn)矩 的Simulink關(guān)系圖和機(jī)械臂Simulink有限元模型如圖6所示。
在圖6a中,封裝后In1輸入端為來(lái)自電動(dòng)缸i的長(zhǎng)度Li(t),Out1輸出端為對(duì)應(yīng)臂i的輸出轉(zhuǎn)矩ti(t)。圖6b為包含30個(gè)有限元的柔性臂模型(圖中省略了大部分重復(fù)單元),每個(gè)有限元模型具有圖 6c所示的結(jié)構(gòu),由式(13)表述的機(jī)械臂分布式參數(shù)可以根據(jù)表 1中實(shí)際參數(shù)在Solid HalfBeam單元中進(jìn)行設(shè)置。
圖6 Simulink模型Fig.6 Simulink model
表1 高枝修剪機(jī)各節(jié)臂參數(shù)Table 1 Arm parameters of high-branch pruning manipulator
機(jī)械臂系統(tǒng)模型的輸入輸出分別是電動(dòng)缸長(zhǎng)度和位置、轉(zhuǎn)角,機(jī)械臂控制是給定目標(biāo)位置前提下,通過(guò)檢測(cè)位置、轉(zhuǎn)角偏差反饋到基于改進(jìn)粒子群算法(particle swarm optimization,PSO)的模糊PID控制器輸入端,并最終由電動(dòng)缸伸縮量轉(zhuǎn)化為關(guān)節(jié)轉(zhuǎn)矩控制機(jī)械臂姿態(tài)。
本文機(jī)械臂控制算法設(shè)計(jì)采用的是一類(lèi)基于改進(jìn)粒子群的模糊 PID控制算法。PID控制是工程實(shí)際中應(yīng)用最為廣泛的調(diào)節(jié)器之一,具有結(jié)構(gòu)簡(jiǎn)單、參數(shù)易整定等優(yōu)點(diǎn)[17-20]。但對(duì)于大干擾、高度非線性的柔性機(jī)械臂系統(tǒng),傳統(tǒng) PID不能隨系統(tǒng)參數(shù)變化實(shí)時(shí)調(diào)節(jié),無(wú)法達(dá)到預(yù)期的控制目標(biāo),甚至造成系統(tǒng)發(fā)散??紤]到修枝機(jī)實(shí)際作業(yè)時(shí)姿態(tài)調(diào)整區(qū)域有限[11],本文采用一種基于改進(jìn)粒子群離線優(yōu)化算法的模糊 PID方法設(shè)計(jì)控制器,通過(guò)仿真模型和離線優(yōu)化技術(shù),對(duì) PID參數(shù)進(jìn)行整定,并將優(yōu)化得到的控制參數(shù)應(yīng)用于實(shí)際系統(tǒng),進(jìn)而有效抑制機(jī)械臂振動(dòng),實(shí)現(xiàn)末端修枝鋸的準(zhǔn)確定位。
3.1 基于改進(jìn)粒子群的優(yōu)化算法
粒子群算法屬于進(jìn)化算法的一種[21-25],是從隨機(jī)解出發(fā),通過(guò)迭代尋找最優(yōu)解并通過(guò)適應(yīng)度來(lái)評(píng)價(jià)解的品質(zhì)。在N維空間中,粒子i的空間位置
給定一個(gè)目標(biāo)函數(shù),每個(gè)粒子的位置對(duì)應(yīng)一個(gè)由該函數(shù)決定的適應(yīng)值fi。粒子按照式(14)來(lái)更新自己的位置和速度
Clerc[26]在研究粒子群優(yōu)化算法時(shí),提出了收斂因子的概念
研究表明算式(17)可以達(dá)到較好的收斂性能,但由于過(guò)快收斂,有些求解過(guò)程中無(wú)法到達(dá)全局最優(yōu)。為了使粒子能夠逃出局部最優(yōu),本文在算法具體實(shí)現(xiàn)時(shí),在當(dāng)前迭代周期內(nèi)設(shè)定一個(gè)最小速度門(mén)限值當(dāng)持續(xù)小于時(shí),則可以認(rèn)為粒子陷入了局部最優(yōu)。此時(shí)應(yīng)當(dāng)重啟粒子,加大粒子速度,促使粒子飛出局部最優(yōu)。很明顯,迭代即將結(jié)束時(shí)算法已經(jīng)趨近于全局最優(yōu),此時(shí)應(yīng)當(dāng)取消速度門(mén)限限制,防止粒子產(chǎn)生不必要的外逃。
