孫蓓 綜述 葉因濤 審校
MCL-1及其抑制劑在血液惡性腫瘤靶向治療中的研究進(jìn)展
孫蓓 綜述 葉因濤 審校
MCL-1(myeloid cell leukemia-1)蛋白是BCL-2(B-cell lymphoma-2)蛋白家族中重要的抗凋亡蛋白之一。MCL-1過表達(dá)不僅與腫瘤發(fā)生發(fā)展密切相關(guān),而且與靶向治療和傳統(tǒng)化療藥物耐藥密切相關(guān),然而研發(fā)適用于臨床的靶向MCL-1的小分子抑制劑目前尚具挑戰(zhàn)性。近十幾年對(duì)MCL-1及其抑制劑進(jìn)行了大量深入的研究,其中MCL-1內(nèi)源性配體BH3的小分子類似物的開發(fā)取得了重大突破。本文對(duì)MCL-1及其抑制劑在血液腫瘤中的研究進(jìn)展做一綜述。
MCL-1 凋亡 BH3類似物 血液惡性腫瘤 靶向治療
細(xì)胞凋亡是為維持內(nèi)環(huán)境穩(wěn)定,由基因控制的細(xì)胞自主有序的死亡,而凋亡過程發(fā)生紊亂則會(huì)引發(fā)多種疾病。細(xì)胞凋亡紊亂在腫瘤的發(fā)生、發(fā)展中起到重要的作用,是腫瘤對(duì)化療藥物產(chǎn)生耐受的機(jī)制之一。因此,本文對(duì)細(xì)胞凋亡的調(diào)控機(jī)制進(jìn)行了較為深入的研究。查閱近幾年文獻(xiàn)發(fā)現(xiàn),BCL-2家族的抗凋亡蛋白MCL-1在諸多腫瘤組織中過度表達(dá),對(duì)腫瘤細(xì)胞的生存起到關(guān)鍵的保護(hù)作用,有研究利用MCL-1的反義寡核甘酸可引起表達(dá)MCL-1的腫瘤細(xì)胞的凋亡[1-2]。另外有研究顯示,MCL-1的高表達(dá)與化療藥物耐藥性和腫瘤復(fù)發(fā)相關(guān),MCL-1高表達(dá)的腫瘤組織對(duì)其他抗凋亡蛋白的抑制劑產(chǎn)生耐藥性[3-5],提示阻斷MCL-1的信號(hào)途徑能有效地誘導(dǎo)或促進(jìn)腫瘤細(xì)胞凋亡,增加腫瘤組織對(duì)化療藥物的敏感性。因此,靶向MCL-1抗凋亡蛋白抑制劑的研發(fā)對(duì)腫瘤的治療具有獨(dú)特的意義,已經(jīng)成為抗腫瘤藥物研究的熱點(diǎn)之一。
MCL-1是BCL-2家族的抗凋亡蛋白成員之一,至少含有一種BCL-2同源的BH結(jié)構(gòu)域,是線粒體凋亡途徑的關(guān)鍵調(diào)節(jié)劑,而含有多BH結(jié)構(gòu)域的效應(yīng)子BAX、BAK和BOK以及僅BH3蛋白如BIM和BAD則具有促凋亡功能。定位于線粒體外膜的MCL-1蛋白能夠通過阻止BAX和BAK的活化從而防止細(xì)胞死亡,其功能類似于其他抗凋亡BCL-2家庭成員。MCL-1可以直接結(jié)合BH3家族成員,如BIM,將它們與促凋亡效應(yīng)物BAX或BAK隔離開;MCL-1也有可能直接結(jié)合BAX和BAK,使其處于非活性構(gòu)象,從而維持線粒體膜穩(wěn)定,抑制線粒體釋放細(xì)胞色素C,達(dá)到促進(jìn)細(xì)胞的生存,阻止細(xì)胞凋亡的作用(圖1)[6-7]。位于線粒體基質(zhì)的MCL-1蛋白并沒有抗凋亡的作用,而是促進(jìn)正常的線粒體生理和能量代謝。在線粒體輸入期間,全長MCL-1的氨基末端被蛋白水解截短,截短的MCL-1進(jìn)入線粒體基質(zhì)駐留于線粒體內(nèi)膜,其功能主要是保持線粒體嵴的超微結(jié)構(gòu),促進(jìn)電子的聚集運(yùn)輸鏈復(fù)合物轉(zhuǎn)化為超級(jí)復(fù)合物(super complex,SC),并促進(jìn)ATP合成酶復(fù)合物組裝成二聚體和寡聚體[7]。因此位于線粒體外膜和基質(zhì)的MCL-1可協(xié)同抑制細(xì)胞死亡和促進(jìn)細(xì)胞增殖。對(duì)于腫瘤細(xì)胞來說,除了要逃避凋亡還需要大量的能量來維持快速增殖,有研究認(rèn)為MCL-1的基質(zhì)功能對(duì)腫瘤細(xì)胞的快速增殖是必需的。
圖1 線粒體凋亡途徑Figure 1 Mitochondrial apoptosis pathway
