周 群, 李 炯, 張 燚, 關(guān)蘊(yùn)良, 王 萍, 張 果
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院公共衛(wèi)生學(xué)院毒理學(xué)系,武漢 430030
母代營(yíng)養(yǎng)過(guò)剩對(duì)雄性子代能量代謝的影響*
周 群, 李 炯, 張 燚, 關(guān)蘊(yùn)良, 王 萍, 張 果△
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院公共衛(wèi)生學(xué)院毒理學(xué)系,武漢 430030
目的 探究母代營(yíng)養(yǎng)過(guò)剩對(duì)雄性子代能量代謝的影響。方法 C57BL/6J雌鼠隨機(jī)分為高脂飲食組和正常飲食組,分別飼喂高脂或正常飼料2個(gè)月,然后與正常飲食C57BL/6J雄鼠交配,孕鼠在孕期和哺乳期繼續(xù)攝取高脂或正常飼料。子一代雄鼠性成熟后與正常飲食C57BL/6J雌鼠交配得到子二代,子二代雄鼠性成熟后再與正常飲食C57BL/6J雌鼠交配得到子三代。測(cè)定子一代、子二代、子三代雄性小鼠體重、攝食量及隨機(jī)血糖值。對(duì)子一代和子二代成年雄性小鼠進(jìn)行腹腔糖耐量實(shí)驗(yàn)并記錄肝臟、附睪周脂肪、皮下脂肪濕重值。檢測(cè)子二代成年雄性小鼠血清胰島素及下丘腦能量代謝相關(guān)基因表達(dá)情況。結(jié)果 營(yíng)養(yǎng)過(guò)剩母鼠子一代和子二代雄性小鼠的體重、攝食量、能量攝入量及隨機(jī)血糖值均高于對(duì)照組(均P<0.05),子三代之間的差異則無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。營(yíng)養(yǎng)過(guò)剩母鼠子一代和子二代的成年雄性小鼠的附睪周脂肪脂體比、皮下脂肪脂體比、肝體比及糖耐量曲線下面積均高于對(duì)照組(均P<0.05)。營(yíng)養(yǎng)過(guò)剩母鼠子二代成年雄性小鼠的血清胰島素濃度及下丘腦神經(jīng)肽Y(NPY)、刺鼠相關(guān)蛋白(AGRP)、甘丙肽(GAL)、可卡因-安他非明轉(zhuǎn)錄調(diào)節(jié)肽(CART)、SIM1基因的表達(dá)量均高于對(duì)照組(均P<0.05)。結(jié)論 高脂飲食誘導(dǎo)的營(yíng)養(yǎng)過(guò)剩母代對(duì)雄性子代能量代謝的影響可持續(xù)至子二代,引起子二代下丘腦能量代謝相關(guān)基因表達(dá)異常。
營(yíng)養(yǎng)過(guò)剩; 能量代謝; 子代; 能量代謝相關(guān)基因
20世紀(jì)90年代,英國(guó)Barker教授首次提出了成人疾病的胚胎起源假說(shuō),該假說(shuō)認(rèn)為胎兒宮內(nèi)營(yíng)養(yǎng)不良可導(dǎo)致一系列成人能量代謝障礙性疾病的發(fā)生[1]。隨著大量有關(guān)母親營(yíng)養(yǎng)狀態(tài)與后代疾病之間相關(guān)性的研究得以開(kāi)展,該學(xué)說(shuō)逐漸發(fā)展成為“健康與疾病的發(fā)育起源(developmental origins of health and disease,DOHaD)”學(xué)說(shuō)。近年來(lái)全球肥胖人口不斷增加[2],育齡肥胖婦女比例也不斷升高[3],DOHaD逐漸成為研究的熱點(diǎn)。由于中國(guó)人傾向于在生產(chǎn)前后和哺乳期間給孕產(chǎn)婦提供過(guò)量營(yíng)養(yǎng),因此孕產(chǎn)婦營(yíng)養(yǎng)過(guò)剩的情況更為普遍[4-5]。
除了飲食和生活方式,母親的營(yíng)養(yǎng)狀態(tài)直接決定著胚胎發(fā)育所處的宮內(nèi)環(huán)境,這會(huì)對(duì)后代生長(zhǎng)發(fā)育產(chǎn)生重要影響[6-7]。母親在孕期過(guò)量攝取高熱量食物會(huì)引起胎兒大腦中樞神經(jīng)系統(tǒng)發(fā)育異常,改變后代大腦神經(jīng)環(huán)路,使得后代更傾向于攝入高熱量食物,引發(fā)能量代謝障礙性疾病[8]。