此外,在適應(yīng)度函數(shù)的選擇上,本文選擇的適應(yīng)度函數(shù)為時(shí)間絕對(duì)偏差積分。為了抑制控制輸入產(chǎn)生突變,在適應(yīng)度函數(shù)中增加了輸入變化量的絕對(duì)值項(xiàng),得到
3.2 機(jī)械臂控制器設(shè)計(jì)
模糊 PID已被應(yīng)用到很多領(lǐng)域,但模糊器的設(shè)計(jì)一般還是以經(jīng)驗(yàn)為主,在非線性較強(qiáng)的系統(tǒng)中需要不斷嘗試以獲得更好的控制效果[27-30]。本文所采用的模糊 PID參數(shù)整定方法本質(zhì)上是一種基于粒子群算法的模糊隸屬函數(shù)優(yōu)化方法,通過(guò)改進(jìn)粒子群優(yōu)化算法可以減少模糊PID設(shè)計(jì)過(guò)程中的工作量,并在模型不確定的情況下提高系統(tǒng)的控制性能。
控制器設(shè)計(jì)利用模糊規(guī)則建立誤差e(t),誤差變化率(t)與比例參數(shù)kp、積分參數(shù)ki、微分參數(shù)kd之間關(guān)系。在改進(jìn)粒子群算法的基礎(chǔ)上,通過(guò)將對(duì)系統(tǒng)的誤差作為粒子群優(yōu)化算法的評(píng)價(jià)函數(shù)即適應(yīng)度函數(shù)輸入,計(jì)算出適應(yīng)度函數(shù)的數(shù)值,然后根據(jù)函數(shù)的適應(yīng)度來(lái)調(diào)整模糊論域的量化范圍,進(jìn)而通過(guò)模糊器調(diào)整PID的3個(gè)參數(shù),使系統(tǒng)的控制性能達(dá)到最優(yōu)。設(shè)計(jì)控制器的系統(tǒng)結(jié)構(gòu)如圖7所示。
圖7 控制器設(shè)計(jì)結(jié)構(gòu)示意圖Fig.7 Controller design structure diagram
嚴(yán)格來(lái)講,柔性機(jī)械臂是無(wú)限自由度系統(tǒng),考慮到控制成本和算法復(fù)雜度,現(xiàn)實(shí)中很難,也沒(méi)有必要對(duì)式(13)中所有狀態(tài)量進(jìn)行監(jiān)控。通過(guò)監(jiān)測(cè)轉(zhuǎn)軸轉(zhuǎn)角和末端位置狀態(tài)信息,利用轉(zhuǎn)角及位置偏差量進(jìn)行機(jī)械臂姿態(tài)控制顯然更有應(yīng)用價(jià)值。其中,系統(tǒng)的轉(zhuǎn)軸轉(zhuǎn)角可以由關(guān)節(jié)角計(jì)算得到,而末端狀態(tài)可以通過(guò)對(duì)加速度傳感器的信息積分而得。因此,軸的偏角誤差或末端位移誤差e及其變化率都可以作為有效輸入量,輸出量則為轉(zhuǎn)矩的大小。模糊控制的模糊關(guān)系可以用式(19)和式(20)計(jì)算得到,即
其中Ei為誤差集,ECj為誤差率集,Uij為輸出集,Ri為分模糊關(guān)系,Rr為總模糊。
為了建立機(jī)械臂的模糊控制規(guī)則,將輸入變量和輸出變量的語(yǔ)言值分成5個(gè)子集,定義為NB-負(fù)大、NS-負(fù)小、ZE-零、PS-正小、和PB-正大,即
為模糊語(yǔ)言變量選取相應(yīng)的隸屬度函數(shù),本文各變量均選擇工程上常用的三角形隸屬函數(shù),每個(gè)模糊變量在其論域內(nèi)可以分成相應(yīng)的 5個(gè)量化區(qū)間,由于加入了離子優(yōu)化算法,所以每個(gè)論域的實(shí)際量化區(qū)間為
表2 不同誤差下輸出的模糊規(guī)則Table 2 Output fuzzy rule with defferent errors
4.1 仿真試驗(yàn)
在Simulink中搭建仿真試驗(yàn)環(huán)境,構(gòu)造如圖6所示的伸長(zhǎng)量與轉(zhuǎn)矩對(duì)應(yīng)關(guān)系,計(jì)算式(4)、(6)、(10)中的系數(shù)為
