王潔芙,牛浩,吳文果,2
?
微生物燃料電池在毒性物質(zhì)檢測中的應(yīng)用
王潔芙1,牛浩1,吳文果1,2
1 華僑大學(xué)生物工程與技術(shù)系,福建廈門 361021 2 華僑大學(xué)生物材料與組織工程研究所,福建廈門 361021
王潔芙, 牛浩, 吳文果. 微生物燃料電池在毒性物質(zhì)檢測中的應(yīng)用. 生物工程學(xué)報, 2017, 33(5): 720–729.Wang JF, Niu H, Wu WG. Detection of toxic substances inmicrobial fuel cells. Chin J Biotech, 2017, 33(5): 720–729.
微生物燃料電池 (Microbial fuel cell, MFC) 利用微生物整體作為催化劑催化底物將化學(xué)能直接轉(zhuǎn)化為電能,是一種極具應(yīng)用前景的生物電化學(xué)技術(shù)。微生物在陽極氧化還原有機物產(chǎn)生電子并傳遞給陽極,電子通過外電路傳遞至陰極后將電子釋放給陰極中的氧化劑,從而產(chǎn)生電流。當(dāng)有毒物質(zhì)進入MFC,微生物活性降低,電子傳遞量變少,電流降低,而電流的產(chǎn)生與微生物活性呈線性關(guān)系,據(jù)此可檢測樣品的毒性。本文主要介紹了微生物燃料電池在毒性物質(zhì)抗生素、重金屬離子、有機污染物、酸等方面的研究,并分析了微生物燃料電池存在的問題及未來研究方向,以期不久的將來微生物燃料電池能付之使用。
微生物燃料電池,毒性傳感器,抗生素,重金屬離子,有機污染物
微生物燃料電池 (Microbial fuel cells, MFC)是一種利用產(chǎn)電微生物將有機物直接轉(zhuǎn)換成電能的裝置,它是一種新型能源回收技術(shù)[1-2]。MFC最早在20世紀(jì)60年代被研發(fā)出來[3],分為單室和雙室2種類型,單室MFC由厭氧室和空氣陰極組成,典型的雙室微生物燃料電池由陽極、陰極和質(zhì)子交換膜構(gòu)成。它在難降解有機物污水處理[4-5]、降解生物質(zhì)產(chǎn)能等方面均有報道[6]。MFC具有能量轉(zhuǎn)化率高、燃料多樣化、操作條件溫和、安全無污染等優(yōu)點,主要用于生物修復(fù)、廢水處理、生物傳感器等。其中,MFC生物傳感器利用MFC產(chǎn)生的電流或者電壓作為電信號對被分析物進行分析測量,具有靈敏度高、檢測速度快、操作簡便、可在線連續(xù)檢測等優(yōu)點[7]。自1977年Karube等[8]首次報道MFC生物傳感器以來,基于MFC的生物傳感器層出不窮。近十年來已報道的MFC生物傳感器主要有以下幾種。根據(jù)MFC庫侖產(chǎn)量與底物BOD (Biochemical oxygen demand:生化需氧量) 質(zhì)量濃度之間存在的正比關(guān)系,構(gòu)建的BOD傳感器[9-10]。不少學(xué)者研究報道了基于MFC的COD傳感器[11-13],F(xiàn)eng等[13]將MFC與ANNs (Artificial neural networks:人工神經(jīng)網(wǎng)絡(luò)) 結(jié)合,提高了MFC傳感性能的靈敏度及準(zhǔn)確度。有研究者還報道了MFC在監(jiān)測厭氧反應(yīng)過程中的應(yīng)用,如Liu等[14]證實了MFC傳感器監(jiān)測AD (Anaerobic digestion:厭氧發(fā)酵) 過程的可行性,擴大了MFC的應(yīng)用范圍。2014年Liu等[15]又報道了結(jié)合有氣體流量計和pH計的MFC傳感器,根據(jù)電信號的變化來監(jiān)測厭氧發(fā)酵過程,提高了監(jiān)測的可靠性。另有人報道MFC可用來監(jiān)測VFAs (Volatile fatty acids:揮發(fā)性脂肪酸) 的濃度,且VFAs濃度與MFC電流呈現(xiàn)很好的相關(guān)性[16]。此外還報道的傳感器有溶解氧監(jiān)測傳感器[17],最近還有人提出了基于MFC的低功率溫度傳感器[18]。