當(dāng)能量攝入超過(guò)能量支出時(shí),能量會(huì)以脂肪的形式在體內(nèi)儲(chǔ)存起來(lái),脂肪儲(chǔ)存過(guò)量便引起肥胖。下丘腦是機(jī)體調(diào)節(jié)能量平衡的高級(jí)神經(jīng)中樞[9],它可以對(duì)機(jī)體能量狀態(tài)作出應(yīng)答,通過(guò)多種神經(jīng)肽共同調(diào)節(jié)食物攝取和能量消耗[10]。
母代營(yíng)養(yǎng)過(guò)剩會(huì)導(dǎo)致子代出現(xiàn)能量代謝紊亂,但是這種不良影響可持續(xù)多久仍不清楚。此外,母代營(yíng)養(yǎng)過(guò)剩對(duì)子二代下丘腦能量代謝相關(guān)基因的影響及潛在機(jī)制仍有待研究。本研究通過(guò)孕前、孕中和哺乳期給予母鼠高脂飲食構(gòu)建母代營(yíng)養(yǎng)過(guò)剩模型,探討母親營(yíng)養(yǎng)過(guò)剩對(duì)后代雄鼠肥胖發(fā)生的影響,并重點(diǎn)考察子二代下丘腦能量代謝相關(guān)基因的表達(dá)變化,為防治肥胖等代謝綜合征提供新思路。
1.1 實(shí)驗(yàn)動(dòng)物及飼料
5~6周齡C57BL/6J雌性小鼠50只,體重13~15 g,5~6周齡C57BL/6J雄性小鼠20只,體重18~20 g,購(gòu)自北京華阜康生物科技股份有限公司,飼養(yǎng)于SPF級(jí)動(dòng)物房。正常飼料(Chow)購(gòu)自北京華阜康生物科技股份有限公司,所含熱量為18.87 kJ/g,熱量百分比為:蛋白質(zhì)20%,脂肪10%,碳水化合物70%。高脂飼料(high fat diet,HFD)購(gòu)自江蘇美迪森生物醫(yī)藥有限公司,所含熱量為29.25 kJ/g,熱量百分比為:蛋白質(zhì)20%,脂肪60%,碳水化合物20%。
1.2 實(shí)驗(yàn)動(dòng)物模型建立
動(dòng)物模型建立流程如圖1。將6周齡的C57BL/6J雌鼠(F0代)分別用高脂飼料(HFD)和正常飼料飼養(yǎng)(Chow)2個(gè)月后,將其與相同年齡的正常飼料飼養(yǎng)的C57BL/6J雄鼠進(jìn)行交配。F0代雌鼠在孕期和哺乳期繼續(xù)原有飲食模式,但子一代(F1)在離乳后均給予正常飼料喂養(yǎng),分別為F1(H-C)組和F1(C-C)組。然后將成年F1代雄鼠繼續(xù)與同齡的正常食物喂養(yǎng)的C57BL/6J雌鼠進(jìn)行交配,由此得到的子二代(F2)仍然給予正常飼料喂養(yǎng),即F2(H-C-C)組和F2(C-C-C)組。同樣方法得到F3(H-C-C-C)組和F3(C-C-C-C)組。
圖1 動(dòng)物模型建立流程Fig.1 Establishment process of animal model
1.3 實(shí)驗(yàn)方法
1.3.1 動(dòng)物體重及組織重量測(cè)定 每隔2 d測(cè)1次體重及攝食量。待動(dòng)物成年后,每組處死6~8只,測(cè)定肝臟、附睪周脂肪及皮下脂肪的濕重。根據(jù)如下公式計(jì)算肝體比和脂體比:肝體比(%)=肝臟重量(g)/體重(g)×100%,脂體比(%)=脂肪重量(g)/體重(g)×100%。所有操作均通過(guò)作者所在單位實(shí)驗(yàn)動(dòng)物倫理委員會(huì)的審核批準(zhǔn)。
1.3.2 隨機(jī)血糖值及血清胰島素濃度的測(cè)量 待動(dòng)物成年后,每組取6~8只使用歐姆龍血糖儀測(cè)小鼠血糖值,此即隨機(jī)血糖值。然后尾部取血,離心取血清,使用日本Shibayagi公司的胰島素ELISA試劑盒嚴(yán)格按照說(shuō)明書(shū)測(cè)量血清胰島素濃度。