構(gòu)造30個(gè)有限元的機(jī)械臂模型如圖6b,模型輸入為轉(zhuǎn)矩 ,通過(guò)有限元模型可以獲得機(jī)械臂的中間變量,但如前說(shuō)述只有轉(zhuǎn)角和末端狀態(tài)參與運(yùn)算。圖8a為系統(tǒng)的控制結(jié)構(gòu)圖,其中Fuzzy System with PSO是M語(yǔ)言實(shí)現(xiàn)的改進(jìn)粒子群模糊算法函數(shù),反饋?zhàn)兞拷?jīng)過(guò)與輸入?yún)⒖甲兞勘容^后得到誤差及其變化率,并作為帶粒子群優(yōu)化的模糊控制器的輸入。這里設(shè)定粒子優(yōu)化算法中迭代次數(shù)30,粒子數(shù)10,優(yōu)化范圍0~1 000。圖8b為PID控制子系統(tǒng)的內(nèi)部結(jié)構(gòu)圖,由于實(shí)際誤差有轉(zhuǎn)角和位置兩組且具有耦合性,這里通過(guò)兩個(gè)模塊對(duì)兩組變量進(jìn)行解耦,分別計(jì)算其輸出值,再通過(guò)其線性組合得到整個(gè)控制器的輸出,即
式中w1,w2為加權(quán)系數(shù),這里取w1=w2= 0.5。
經(jīng)過(guò)數(shù)值模擬仿真得到的模糊 PID控制器參數(shù)自整定曲線如圖8c所示,進(jìn)而得到系統(tǒng)單位階躍響應(yīng)曲線如圖8d所示,可以看到經(jīng)過(guò)改進(jìn)粒子群算法迭代優(yōu)化后系統(tǒng)的階躍響應(yīng)曲線超調(diào)量小,上升時(shí)間短,調(diào)整時(shí)間小,沒(méi)有穩(wěn)態(tài)誤差,表明控制器系統(tǒng)性能好,能夠達(dá)到較為理想的控制效果。
圖8 Simulink控制仿真Fig.8 Simulink control simulation
4.2 樣機(jī)試驗(yàn)
在數(shù)值仿真試驗(yàn)的基礎(chǔ)上,將優(yōu)化后的控制算法應(yīng)用于試驗(yàn)樣機(jī)。樣機(jī)試驗(yàn)在山東農(nóng)業(yè)大學(xué)校內(nèi)進(jìn)行,將高枝修剪機(jī)由動(dòng)力機(jī)械牽引至開(kāi)闊區(qū)域,對(duì)高度8~10 m的樹(shù)木側(cè)枝進(jìn)行剪枝作業(yè)。試驗(yàn)過(guò)程首先將機(jī)械臂架展開(kāi),通過(guò)控制器調(diào)整機(jī)械臂的姿態(tài)對(duì)準(zhǔn)待修樹(shù)枝,在鋸切定位過(guò)程中,分別測(cè)得使能、禁用算法 2種情況下末端修枝鋸的振動(dòng)幅度和穩(wěn)定時(shí)間,進(jìn)行結(jié)果對(duì)比分析,并檢測(cè)機(jī)械修枝完成度。
試驗(yàn)主要以末端修枝鋸為測(cè)量對(duì)象,修枝鋸振幅通過(guò)在修枝鋸上固定AKE392B振動(dòng)傳感器(加速度測(cè)量量程為±16g,g=9.8 m/s2),通過(guò)加速度數(shù)字積分的方式得到??刂破魑挥诳刂葡渲?,集成本文前述基于改進(jìn)粒子群優(yōu)化后的模糊 PID控制算法。一次定位活動(dòng)中,當(dāng)修枝鋸振幅小于最大振幅5%時(shí),定義為修枝鋸進(jìn)入穩(wěn)態(tài)。實(shí)際臂架系統(tǒng)、控制箱和傳感器固定位置如圖9a所示。圖9b為修枝機(jī)作業(yè)試驗(yàn)現(xiàn)場(chǎng),圖9c為修枝鋸鋸切定位作業(yè),圖9d為完成修枝作業(yè)后的樹(shù)枝茬口。可以看到,樣機(jī)順利完成了修枝作業(yè),經(jīng)測(cè)量,修剪樹(shù)枝為直徑3.7 cm的側(cè)枝,修剪的樹(shù)枝切口平整,修枝效果符合要求。
圖9 樣機(jī)試驗(yàn)Fig.9 Prototype experiment
將采集計(jì)算得到的末端定位數(shù)據(jù)進(jìn)行濾波、擬合處理,分別繪制控制算法禁用和使能時(shí)機(jī)械臂末端修枝鋸定位誤差和誤差變化率曲線,如圖10所示。分別對(duì)比圖10a和圖10c,圖10b和圖10d,可以看到算法禁用時(shí)定位誤差及其誤差變化率曲線震蕩劇烈,且5 s后仍有小幅震蕩,不易進(jìn)入穩(wěn)態(tài),而在本文設(shè)計(jì)控制器的作用下,末端修枝鋸能夠在定位過(guò)程中較短時(shí)間內(nèi)能進(jìn)入穩(wěn)態(tài),定位過(guò)程更加平穩(wěn)。由圖10c、10d顯示,末端修枝鋸在1s左右時(shí)振幅衰減至峰值的5%以下,震蕩調(diào)整的時(shí)間小于1s,實(shí)現(xiàn)了較為有效的抑振效果,能順利將樹(shù)枝送入鋸切口,提高了作業(yè)效率,并最終實(shí)現(xiàn)了樹(shù)枝修剪工作。