隨著社會科技的進步,人類生產(chǎn)生活制造的污染物越來越多,成分也越來越復(fù)雜。如重金屬、有機物等持久性有毒物質(zhì),對環(huán)境造成嚴(yán)重的污染。砷 (As) 雖然是非金屬,但因其毒性和其他一些性質(zhì)與重金屬相似,也屬于持久性有毒物質(zhì)??股氐臑E用越來越嚴(yán)重,不僅威脅人類的健康、畜產(chǎn)品的安全,也對環(huán)境造成了危害,大有“談抗色變”的趨勢。因此抗生素也可歸為有毒物質(zhì)的范疇[19-21]。近年來研究發(fā)現(xiàn),MFC不僅可以降解難降解有毒污染物,還可以作為傳感器來監(jiān)測環(huán)境中的有毒物質(zhì)。
微生物燃料電池的作用機制是微生物在陽極氧化還原有機物產(chǎn)生電子并傳遞給陽極,電子通過外電路傳遞至陰極后將電子釋放給陰極中的氧化劑,從而產(chǎn)生電流,是一個將生物化學(xué)能轉(zhuǎn)化為電能的過程[22]。而在一定條件下,微生物燃料電池的產(chǎn)電量或電流與陽極室添加的可代謝底物的濃度及微生物數(shù)量成正比[23],不同底物對MFC陽極微生物的生長與產(chǎn)電量影響均不同[24]。當(dāng)有毒物質(zhì)進入MFC后,電化學(xué)活性菌的代謝受到有毒物質(zhì)的抑制,導(dǎo)致輸出電流降低,而電流的下降程度與有毒物質(zhì)的濃度存在一定的相關(guān)性。有毒物質(zhì)毒性越大,電流降低幅度越大,根據(jù)有毒物質(zhì)與電流降低幅度之間的關(guān)系可構(gòu)建不同的毒性傳感器[25-26]。單雙室MFC毒性傳感器原理見圖1。
圖1 單(A)雙(B)室MFC毒性傳感器原理圖
2.1 抗生素監(jiān)測
研究表明,使用MFC傳感器檢測抗生素是一種快速簡便的方法。Wen等[27]將頭孢曲松鈉加入單室MFC,MFC電壓明顯下降后上升,最終達(dá)到穩(wěn)定,且此MFC穩(wěn)定運行了500 h。Schneider等[28]利用MFC傳感器檢測β-內(nèi)酰胺類抗生素,分別將金黃色葡萄球菌ATCC 29213和大腸桿菌ATCC 25922懸浮液接種到含有100 mg/mL的青霉素、氨芐西林、羥基噻吩青霉素、頭孢吡肟和1 mg/mL的頭孢唑啉、頭孢呋辛、頭孢哌酮、頭孢西寧、頭孢克洛、亞胺硫霉素的微型雙室MFC裝置中。接種后3–4 h就可分析檢測結(jié)果,而傳統(tǒng)的紙片擴散法則需要24–48 h,這對醫(yī)生快速決定抗生素的適用量意義重大。
本課題組研究發(fā)現(xiàn)納米材料修飾陽極有助于提高MFC的產(chǎn)電性能[29-31]。在此基礎(chǔ)上,構(gòu)建了基于納米草結(jié)構(gòu)硼摻雜金剛石薄膜電極的MFC毒性傳感器,研究不同濃度妥布霉素對希瓦氏菌PV-4產(chǎn)電性能的影 響[32]。隨著妥布霉素濃度的增大,電流信號抑制程度越明顯,且傳感器運行到12 h就可以顯著區(qū)分開來。妥布霉素濃度為1.0–20.0 μg/mL時,電流從3.0 μA/cm2降低到1.3 μA/cm2,且電流抑制率以指數(shù)形式從7.6%增加到59.6%。為了便于實際應(yīng)用,又構(gòu)建了一種價格低廉基于碳布電極的MFC生物傳感器[33],采用從廢水中分離獲得的混合菌為產(chǎn)電菌,檢測妥布霉素。在0.1–1.9 g/L濃度范圍內(nèi),妥布霉素抑制電流的產(chǎn)生,且隨著妥布霉素濃度的增加抑制率仍成指數(shù)增加。妥布霉素加入瞬間,電流即刻下降,并且妥布霉素濃度越大,電流下降越顯著。當(dāng)妥布霉素的濃度增大至6 mmol/L時,被顯著抑制的電流經(jīng)歷6個周期 (長達(dá)1 800 h) 后仍然恢復(fù)到一個穩(wěn)定的電流水平。以上結(jié)果說明,MFC生物傳感器不僅具有快速靈敏的特點,還有望用于長時在線監(jiān)測實際環(huán)境中的抗生素。
2.2 重金屬離子監(jiān)測