1.3.3 腹腔糖耐量實(shí)驗(yàn) 待動(dòng)物成年后,每組取6~8只禁食16 h,然后使用歐姆龍血糖儀測(cè)小鼠血糖值,此時(shí)測(cè)得的血糖為小鼠空腹時(shí)的血糖(0 min)。接著給小鼠腹腔注射2 g/kg體重的葡萄糖,注射完時(shí)的時(shí)間定為0 min并開(kāi)始正計(jì)時(shí)。在注射完葡萄糖后的15、30、60和120 min分別測(cè)血糖值并記錄。采用梯形累加法[11]計(jì)算糖耐量曲線下面積(Area under the curve,AUC):AUC=(T0+T15)×15/2+(T15+T30)×15/2+(T30+T60)×30/2+(T60+T120)× 60/2(其中T0、T15、T30、T60、T120分別指第0、15、30、60、120 min的血糖值)。
1.3.4 實(shí)時(shí)熒光定量PCR檢測(cè)下丘腦能量代謝相關(guān)基因的表達(dá) 每組取6~8只成年雄性小鼠,嚴(yán)格按照Trizol說(shuō)明書(shū)提取小鼠下丘腦總RNA。測(cè)定RNA濃度及純度后,取1 μg RNA進(jìn)行瓊脂糖凝膠電泳檢驗(yàn)RNA質(zhì)量。取1 μg總RNA,利用東洋紡(上海)生物科技公司的逆轉(zhuǎn)錄試劑盒得到cDNA。以cDNA作為模板,引物序列見(jiàn)表1,根據(jù)大連寶生物工程有限公司的熒光定量PCR試劑盒,在熒光定量PCR儀(7900 HT)中進(jìn)行反應(yīng),最終測(cè)得基因的相對(duì)表達(dá)量。
表1 下丘腦能量代謝相關(guān)基因及β-actin引物序列
1.4 統(tǒng)計(jì)學(xué)分析
采用SPSS 12.0統(tǒng)計(jì)軟件進(jìn)行分析,實(shí)驗(yàn)數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差的形式表示,采用獨(dú)立樣本t檢驗(yàn)進(jìn)行分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義,0.05
2.1 高脂喂養(yǎng)誘導(dǎo)母代營(yíng)養(yǎng)過(guò)剩模型
母代小鼠在飼喂高脂飼料后,到第2周小鼠體重即開(kāi)始超過(guò)對(duì)照組(P=0.021),之后高脂組母代小鼠體重始終高于對(duì)照組小鼠(圖2A)。如圖2B和圖2C所示,配種前高脂喂養(yǎng)母代小鼠的體重已明顯高于對(duì)照組(P=0.001),其隨機(jī)血糖濃度也明顯增高(P=0.000)。此外,對(duì)即將配種母代小鼠進(jìn)行腹腔糖耐量實(shí)驗(yàn)后發(fā)現(xiàn)高脂組各時(shí)點(diǎn)的血糖值也顯著高于對(duì)照組,其糖耐量曲線下面積相對(duì)于正常飲食小鼠也顯著增高(圖2D)。
2.2 子代體重、攝食量及能量攝入量變化
子一代小鼠H-C組體重離乳前即開(kāi)始大于C-C組,子二代小鼠H-C-C組在9周齡時(shí)體重開(kāi)始大于C-C-C組,子三代小鼠H-C-C-C組體重與C-C-C-C組相比差異無(wú)統(tǒng)計(jì)學(xué)意義(圖3A及圖3B)。子一代H-C組和子二代小鼠H-C-C組小鼠從2月齡開(kāi)始其攝食量和能量攝入量即開(kāi)始超過(guò)對(duì)照組,然而子三代H-C-C-C組小鼠攝食量和能量攝入量與對(duì)照組的差異無(wú)統(tǒng)計(jì)學(xué)意義(圖3C及圖3D)。
2.3 子代肝體比和脂體比
每組隨機(jī)挑選6~8只成年雄性小鼠進(jìn)行解剖,稱(chēng)取組織濕重,計(jì)算肝體比和脂體比,結(jié)果如圖4所示,子一代H-C組和子二代H-C-C組小鼠的肝體比、附睪周脂肪脂體比、皮下脂肪脂體比均高于對(duì)照組小鼠(均P<0.05)。
2.4 子代隨機(jī)血糖、糖耐量及血清胰島素水平
檢測(cè)子一代、子二代、子三代成年雄性小鼠的隨機(jī)血糖值發(fā)現(xiàn),子一代H-C組和子二代H-C-C組小鼠的隨機(jī)血糖值均高于對(duì)照組,子三代H-C-C-C組小鼠的隨機(jī)血糖值與對(duì)照組相比差異無(wú)統(tǒng)計(jì)學(xué)意義(圖5A)。挑選8~10只成年雄性小鼠進(jìn)行腹腔糖耐量實(shí)驗(yàn),由圖5B及圖5C可知,子一代H-C組和子二代H-C-C組小鼠的糖耐量曲線下面積均比對(duì)照組小鼠高。此外,隨機(jī)挑選6~8只子二代成年雄性小鼠檢測(cè)其血清胰島素濃度后發(fā)現(xiàn),C-C-C組的胰島素濃度為(0.195±0.006)ng/mL,H-C-C組的胰島素濃度為(0.278±0.027)ng/mL,H-C-C組的血清胰島素濃度顯著高于對(duì)照組小鼠(P=0.007)。