圖10 控制算法禁用和使能時(shí)末端定位誤差及其變化率曲線Fig.10 End-point positioning error & change rate curves with control algorithm disabled and enable
高大樹(shù)木修枝是林業(yè)生產(chǎn)中一項(xiàng)重要工作,在林業(yè)生產(chǎn)管理中占有非常大的比例。本文在前期設(shè)計(jì)、試制高枝修剪機(jī)械基礎(chǔ)上,進(jìn)一步完成了以下工作:
1)針對(duì)已經(jīng)制作的高枝修剪機(jī)械樣機(jī),對(duì)其臂架系統(tǒng)進(jìn)行了柔性分析,分析了機(jī)械臂幾何結(jié)構(gòu),利用有限元法對(duì)機(jī)械臂進(jìn)行動(dòng)力學(xué)建模,并在Simulink中實(shí)現(xiàn)了其動(dòng)力學(xué)模型,并進(jìn)行了仿真實(shí)驗(yàn)。
2)設(shè)計(jì)了基于改進(jìn)粒子群的優(yōu)化算法的模糊PID控制器,對(duì)定位時(shí)末端修枝鋸振幅進(jìn)行抑制,從而使修枝鋸震蕩調(diào)整時(shí)間從大于5 s優(yōu)化為小于1s,使之較快進(jìn)入穩(wěn)態(tài),較為有效的改善了末端定位產(chǎn)生的振動(dòng)情況。
3)經(jīng)過(guò)以上分析和設(shè)計(jì),提高了剪枝鋸的定位精度和速度,優(yōu)化了整個(gè)機(jī)械的動(dòng)態(tài)性能,確保了對(duì)高枝修剪機(jī)械的靈活操控。通過(guò)對(duì)提出的主動(dòng)控制算法進(jìn)行仿真分析和樣機(jī)試驗(yàn),試驗(yàn)結(jié)果驗(yàn)證了算法的可靠性,為進(jìn)一步發(fā)展高枝修剪機(jī)械積累了寶貴經(jīng)驗(yàn)。
[1]張秀秀,曹幫華,張曉文,等. 楊樹(shù)修枝理論和技術(shù)研究進(jìn)展[J]. 河北林果研究,2010,25(3):235-239.Zhang Xiuxiu, Cao Banghua, Zhang Xiaowen, et al. Progress in research on theory and technology of poplar pruning[J].Hebei Journal of Forestry and Orchard Research, 2010, 25(3):235-239. (in Chinese with English abstract)
[2]王春勝,趙志剛,吳龍敦,等. 修枝高度對(duì)西南樺擬木蠹蛾為害的影響[J]. 西北林學(xué)院學(xué)報(bào),2012,27(6):120-123.Wang Chunsheng, Zhao Zhigang, Wu Longdun, et al. Effects of pruning height on trunk borer (arbela spp.) damage to betula alnoides[J]. Journal of Northwest Forestry University,2012, 27(6): 120-123. (in Chinese with English abstract)
[3]丁思一,佘濟(jì)云,楊慶朋,等. 間伐和修枝對(duì)杉木人工林土壤微生物量碳和酶活性的影響[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2015,35(6):75—79.Ding Siyi, She Jiyun, Yang Qingpeng, et al. Effects of thinning and pruning on soil microbial biomass carbon and soil enzyme activities in chinese fir plantation[J]. Journal of Central South University of Forestry & Technology, 2015,35(6): 75-79. (in Chinese with English abstract)