近年來,MFC在毒性物質(zhì)監(jiān)測方面呈現(xiàn)的快速、靈敏[34]等優(yōu)點使其有望用于重金屬監(jiān)測。Kim等[35]利用微生物燃料電池構(gòu)建了有毒物質(zhì)檢測系統(tǒng),能分別檢測到0.04 mg/L Cr6+、0.03 mg/L Hg、0.04 mg/L Pb2+及0.04 mg/L苯,且加入毒性物質(zhì)時電流明顯下降,反應(yīng)靈敏。此后相關(guān)的研究都得到類似的結(jié)果,且電流的降幅與有毒物質(zhì)的濃度和作用時間成正比,有些還呈現(xiàn)出良好的線性關(guān)系[36-41](表1)。Kim等[36]發(fā)現(xiàn),濃度為 1 mg/L的鉛、汞對電流輸出的抑制率分別為46%和28%。且有毒離子的混合溶液對電流的抑制率更高,例如1 mg/L Cr6+和Pb2+混合存在于污水中時,抑制率達(dá)到了76%。該系統(tǒng)還用于實際污水處理廠廢水毒性物質(zhì)檢測,發(fā)現(xiàn)電流下降更為顯著。
為研究MFC毒性傳感器的普遍適用性,Stein等[42]設(shè)計了結(jié)合有酶抑制動力學(xué)的電化學(xué)模型,選用毒性物質(zhì)濃度為0.1 mmol/L和2 mmol/L,在MFC生物傳感器中來描述毒性物質(zhì)的類型?;贖amelers提出的Butler-Volmer-Monod (BVM)模型作者設(shè)計了4種不同的模型。結(jié)果發(fā)現(xiàn),不同模型對同一濃度同一毒性物質(zhì)的反應(yīng)均是不同的。因此當(dāng)毒性物質(zhì)流入MFC裝置時,我們可以根據(jù)4種模型的反應(yīng)現(xiàn)象來確定毒性物質(zhì)的類型,或者已知毒性物質(zhì)的類型來確定選擇哪種模型進行毒性監(jiān)測更為合適。Stein等[43]選用濃度分別為10 mg/L、20 mg/L和30 mg/L的鎳作為毒性物質(zhì),來探究當(dāng)電流改變時能否通過在線評估MFC傳感器的動力學(xué)參數(shù)來探測毒性物質(zhì)的類型。同樣基于Hamelers提出的BVM模型,Stein等[43]將相關(guān)數(shù)據(jù)輸入被修飾的BVM-model證實了以上猜想的可行性。
為探究影響MFC毒性傳感器靈敏度的因素,Stein等[44]將13.2–187.6 mg/L鎳離子加入雙室MFC裝置中,研究離子交換膜、電流、電壓對MFC毒性傳感器的影響,發(fā)現(xiàn)離子交換膜對MFC傳感器靈敏度影響不大但靈敏度隨電壓的升高而升高,而電流密度與檢測到的最大鎳濃度呈負(fù)相關(guān)。Shen等[45]利用MFC生物傳感器檢測實際污水中銅離子,結(jié)果表明低流速、低切換速率以及對陽極曝氮氣等均能提高檢測靈敏度。Jiang等[46]發(fā)現(xiàn),可控電壓模型與溢流式陽極均可提高MFC檢測的靈敏度。當(dāng)將2 mg/L Cu2+加入MFC,溢流式陽極電流降低幅度為0.76–1.55 mA,而平行式電流降低幅度為0.02–0.06 mA,靈敏度提高了15–41倍。
能否進行長時監(jiān)測,是評價MFC毒性傳感器性能的又一標(biāo)準(zhǔn)。MFC的自我修復(fù)能力使其有望用于長時在線監(jiān)測[47]。Stein等[37]向穩(wěn)定運行的MFC陽極室中加入銅離子后,MFC輸出電流迅速下降44.4%后很快恢復(fù)到原來水平,且保持穩(wěn)定。Deng等[38]將50–400 mg/kg銅離子加入MFC中,電壓下降后仍恢復(fù)到一個穩(wěn)定水平。由此可見,MFC傳感器有望作為長期監(jiān)測手段來監(jiān)測環(huán)境中重金屬離子。
表1 重金屬對MFC電信號的影響
a: all MFCs were inoculated with activated sludge from the anaerobic tank of a municipal wastewater treatment plant (Beijing, China); b:(ATCC 39978); c: soil was collected at a depth of 0–20 cm from a broad-leaf forest in the campus of Nanjing Normal University, Nanjing, China.