A:母代小鼠體重變化;B:母代小鼠配種前體重;C:母代小鼠配種前隨機(jī)血糖值;D:母代小鼠配種前糖耐量情況;與對(duì)照組比較,*P<0.05圖2 母代小鼠體重、隨機(jī)血糖及糖耐量情況Fig.2 Weight,random blood glucose and glucose tolerance of maternal mice
A:子代小鼠離乳前體重變化;B:子代小鼠離乳后體重變化;C:子代小鼠攝食量變化;D:子代小鼠能量攝入量變化;與對(duì)照組比較,*P<0.05 0.05<#P<0.1圖3 子代小鼠離乳前體重變化和離乳后體重、攝食量及能量攝入量變化Fig.3 Changes in body weight before weaning and body weight,food intake and energy intake after weaning
A:子一代小鼠肝體比、附睪周脂肪脂體比、皮下脂肪脂體比;B:子二代小鼠肝體比、附睪周脂肪脂體比、皮下脂肪脂體比;與對(duì)照組比較,*P<0.05 圖4 子代小鼠的肝體比和脂體比Fig.4 Hepatosomatic index and body-fat ratio of offspring
A:子代小鼠的隨機(jī)血糖水平;B:子一代小鼠糖耐量情況;C:子二代小鼠糖耐量情況;與對(duì)照組比較,*P<0.05 圖5 子代小鼠的隨機(jī)血糖和糖耐量情況Fig.5 Random blood glucose and glucose tolerance of offspring
2.5 子代下丘腦能量代謝相關(guān)基因表達(dá)水平
對(duì)子二代小鼠下丘腦7種能量代謝相關(guān)基因進(jìn)行熒光定量PCR分析,由圖6可知,H-C-C組小鼠下丘腦神經(jīng)肽Y(neuropeptide Y,NPY)、刺鼠相關(guān)蛋白(agouti-related peptide,AGRP)、甘丙肽(galanin,GAL)、可卡因-安他非明轉(zhuǎn)錄調(diào)節(jié)肽(cocaine-and amphetamine-regulated transcript,CART)、SIM1(single-minded 1)的表達(dá)量相對(duì)于對(duì)照組上調(diào)明顯(均P<0.05),促甲狀腺激素釋放激素(thyrotropin-releasing hormone,TRH)表達(dá)量相對(duì)于對(duì)照組有降低趨勢(shì)(P=0.068),阿片-促黑素細(xì)胞皮質(zhì)素原(proopiomelanocortin,POMC)表達(dá)量在H-C-C組和C-C-C組間沒(méi)有明顯差異(P=0.190)。
與對(duì)照組比較,*P<0.05,0.05<#P<0.1 圖6 子二代小鼠的下丘腦能量代謝相關(guān)基因表達(dá)水平Fig.6 Hypothalamic energy metabolism-related gene expression levels of second generation mice
近年來(lái),肥胖不僅在中國(guó),而且在世界范圍內(nèi)的發(fā)病率不斷攀升。除了不良飲食習(xí)慣和生活方式外,胚胎發(fā)育所處的宮內(nèi)環(huán)境對(duì)成年期能量代謝的影響也不容忽視。大量研究表明,孕產(chǎn)婦營(yíng)養(yǎng)過(guò)剩對(duì)后代會(huì)產(chǎn)生多種不良影響,包括肥胖、糖尿病、非酒精性脂肪肝等多種代謝障礙性疾病[12-14]。