[4]顧正平,沈瑞珍. 國(guó)內(nèi)外園林綠化機(jī)械現(xiàn)狀與發(fā)展趨勢(shì)[J].林業(yè)機(jī)械與木工設(shè)備,2004,32(2):4-7.Gu Zhengping, Shen Ruizhen. Present status and prospect of gardening machines at home and abroad[J]. Forestry Machinery & Woodworking Equipment, 2004, 32(2): 4-7.(in Chinese with English abstract)
[5]賈啟明,馬秀娟,張大海. 關(guān)于城市高大樹(shù)木修剪機(jī)械化的探討[J]. 遼寧林業(yè)科技,2001,5(3):43-44.Jia Qiming, Ma Xiujuan, Zhang Dahai. Discussion on the mechanization of pruning tall trees in cities[J]. Journal of Liaoning Forestry Science & Technology, 2001, 5(3): 43-44. (in Chinese with English abstract)
[6]李世葳,王述洋,王慧,等. 樹(shù)木整枝修剪機(jī)械現(xiàn)狀及發(fā)展趨勢(shì)[J]. 林業(yè)機(jī)械與木工設(shè)備,2008,36(1):15-16.Li Shiwei, Wang Shuyang, Wang Hui, et al. Present status and prospect of tree pruning machinery[J]. Forestry Machinery & Woodworking Equipment, 2008, 36(1): 15-16.(in Chinese with English abstract)
[7]辛繼紅,湯興初,全臘珍,等. 背負(fù)式可調(diào)高枝修剪機(jī)的研制[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2003,29(1):63-64.Xin Jihong, Tang Xingchu, Quan Lazhen, et al. On compact adjustable tree pruner[J]. Journal of Hunan Agricultural University: Natural Sciences, 2003, 29(1): 63-64. (in Chinese with English abstract)
[8]楊乾華,向北平. 電動(dòng)綠籬修枝機(jī)的結(jié)構(gòu)設(shè)計(jì)與研究[J].林業(yè)科技,2010,35(1):48-50.Yang Qianhua, Xiang Beiping. Structural design and research on electricaly operated hedgerow pruner[J]. Forestry Science& Technology, 2010, 35(1): 48-50. (in Chinese with English abstract)
[9]焦恩璋,張建紅. 車(chē)載式高枝修剪機(jī)的研制[J]. 南京林業(yè)大學(xué)學(xué)報(bào),1990,14(1):63-67.Jiao Enzhang, Zhang Jianhong. A study of lorry-mounted highlift pruner[J]. Journal of Nanjing Forestry University,1990, 14(1): 63-67. (in Chinese with English abstract)
[10]3SG-8型全液壓修枝整形機(jī)[J]. 農(nóng)業(yè)機(jī)械,1981(2):10-11.3SG-8 full hydraulic pruning machine[J]. Agricultural Machinery, 1981(2): 10-11.