2.3 有機物監(jiān)測
近年來,有研究表明,MFC傳感器可用來監(jiān)測甲醛和十二烷基硫酸鈉 (Sodium dodecyl sulfate, SDS) 等有機物。
Yang[47]和Dávila等[48]均以甲醛為毒性物質(zhì)研究了微型MFC毒性傳感器性能,這種微型裝置的優(yōu)勢是使所有元件 (生物膜、陽極、陰極、質(zhì)子交換膜) 之間的距離減到最小,從而使內(nèi)阻減小,輸出功率增大,極大地提高了監(jiān)測的速度及靈敏度。Dávila等[48]設(shè)計的微型MFC傳感器的質(zhì)子交換膜位于兩個微型硅板之間,每個隔間的體積僅有144 μL。硅板表面采用真空離子電鍍150 nm的Ti/Ni/Au作為集流器,最大功率密度達(dá)到6.5 μW/cm2,而常規(guī)的MFC最大功率僅為4.4 μW/cm2。0.1%水溶液里的甲醛也可引起此微型傳感器輸出電壓明顯下降。Yang等[47]設(shè)計的單極室微型MFC毒性傳感器更加靈敏,其體積只有140 μL,可檢測到0.001%的甲醛,且當(dāng)去除甲醛時電流逐漸恢復(fù)穩(wěn)定。Patil等[49]分別對比考察了基于懸浮細(xì)胞的MFC和基于生物膜的MFC對水體中有毒物質(zhì)的監(jiān)測,如磺胺二甲基嘧啶、磺胺嘧啶和氯胺B等。研究發(fā)現(xiàn),基于懸浮細(xì)胞的MFC傳感器靈敏度比基于生物膜的MFC傳感器的靈敏度高。
Stein等[50]將50 mg/L SDS加入雙室MFC中,探求外電阻、陽極電勢、恒電流這3種控制機制對MFC毒性傳感器的影響。結(jié)果發(fā)現(xiàn),低電阻導(dǎo)致很明顯的信號改變,從而使傳感器更加靈敏,而高電阻使恢復(fù)時間縮短??刂脐枠O電壓,MFC傳感器靈敏度很高;控制陽極電壓和電流,陽極MFC恢復(fù)時間比控制外電阻要長。通過控制這3種因素可以很好地對毒性物質(zhì)進行在線監(jiān)測。Peixoto等[51]利用基于SMFC (Submersible microbial fuel cell:可潛水微生物燃料電池) 的BOD生物傳感器在線原位檢測生活污水。此BOD傳感器的感應(yīng)時間不到10 h,運行21 d之后得到最大穩(wěn)定電流為0.27 mA。在BOD5濃度為 (17±0.5) mg O2/L到 (78±7.6) mg O2/L時,電流密度與其呈現(xiàn)線性關(guān)系。以上結(jié)果表明基于MFC的BOD生物傳感器可實行在線實時監(jiān)測。
2.4 對酸的監(jiān)測
污水里有毒物質(zhì)種類多樣,酸就是其中之一。Shen等[52]利用單室空氣陰極MFC,用鹽酸分別將溶液pH調(diào)到6、5、4、3、2。當(dāng)pH為2–4時,MFC輸出電壓迅速下降,隨后的一段時間內(nèi)又恢復(fù)穩(wěn)定,但當(dāng)pH調(diào)整到2時電壓迅速下降后沒有再恢復(fù)。推測出現(xiàn)以上現(xiàn)象的原因可能為MFC陽極室內(nèi)微生物正常的生長環(huán)境受到破壞,從而影響了MFC的產(chǎn)電量。本實驗中MFC展現(xiàn)出了高度的敏感性和快速的恢復(fù)性,這正是毒性傳感器所應(yīng)具備的條件,且發(fā)現(xiàn)如果降低陽極室的HRT (Hydraulic retention time:滯留時間),MFC的敏感性會進一步得到提升。
近年來,有關(guān)MFC生物傳感器的研究雖然取得了令人矚目的成果,但是仍然存在很多不足。
MFC毒性傳感器的最低檢測限不明確。如Schneider等[28]將100 mg/mL的青霉素、氨芐西林、羥基噻吩青霉素、頭孢吡肟和1 mg/mL的頭孢唑啉、頭孢呋辛、頭孢哌酮、頭孢西寧、頭孢克洛和亞胺硫霉素加入MFC后,輸出電流降低且反應(yīng)靈敏。Deng等[38]將銅離子加入MFC陽極室,證明了Cu2+濃度與輸出電壓呈負(fù)相關(guān),Jiang等[41]將10–400 mg/kg Cd2+加入雙室MFC中,證明了MFC產(chǎn)生的電信號與Cd2+離子呈現(xiàn)良好的線性關(guān)系,但以上實驗均未給出明確的最低檢測線。
只能對已知單一毒性物質(zhì)進行檢測,不能定性和定量檢測含有多種未知毒性物質(zhì)的樣品。Stein等[37]和Jiang等[41]均只研究了銅離子的加入對MFC產(chǎn)生電流的影響,并未定性和定量檢測其他重金屬離子如Cr (VI)、Ag (I)和Hg (II)等的影響。Jiang等[41]研究了不同濃度Cd2+的加入與電荷產(chǎn)生量之間的關(guān)系,同樣未進一步檢測含有多種未知毒性的樣品。Stein等[43]建立的BVM模型,只能在底物濃度已知的情況下通過模型參數(shù)的變化在線評估毒性物質(zhì)的類型。