本研究首先通過(guò)在孕前期、孕期和哺乳期對(duì)母代小鼠持續(xù)高脂喂養(yǎng)構(gòu)建母代營(yíng)養(yǎng)過(guò)剩模型。母代小鼠在配種前其體重就已經(jīng)超過(guò)對(duì)照組小鼠,表明母代小鼠此時(shí)已經(jīng)出現(xiàn)脂代謝紊亂。此外,高脂喂養(yǎng)的母代小鼠的隨機(jī)血糖值及腹腔糖耐量曲線下面積均大于正常飲食組,這說(shuō)明小鼠已經(jīng)對(duì)葡萄糖不耐受,出現(xiàn)糖代謝紊亂。由上述事實(shí)可知,母代小鼠在高脂食物喂養(yǎng)后,其攝入的營(yíng)養(yǎng)遠(yuǎn)遠(yuǎn)超過(guò)了身體的需求量,導(dǎo)致母代小鼠出現(xiàn)糖脂代謝紊亂,故而母代營(yíng)養(yǎng)過(guò)剩模型構(gòu)建成功。
本研究發(fā)現(xiàn)母代營(yíng)養(yǎng)過(guò)剩的子一代雄鼠從離乳前體重就開(kāi)始超過(guò)對(duì)照組小鼠,而母代營(yíng)養(yǎng)過(guò)剩的子二代雄鼠在9周齡時(shí)體重才開(kāi)始超過(guò)對(duì)照組小鼠,然而母代營(yíng)養(yǎng)過(guò)剩的子三代雄鼠的體重與對(duì)照組相比差異始終無(wú)統(tǒng)計(jì)學(xué)意義。此外,母代營(yíng)養(yǎng)過(guò)剩的子一代和子二代雄鼠從2月齡開(kāi)始進(jìn)食量及能量攝入量均超過(guò)對(duì)照組,而子三代雄鼠之間差異始終無(wú)統(tǒng)計(jì)學(xué)意義。進(jìn)一步對(duì)子代成年雄鼠的隨機(jī)血糖值檢測(cè)后發(fā)現(xiàn),母代營(yíng)養(yǎng)過(guò)剩的子一代和子二代雄鼠的隨機(jī)血糖值均大于對(duì)照組,而子三代之間差異仍無(wú)統(tǒng)計(jì)學(xué)意義。這些事實(shí)證明,母代營(yíng)養(yǎng)過(guò)剩對(duì)子代雄鼠的影響可一直持續(xù)至子二代。
有研究表明,母鼠高脂飲食可導(dǎo)致子一代成年期出現(xiàn)肥胖、糖脂代謝紊亂和非酒精性脂肪肝等能量代謝障礙性疾病[15-17]。本研究進(jìn)一步發(fā)現(xiàn),相對(duì)于對(duì)照組小鼠,母代營(yíng)養(yǎng)過(guò)剩的子一代和子二代成年雄性小鼠的肝體比、附睪周脂肪脂體比、皮下脂肪脂體比更高,且糖耐量曲線下面積更大。這進(jìn)一步證實(shí)母代營(yíng)養(yǎng)過(guò)剩不僅導(dǎo)致子一代,而且可導(dǎo)致子二代出現(xiàn)能量代謝障礙。
由于目前有關(guān)母代營(yíng)養(yǎng)過(guò)剩對(duì)子二代影響的研究相對(duì)較少,本研究對(duì)子二代進(jìn)行了更加深入的研究。胰島素是體內(nèi)唯一能夠降低血糖的激素,它在能量調(diào)控中起著十分重要的作用。對(duì)子二代血清胰島素濃度檢測(cè)后發(fā)現(xiàn),母代營(yíng)養(yǎng)過(guò)剩的子二代表現(xiàn)為高胰島素血癥。其結(jié)果與預(yù)期相符,因?yàn)榉逝秩巳簳?huì)出現(xiàn)胰島素抵抗現(xiàn)象,此時(shí)機(jī)體會(huì)代償性地分泌過(guò)量胰島素到血液中[18]。下丘腦作為機(jī)體調(diào)控能量平衡的高級(jí)中樞,表達(dá)多種能量代謝相關(guān)基因。NPY、AGRP、GAL是下丘腦主要的增強(qiáng)食欲的神經(jīng)肽,POMC、CART是下丘腦主要的抑制食欲的神經(jīng)肽[19]。SIM1基因能夠調(diào)控下丘腦視上核和室旁核的發(fā)育,影響機(jī)體攝食量[20]。TRH是下丘腦分泌的一種激素,可以通過(guò)垂體甲狀腺軸調(diào)控甲狀腺激素的釋放,進(jìn)而調(diào)控能量代謝[21]。定量PCR結(jié)果表明,母代營(yíng)養(yǎng)過(guò)剩的子二代表達(dá)較高水平的NPY、AGRP、GAL、CART、SIM1基因,其TRH表達(dá)量相對(duì)于對(duì)照組有增高趨勢(shì)??梢酝茰y(cè),母代營(yíng)養(yǎng)過(guò)剩影響了子二代下丘腦能量代謝相關(guān)基因表達(dá)量,這可能是其引起后代出現(xiàn)能量代謝障礙性疾病的潛在機(jī)制。