[11]陳延甫. 高大樹(shù)木修枝機(jī)械的設(shè)計(jì)與優(yōu)化分析[D]. 泰安:山東農(nóng)業(yè)大學(xué),2016.Chen Yanfu. Design and Optimization Analysis of Tall Trees Pruning Machine[D]. Taian: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[12]苑進(jìn),武軍,曹邦華,等. 一種楊樹(shù)自動(dòng)修枝裝置:2013 103070033B[P]. 2013-12-11.
[13]李伯虎,柴旭東,朱文海,等. 現(xiàn)代建模與仿真技術(shù)發(fā)展中的幾個(gè)焦點(diǎn)[J]. 系統(tǒng)仿真學(xué)報(bào),2004,16(9):1871-1877.Li Bohu, Chai Xudong, Zhu Wenhai, et al. Some focusing points in development of modern modeling and simulation technology[J]. Journal of System Simulation, 2004, 16(9):1871-1877. (in Chinese with English abstract)
[14]王金武,張春鳳,周文琪,等. 基于 MATLAB仿真的非規(guī)則齒輪行星系扎穴機(jī)構(gòu)的優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):22-28.Wang Jinwu, Zhang Chunfeng, Zhou Wenqi, et al.Optimization design of non-circular planetary gear trains pricking hole mechanism based on MATLAB[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2016, 32(3): 22-28.(in Chinese with English abstract)
[15]余強(qiáng)毅,吳文斌,陳羊陽(yáng),等. 農(nóng)作物空間格局變化模擬模型的 MATLAB實(shí)現(xiàn)及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(12):105-114.Yu Qiangyi, Wu Wenbin, Chen Yangyang, et al. Model application of an agent-based model for simulating crop pattern dynamics at regional scale based on MATLAB[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12):105-114. (in Chinese with English abstract)
[16]孫韓,朱軍. MATLAB/Simulink在動(dòng)態(tài)系統(tǒng)仿真中應(yīng)用研究[J]. 辦公自動(dòng)化,2015(17):42-44.Sun Han, Zhu Jun. Application of MATLAB/Simulink dynamic system simulation[J]. Office Automation, 2015(17):42-44.(in Chinese with English abstract)
[17]郭娜,胡靜濤. 基于Smith-模糊PID控制的變量噴藥系統(tǒng)設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):56-64.Guo Na, Hu Jingtao. Design and experiment of variable rate spaying system on Smith-Fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(8): 56-64. (in Chinese with English abstract)
[18]樊國(guó)平. 智能PID控制系統(tǒng)的設(shè)計(jì)與研究[D]. 杭州:浙江工業(yè)大學(xué),2005.Fan Guoping. Design and Research on Intelligent PID Control System[D]. Hangzhou: Zhejiang University of Technology, 2005. (in Chinese with English abstract)
[19]仇成群,劉成林,沈法華,等. 基于Matlab和模糊PID的汽車(chē)巡航控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):197-202.Qiu Chengqun, Liu Chenglin, Shen Fahua, et al. Design of automobile cruise control system based on Matlab and fuzzy PID[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 197-202. (in Chinese with English abstract)
[20]寧宗夏. PID參數(shù)對(duì)控制系統(tǒng)穩(wěn)定性影響的研究[D]. 西安:西安電子科技大學(xué),2008.Ning Zongxia. Study on Stability of PID Control System[D].Xi’an: Xidian University, 2008. (in Chinese with English abstract)
[21]董全成,馮顯英. 基于自適應(yīng)模糊免疫PID的軋花自動(dòng)控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):30-37.Dong Quancheng, Feng Xianying. Cotton-gin automation by using adaptive fuzzy immune PID controller[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(23): 30-37. (in Chinese with English abstract)
[22]金欣磊. 基于 PSO 的多目標(biāo)優(yōu)化算法研究及應(yīng)用[D]. 杭州:浙江大學(xué),2006.Jin Xinlei. Pso-based Multi-objective Optimization Algorithm Research and its Applications[D]. Hangzhou:Zhejiang University, 2006. (in Chinese with English abstract)
[23]雷秀娟,付阿利,孫晶晶. 改進(jìn)PSO算法的性能分析與研究[J]. 計(jì)算機(jī)應(yīng)用研究,2010,27(2):453-458.Lei Xiujuan, Fu Ali, Sun Jingjing. Performance analyzing and researching of improved pso algorithm[J]. Application Research of Computers, 2010, 27(2): 453-458. (in Chinese with English abstract)