MFC生物傳感器在水質(zhì)監(jiān)測中的研究與應(yīng)用尚處于起步的實驗室階段。Kim等[36]將MFC用于處理廠實際廢水毒性物質(zhì)檢測,觀察到電流下降顯著,但并未深入研究污水中存在何種毒性物質(zhì),以及是何種物質(zhì)的存在使電流下降。Wu[33]和Yang等[47]的研究雖然初步證實了MFC傳感器有望在線實時監(jiān)測環(huán)境及水質(zhì),但Wu等[33]只檢測了模擬廢水中的妥布霉素,也沒有檢測青霉素、卡那霉素等其他常用的抗生素。同樣,Yang等[47]只是將甲醛注入運行的MFC中,并未研究實際污水中的甲醛,也沒有檢測其他毒性物質(zhì),且監(jiān)測時間只有1 000 min左右。
眾多制約MFC生物傳感器在實際應(yīng)用中的因素尚未解決。雖然距2000年初韓國Kim團隊報道MFC型傳感器已近20年,但MFC生物傳感器仍未實現(xiàn)工程應(yīng)用。其原因主要為:1) MFC產(chǎn)電效率低。MFC傳感器性能與MFC性能緊密相連,MFC產(chǎn)電效率直接影響MFC監(jiān)測的可靠性。陽極微生物是MFC電流產(chǎn)生的關(guān)鍵,而微生物把電子從胞內(nèi)傳遞至電極表面的速率很慢。微生物的新陳代謝、對毒性物質(zhì)的適應(yīng)能力總是有限的。其產(chǎn)電活性受多種因素的影響,如電解液及底物的種類、濃度、培養(yǎng)溫度、pH值、物質(zhì)代謝的產(chǎn)物和溶解氧濃度等。微生物本身存在菌種衰退問題,因此想要將MFC傳感器應(yīng)用于實際,致力于產(chǎn)電微生物改造的研究不容忽視。2) 檢測靈敏度低,特異性差等。3) MFC傳感器裝置構(gòu)造價格昂貴,如常用的質(zhì)子交換膜、離子交換膜和電極催化劑 (Pt) 等。
MFC雖然具備作為生物傳感器的條件,但離實際應(yīng)用還差很遠(yuǎn),還存在很多問題沒有解決。為促進MFC毒性傳感器在實際應(yīng)用中的推廣,未來的研究應(yīng)關(guān)注以下5個方面:1) 提高監(jiān)測靈敏度。陽極微生物是MFC的核心,其產(chǎn)電性能直接影響MFC監(jiān)測的靈敏度。應(yīng)結(jié)合高通量或穩(wěn)定性同位素標(biāo)記等新手段對MFC中的微生物代謝網(wǎng)絡(luò)進一步解析,徹底弄清其新陳代謝產(chǎn)電機理及電子傳遞機制。2) 構(gòu)建特異性MFC毒性傳感器。如與分子印跡或適配體相結(jié)合,構(gòu)造出具有特異性的MFC毒性傳感器,使MFC不僅能夠監(jiān)測已知單一毒性物質(zhì),也能夠用來監(jiān)測未知毒性物質(zhì)。3) 設(shè)計和構(gòu)建多通道裝置,使MFC檢測更加快捷方便,提高其檢測效率。4) 深入探究MFC穩(wěn)定性與恢復(fù)能力,提高MFC傳感器在實際污水中長時監(jiān)測能力。5) 利用篩選或基因工程的方法,以期獲得產(chǎn)電量高、反應(yīng)更快、耐受力更強、監(jiān)測更靈敏、能夠降解更多的難降解或新型污染物的產(chǎn)電菌。
[1] Abrevaya XC, Sacco NJ, Bonetto MC, et al. Analytical applications of microbial fuel cells. Part I: biochemical oxygen demand. Biosens Bioelectron, 2015, 63: 580–590.
[2] Abrevaya XC, Sacco NJ, Bonetto MC, et al. Analytical applications of microbial fuel cells. Part II: toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens Bioelectron, 2015, 63: 591–601.
[3] Wang YP, Liu XW, Li WW, et al. A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energ, 2012, 98: 230–235.