綜上所述,高脂飲食所致母代營(yíng)養(yǎng)過(guò)剩可改變子一代雄鼠胚胎發(fā)育期的宮內(nèi)環(huán)境,引起子一代雄鼠出現(xiàn)糖脂代謝異常。然后,子一代雄鼠可以將這種不良影響傳遞給子二代雄鼠,使子二代雄鼠下丘腦能量代謝相關(guān)基因表達(dá)異常,也出現(xiàn)糖脂代謝紊亂。但是這種來(lái)自母代的不良影響不會(huì)傳遞到子三代。這個(gè)過(guò)程中所涉及的具體機(jī)制仍然有待進(jìn)一步研究。
[1] Barker D J.The fetal and infant origins of disease[J].Eur J Clin Invest,1995,25(7):457-463.
[2] World Health Organization.Obesity and overweight[EB/OL].[2015-01].http://www.who.int/mediacentre/factsheets/fs311/en/.
[3] Heslehurst N,Ells L J,Simpson H,et al.Trends in maternal obesity incidence rates,demographic predictors,and health inequalities in 36821women over a 15-year period[J].BJOG,2007,114(2):187-194.
[4] 魏斌,謝小飛,蔡臘梅.孕期體重及新生兒體重和孕期膳食營(yíng)養(yǎng)的調(diào)查[J].當(dāng)代醫(yī)學(xué),2009,15(4):46-47.
[5] 秦敏,朱麗萍,何麗萍,等.1009例孕婦營(yíng)養(yǎng)狀況的研究[J].中國(guó)優(yōu)生與遺傳雜志,2009,(10):64-66.
[6] Chen H,Simar D,Morris M J.Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring[J].J Neurochem,2013,129(2):297-303.
[7] Yokomizo H,Inoguchi T,Sonoda N,et al.Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice[J].Am J Physiol Endocrinol Metab,2014,306(10):E1163-E1175.
[8] Sullivan E L,Smith M S,Grove K L.Perinatal exposure to high-fat diet programs energy balance,metabolism and behavior in adulthood[J].Neuroendocrinology,2011,93(1):1-8.
[9] Sakata T,Yoshimatsu H,Kurokawa M.Hypothalamic neuronal histamine:implications of its homeostatic control of energy metabolism[J].Nutrition,1997,13(5):403-411.
[10] Kalra S P,Dube M G,Pu S,et al.Interacting appetite-regulating pathways in the hypothalamic regulation of body weight[J].Endocr Rev,1999,20(1):68-100.
[11] Cao Y,Xue Y,Xue L,et al.Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation[J].J Hepatol,2013,59(6):1299-1306.
[12] Catalano P M,F(xiàn)arrell K,Thomas A,et al.Perinatal risk factors for childhood obesity and metabolic dysregulation[J].Am J Clin Nutr,2009,90(5):1303-1313.