[24]陳嘯,王紅英,孔丹丹,等. 基于粒子群參數(shù)優(yōu)化和 BP神經(jīng)網(wǎng)絡(luò)的顆粒飼料質(zhì)量預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):306-314.Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)
[25]胡旺,Gary G. Yen,張?chǎng)? 基于Pareto熵的多目標(biāo)粒子群優(yōu)化算法[J]. 軟件學(xué)報(bào),2014,25(5):1025-1050.Hu Wang, Gary G. YEN, Zhang Xin. Multiobjective particle swarm optimization based on pareto entropy[J]. Journal of Software, 2014, 25(5): 1025-1050. (in Chinese with English abstract)
[26]Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]// Proc. of the ICEC. 1999: 1951-1957.
[27]徐軍. 基于模糊控制的剪枝機(jī)器人驅(qū)動(dòng)系統(tǒng)的研究[D].哈爾濱:東北林業(yè)大學(xué),2011.Xu Jun. Study on the Fuzzy-controlled Driving System of Plantation Pruning Robot[D]. Harbin: Northeast Forestry University, 2011. (in Chinese with English abstract)
[28]王述彥,師宇,馮忠緒. 基于模糊PID控制器的控制方法研究[J]. 機(jī)械科學(xué)與技術(shù),2011,30(1):166-172.Wang Shuyan, Shi Yu, Feng Zhongxu. A method for controlling a loading system based on a fuzzy PID controller[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1): 166-172. (in Chinese with English abstract)
[29]崔建弘,寇雪梅,楊靜宜,等. 基于模糊PID參數(shù)整定的收獲機(jī)前進(jìn)速度控制優(yōu)化[J]. 農(nóng)機(jī)化研究,2016,7:75-79.Cui Jianhong, Kou Xuemei, Yang Jingyi, et al. Forward speed control optimization of the harvester based on parameter tuning of fuzzy PID[J]. Journal of Agricultural Mechanization Research, 2016, 7: 75-79. (in Chinese with English abstract)
[30]李加念,洪添勝,馮瑞玨,等. 基于模糊控制的肥液自動(dòng)混合裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):22-30.Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Design and experiment of automatic mixing apparatus for liquid fertilizer based on fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 22-30. (in Chinese with English abstract)
Experiment and vibration suppression algorithm for high-branch pruning manipulator based on fuzzy PID with improved PSO
Li Yang1,2, Hou Jialin1,2※, Yuan Jin1,2, Zhao Xinxue1, Liu Xuemei1,2, Zhang Li3
(1.College of Mechanical & Electronic Engineering, Shandong Agricultural University, Tai'an271018,China;2.Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment, Tai’an271018,China;3.Department of Resources and Civil Engineering, Shandong University of Science and Technology, Tai'an271019,China)
Pruning trees is an important work in forestry production, which plays an important role on the growth of trees and timber and the forest fire prevention. However, domestic and foreign high-altitude pruning machinery is still in its infancy,whose working height is generally less than 8 m and is not high flexible. It is difficult to effectively improve work efficiency in pruning high branches. In this paper, a simple, low-cost mobile tall tree pruning machine was designed, which could be easily towed to the forest area, and prune high branches within 15 m height. This machine had the working radius of 6 m and the maximum pruning diameter of 10 cm. However, in the process of sawing and positioning, due to the long arm span and high load weight ratio, there were obviously flexible features for its arms, and the end-effector (pruning saw) was easy to vibrate during its positioning. Thus, it was difficult to achieve fast and accurate positioning, as well as fix the branch to be