[4] He YH, Liu ZD, Xing XH, et al. Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochem Eng J, 2015, 94: 39–44.
[5] Fernando E, Keshavarz T, Kyazze G. Complete degradation of the azo dye acid orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour Technol, 2014, 156: 155–162.
[6] Liu ZD, He YH, Shen RX, et al. Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. Bioresour Technol, 2015, 185: 294–301.
[7] Zhang HW, Zheng YW, Wang J, et al. Review of application and development in environmental monitoring with microbial fuel cell-based biosensor. J Tianjin Polytechn Univ, 2015, 34(1): 44–49 (in Chinese). 張宏偉, 鄭雅文, 王捷, 等. 微生物燃料電池生物傳感器在環(huán)境監(jiān)測中的應(yīng)用及其研究進展. 天津工業(yè)大學(xué)學(xué)報, 2015, 34(1): 44–49.
[8] Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnol Bioeng, 1977, 19(10): 1535–1547.
[9] Jiang Y, Liang P, Liu PP, et al. Enhancing signal output and avoiding BOD/toxicity combined shock interference by operating a microbial fuel cell sensor with an optimized background concentration of organic matter. Int J Mol Sci, 2016, 17(9): 1392.
[10] Yamashita T, Ookawa N, Ishida M, et al. A novel open-type biosensor for the-monitoring of biochemical oxygen demand in an aerobic environment. Scient Rep, 2016, 6: 38552.
[11] Di Lorenzo M, Thomson AR, Schneider K, et al. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron, 2014, 62: 182–188.
[12] Feng YH, Kayode O, Harper WF Jr. Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing. Sci Total Environ, 2013, 449: 223–228.
[13] Feng YH, Harper WF Jr. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations. J Environ Manage, 2013, 130: 369–374.
[14] Liu ZD, Liu J, Zhang SP, et al. Microbial fuel cell based biosensor for-monitoring of anaerobic digestion process. Bioresour Technol, 2011, 102(22): 10221–10229.
[15] Liu ZD, Liu J, Li BM, et al. Focusing on the process diagnosis of anaerobic fermentation by a novel sensor system combining microbial fuel cell, gas flow meter and pH meter. Int J Hydrogen Energy, 2014, 39(25): 13658–13664.