[13] Oben J A,Mouralidarane A,Samuelsson A M,et al.Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice[J].J Hepatol,2010,52(6):913-920.
[14] 王云峰,張知新.孕婦肥胖對(duì)后代長(zhǎng)期健康的影響[J].國(guó)際兒科學(xué)雜志,2015,42(2):196-199.
[15] Bruce K D,Cagampang F R,Argenton M,et al.Maternal high-fat feeding primes steatohepatitis in adult mice offspring,involving mitochondrial dysfunction and altered lipogenesis gene expression[J].Hepatology,2009,50(6):1796-1808.
[16] Elahi M M,Cagampang F R,Mukhtar D,et al.Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension,raised plasma lipids and fatty liver in mice[J].Br J Nutr,2009,102(4):514-519.
[17] Masuyama H,Hiramatsu Y.Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression[J].Endocrinology,2012,153(6):2823-2830.
[18] Tamori Y,Kasuga M.Obesity and insulin resistance[J].Nihon Rinsho,2009,67(2):236-244.
[19] Parker J A,Bloom S R.Hypothalamic neuropeptides and the regulation of appetite[J].Neuropharmacology,2012,63(1):18-30.
[20] Holder J L,Butte N F,Zinn A R.Profound obesity associated with a balanced translocation that disrupts the SIM1 gene[J].Hum Mol Genet,2000,9(1):101-108.
[21] Joseph-Bravo P,Jaimes-Hoy L,Uribe R M,et al.60 YEARS OF NEUROENDOCRINOLOGY:TRH,the first hypophysiotropic releasing hormone isolated:control of the pituitary-thyroid axis[J].J Endocrinol,2015,226(2):T85-T100.
(2017-03-01 收稿)
Effect of Maternal Nutrient Excess on Energy Metabolism of Male Offspring
Zhou Qun,Li Jiong,Zhang Yietal
DepartmentofToxicology,SchoolofPublicHealth,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology,Wuhan430030,China
Objective To explore the effect of maternal nutrient excess on the energy metabolism of male offspring.Methods C57BL/6J female mice were randomly divided into high fat diet group and normal diet group.They were fed with high fat or normal diet for 2 months and then mated with C57BL/6J male mice fed on normal diet.Pregnant mice continued to ingest high fat or normal diet during pregnancy and lactation.After sexual maturation,the male mice of first generation were mated with C57BL/6J female mice fed on normal diet.The mature male mice of the second generation were then mated with C57BL/6J female mice fed on normal diet to obtain the third generation.The body weight,food intake and random blood glucose level were measured in the male mice of the first,second and third generation.Abdominal glucose tolerance test was performed on the adult male mice of the first and second generation.The wet weight of liver,epididymal fat and subcutaneous fat was also recorded.The levels of serum insulin and expression of hypothalamic energy metabolism related genes were detected in the adult male mice of the second generation.Results The body weight,food intake,energy intake and randomblood glucose levels of the mice of the first and second generation with nutritional excess mothers were significantly higher than those of the control group (allP<0.05),and the differences between the third generation mice and the control group were not statistically significant(P>0.05).Compared with the control group,the body-fat ratio of epididymal fat and subcutaneous fat,hepatosomatic index and area under the curve of glucose tolerance were higher in the first and second generation mice with nutritional excess mothers(allP<0.05).The serum insulin level and expression of Neuropeptide Y(NPY),Agouti-Related Peptide(AGRP),Galanin(GAL),Cocaine-and Amphetamine-Regulated Transcript(CART)and Single-minded 1(SIM1)in the second generation male mice with nutritional excess mothers were significantly higher than those in the control group(allP<0.05).Conclusion The influence of high fat diet induced nutritional excess mothers on the energy metabolism of male offspring may continue to the second generation,which may cause the abnormal expression of energy metabolism related genes in hypothalamus.
nutrient excess; energy metabolism; offspring; energy metabolism related genes
*華中科技大學(xué)青年教師基金資助項(xiàng)目(No.2015QN110)
R151.41
10.3870/j.issn.1672-0741.2017.03.004
周 群,男,1989年生,碩士研究生,E-mail:aotuxiumu@163.com
△通訊作者,Corresponding author,E-mail:gzhang@hust.edu.cn
華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2017年3期