cut. Aiming to the above problems, this paper analyzed the flexible characteristics of the boom system with the boom display and the high load weight ratio. On this basis, the vibration suppression control method of the end of pruning saws was investigated to achieve the rapid and accurate positioning of the end of pruning saws. In this paper, focusing the flexible characteristics of the manipulator and the vibration suppression of the end-point, based on the introduction of the boom structure and working principle, we analyzed the impact of flexible features on the positioning of the end of pruning saws by geometric derivation,and the FEM (finite element modeling) was used for the dynamics analysis of the boom system. And the fuzzy PID (proportion,integral, derivative) controller was designed based on an improved PSO (particle swarm optimization) algorithm, in order to realize the active vibration suppression control of the end of the actuator. In the designed fuzzy PID controller, the improved PSO algorithm was used on the numerical simulation model to optimize the fuzzy domain intelligently. The parameters of the PID controller were adjusted and the vibration of the pendulum saw was suppressed, and the simulation and experimental verification were performed in the SIMULINK environment and a prototype system, respectively. The experimental results showed that the design of the tall trees pruning manipulator control method could realize the end-point vibration suppression,and the pruning saw could be accurately positioned into the steady state during the localization process in a short period of time. The actual measured data showed that the overshoot was less than 50% under the open-loop state, the amplitude decay was less than 5% of the peak after 1 s, the vibration adjustment time was less than 1 s, and the system could achieve steady state, and achieve a more effective vibration suppression effect. Verification results showed that under the effect of the control algorithm and the controller designed in this paper, the end-effector could be stabilized in a short time after the positioning to achieve better active vibration suppression effect. The control algorithm improved the pruning saw’s positioning accuracy and speed, and optimized the dynamic performance of the entire machinery to ensure the flexible control of high branch pruning machinery. Through the simulation analysis and prototype test using the proposed active control algorithm, the results verify the reliability of the algorithm and accumulate the valuable experience for the further development of the high branch pruning machinery.
manipulators; forestery; vibration control; vibration suppression; flexible Features; improved PSO; fuzzy PID
10.11975/j.issn.1002-6819.2017.10.007
S776.27+4
A
1002-6819(2017)-10-0049-10
2016-09-13
2017-04-16
國(guó)家自然科學(xué)基金項(xiàng)目(51675317、51475278);“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2014BAD08B01-2);山東科技發(fā)展計(jì)劃項(xiàng)目(2013GNC11203、2014GNC112010);山東省農(nóng)機(jī)裝備研發(fā)創(chuàng)新計(jì)劃項(xiàng)目(2015YB201)
李 揚(yáng),男,山東泰安人,主要從事嵌入式系統(tǒng)、智能農(nóng)機(jī)裝備方向研究。泰安 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,271018。
Email:mtlyab@sdau.edu.cn
※通信作者:侯加林,男,山東泰安人,博士,教授,主要從事農(nóng)業(yè)電氣化與自動(dòng)化方向研究。泰安 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,271018。
Email:jlhou@sdau.edu.cn