[16] Kaur A, Kim JR, Michie I, et al. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron, 2013, 47: 50–55.
[17] Zhang YF, Angelidaki I. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens Bioelectron, 2012, 38(1): 189–194.
[18] Khaled F, Ondel O, Allard B. Microbial fuel cells as power supply of a low-power temperature sensor. J Power Sources, 2016, 306: 354–360.
[19] Meire RO, Targino AC, Torres JPM. Bulk atmospheric deposition of persistent toxic substances (PTS) along environmental gradients in Brazil. Environ Sci Pollut Res, 2013, 20(4): 2046–2053.
[20] Niu LL. Persistent toxicsubstances in soils and tree bark across Chinese agricultural regions: residue characteristics andassociated health risks[D]. Hangzhou: Zhejiang University, 2015 (in Chinese). 牛麗麗. 我國農(nóng)田土壤和周邊樹皮中持久性有毒物質(zhì)的殘留特征及健康風(fēng)險[D]. 杭州: 浙江大學(xué), 2015.
[21] Li SQ, Zhou JY, Huang QM, et al. The dangers of abuse of antibiotics and scientific applications. Chin Livest Breed, 2014, 10(11): 31–32 (in Chinese). 李水權(quán), 周建業(yè), 黃其敏, 等. 濫用抗生素的危害及科學(xué)應(yīng)用. 中國畜禽種業(yè), 2014, 10(11): 31–32.
[22] Zhang QG, Hu JJ, Lee DJ. Microbial fuel cells as pollutant treatment units: research updates. Bioresour Technol, 2016, 217: 121–128.
[23] Jiang HM, Li XP, Luo SJ, et al. Biosensors based on microbial fuel cell technology and their application. J Central South Univ: Sci Technol, 2010, 41(6): 2451–2458 (in Chinese). 蔣海明, 李瀟萍, 羅生軍, 等. 基于微生物燃料電池技術(shù)的生物傳感器及其應(yīng)用進展. 中南大學(xué)學(xué)報: 自然科學(xué)版, 2010, 41(6): 2451–2458.
[24] Wu WG, Yang F, Liu X, et al. Influence of substrate on electricity generation ofPV-4 in microbial fuel cells. Microb Cell Fact, 2014, 13(1): 69.
[25] Lin XR. Research advance of microbial fuel cells using in the field of environmental monitoring. J Anhui Agric Sci, 2015, 43(4): 227–229 (in Chinese). 林秀榕. 微生物燃料電池在環(huán)境監(jiān)測中的研究進展. 安徽農(nóng)業(yè)科學(xué), 2015, 43(4): 227–229.
[26] Yang HJ, Zhou MH, Liu MM, et al. Microbial fuel cells for biosensor applications. Biotechnol Lett, 2015, 37(12): 2357–2364.
[27] Wen Q, Kong FY, Zheng HT, et al. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell. J Power Sources, 2011, 196(5): 2567–2572.
[28] Schneider G, Czeller M, Rostás V, et al. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enzyme Microb Technol, 2015(73–74): 59–64.
[29] Wu WG, Bai LL, Liu X, et al. Nanograss array boron-doped diamond electrode for enhanced electron transfer fromPV-4. Electrochem Commun, 2011, 13(8): 872?874.
[30] Wu WG, Xie RG, Bai LL, et al. Direct electrochemistry ofPV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique. J Nanosci Nanotechnol, 2012, 12(5): 3903?3908.
[31] Niu H, Wu WG. Progress in nanomaterials modified anodes of microbial fuel cell. Chin J Biotech, 2016, 32(3): 271–283 (in Chinese). 牛浩, 吳文果. 納米材料修飾微生物燃料電池陽極的研究進展. 生物工程學(xué)報, 2016, 32(3): 271–283.
[32] Wu WG, Gu ZX, Liu X, et al. Nanograss array boron-doped diamond electrode for toxicity sensor withPV-4 in bioelectrochemical systems. Sens Lett, 2014, 12(1): 191–196.
[33] Wu WG, Lesnik KL, Xu ST, et al. Impact of tobramycin on the performance of microbial fuel cell. Microbial Cell Factories, 2014, 13(1): 91.
[34] Xiao YY, De Araujo C, Sze CC, et al. Toxicity measurement in biological wastewater treatment processes: a review. J Hazard Mater, 2015, 286: 15–29.
[35] Kim HJ, Choi DW, Hyun MS, et al. Method and device for detecting toxic material in water using microbial fuel cell: USA, 20050164331-A1. 2005-07-28.
[36] Kim M, Hyun MS, Gadd GM, et al. A novel biomonitoring system using microbial fuel cells. J Environ Monit, 2007, 9(12): 1323–1328.
[37] Stein NE, Hamelers HVM, Buisman CNJ. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry, 2010, 78(1): 87–91.
[38] Deng H, Jiang YB, Zhou YW, et al. Using electrical signals of microbial fuel cells to detect copper stress on soil microorganisms. Eur J Soil Sci, 2015, 66(2): 369–377.
[39] Yi Y, Li XY, Jiang XH, et al. Assessing the solitary and joint biotoxicities of heavy metals and acephate using microbial fuel cell// International Conference on Advances in Energy, Environment and Chemical Engineering. Changsha, China: Atlantis Press, 2015.
[40] Rasmussen M, Minteer SD. Long-term arsenic monitoring with anmicrobial fuel cell. Bioelectrochemistry, 2015, 106: 207–212.
[41] Jiang YB, Deng H, Sun DM, et al. Electrical signals generated by soil microorganisms in microbial fuel cells respond linearly to soil Cd2+pollution. Geoderma, 2015, 255–256: 35–41.
[42] Stein NE, Keesman KJ, Hamelers HVM, et al. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosens Bioelectron, 2011, 26(7): 3115–3120.
[43] Stein NE, Hamelers HMV, van Straten G, et al. On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Contr, 2012, 22(9): 1755–1761.
[44] Stein NE, Hamelers HVM, Buisman CNJ. Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sens Actuat B Chem, 2012, 163(1): 1–7.
[45] Shen YJ, Wang M, Chang IS, et al. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresour Technol, 2013, 136: 707–710.
[46] Jiang Y, Liang P, Zhang CY, et al. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. Bioresour Technol, 2015, 190: 367–372.
[47] Yang WY, Wei XJ, Fraiwan A, et al. Fast and sensitive water quality assessment: a μL-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sens Actuat B Chem, 2016, 226: 191–195.
[48] Dávila D, Esquivel JP, Sabaté N, et al. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron, 2011, 26(5): 2426–2430.
[49] Patil S, Harnisch F, Schr?der U. Toxicity response of electroactive microbial biofilms—a decisive feature for potential biosensor and power source applications. Chemphyschem, 2010, 11(13): 2834–2837.
[50] Stein NE, Hamelers HVM, Buisman CNJ. The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sens Actuat B Chem, 2012, 171–127: 816–821.
[51] Peixoto L, Min B, Martins G, et al.-microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry, 2011, 81(2): 99–103.
[52] Shen YJ, Lefebvre O, Tan Z, et al. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci Technol, 2012, 65(7): 1223–1228.
(本文責(zé)編 郝麗芳)
Detection of toxic substances inmicrobial fuel cells
Jiefu Wang1, Hao Niu1, and Wenguo Wu1,2
1,,361021,,Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamenFujianChina
Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.
microbial fuel cell, toxicity sensor, antibiotics, heavy metal ions, organic pollutants
September 23, 2016; Accepted:February 27, 2017
Wenguo Wu. Tel/Fax: +86-592-6162326; E-mail: wuwenguo@hqu.edu.cn
10.13345/j.cjb.160354
Supported by:National Natural Science Foundation of China (No. 81301290), Natural Science Foundation of Fujian Province (No. 2016J01402), Fujian Province University Outstanding Young Scientific Research Talent Cultivation Plan in 2015, Science and Technology Innovation Program for Young Teachers of Huaqiao University (No. ZQN-PY315), Graduate Research and Inovation Program of Huaqiao University.
國家自然科學(xué)基金 (No. 81301290),福建省自然科學(xué)基金 (No. 2016J01402),2015年福建省高校杰出青年科研人才培育計劃,華僑大學(xué)中青年教師科技創(chuàng)新資助計劃 (No. ZQN-PY315),華僑大學(xué)研究生科研創(chuàng)新能力培育計劃資助。