此外,MCL-1含有增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PNCA)結(jié)合結(jié)構(gòu),其過度表達(dá)能明顯抑制細(xì)胞周期向S期進(jìn)展,而缺少PCNA結(jié)合結(jié)構(gòu)的MCL-1對(duì)細(xì)胞周期的抑制作用明顯減低,因此認(rèn)為MCL-1通過與PCNA結(jié)合對(duì)細(xì)胞周期進(jìn)程也起到調(diào)控作用[8]。
雖然MCL-1是BCL-2的家族成員,有著相似的結(jié)構(gòu)和功能,但是MCL-1在此家族中具有其獨(dú)特性,首先MCL-1壽命很短,被認(rèn)為是凋亡調(diào)控的上游信號(hào),其表達(dá)受到多種生長因子和葡萄糖信號(hào)級(jí)聯(lián)的調(diào)控,MCL-1的泛素化降解可被去泛素化酶USP9X抵抗,導(dǎo)致MCL-1的穩(wěn)定表達(dá)從而發(fā)揮抗凋亡作用,因此面對(duì)細(xì)胞應(yīng)激時(shí),MCL-1可以快速地做出反應(yīng)[7]。另外,MCL-1在促生存BCL-2蛋白方面也是獨(dú)特的,因?yàn)镸CL-1對(duì)早期胚胎發(fā)育[9]以及包括淋巴細(xì)胞在內(nèi)的多種細(xì)胞譜系[10-11]、造血干細(xì)胞[12]、嗜中性粒細(xì)胞[13]和神經(jīng)元[14]的生存是必不可少的,而其他抗凋亡分子的內(nèi)源水平不足以在不存在MCL-1的情況下促進(jìn)存活。
腫瘤的發(fā)生是由于細(xì)胞增殖、分化和細(xì)胞凋亡失衡綜合作用的結(jié)果,MCL-1作為抗凋亡蛋白家族中的一員,其表達(dá)與調(diào)節(jié)的異常與腫瘤的發(fā)生發(fā)展有密切的關(guān)系。研究表明MCL-1是很多腫瘤細(xì)胞生存的必須,其在多發(fā)性骨髓瘤(multiple myeloma,MM)、淋巴瘤和白血病中的表達(dá)水平明顯升高,并且其表達(dá)水平與腫瘤分級(jí)和患者預(yù)后密切相關(guān)。
Wuillème-Toumi等[5]發(fā)現(xiàn)在 52%的 MM 患者和81%的MM復(fù)發(fā)患者中MCL-1出現(xiàn)過表達(dá),MCL-1的表達(dá)水平越高M(jìn)M患者的生存期越短。Le等[15]和Zhang等[16]也發(fā)現(xiàn)MCL-1對(duì)維持MM細(xì)胞生存的重要作用,同時(shí)降低MCL-1的表達(dá)能夠引起MM細(xì)胞的凋亡[17-18]。有研究發(fā)現(xiàn)MCL-1小分子抑制劑A1210477能夠誘導(dǎo)骨髓瘤細(xì)胞的凋亡[19]。Gupta等[20]發(fā)現(xiàn)IL-6能夠誘導(dǎo)BCL-2/BCL-xL依賴性腫瘤細(xì)胞產(chǎn)生MCL-1依賴,阻斷IL-6或下游信號(hào)恢復(fù)BCL-2/BCL-xL依賴性可能增強(qiáng)BCL-2抑制劑的活性。
MCL-1過表達(dá)顯著加速M(fèi)yc誘導(dǎo)的淋巴瘤發(fā)生,研究顯示MCL-1過表達(dá)使得造血細(xì)胞難以修復(fù)許多細(xì)胞毒性損傷,擾亂淋巴細(xì)胞生成并促進(jìn)造血干細(xì)胞和祖細(xì)胞的惡性轉(zhuǎn)化[21]。而Grabow等[22]研究又發(fā)現(xiàn)在Myc淋巴瘤模型中,MCL-1的喪失特異性地影響了淋巴瘤的存活,可能是通過引發(fā)前B細(xì)胞在應(yīng)答致癌應(yīng)激時(shí)提高BIM水平來增敏凋亡的。同時(shí)Grabow等[23]通過使用floxed等位基因使MCL-1遺傳損失,在Myc誘導(dǎo)的B細(xì)胞淋巴瘤中也觀察到了類似的數(shù)據(jù)。另外,來自249例彌漫大B細(xì)胞淋巴瘤(dif?fuse large B-cell lymphoma,DLBCL)患者的基因表達(dá)譜顯示活化的B細(xì)胞中MCL-1水平明顯增加,這種變化由復(fù)發(fā)性染色體的獲得和異常的STAT3信號(hào)傳導(dǎo)引起[24]。而在這些DLBCL中敲除MCL-1會(huì)導(dǎo)致細(xì)胞死亡和增加對(duì)化學(xué)治療的敏感性。此外,MCL-1和BCL-XL蛋白水平的伴隨增加常常暗示了對(duì)BH3類似物誘導(dǎo)的凋亡有耐受性的DLBCL的復(fù)發(fā)[25]。Khoury等[26]使用蛋白印跡分析發(fā)現(xiàn)在套細(xì)胞淋巴瘤(mantle cell lymphoma,MCL)細(xì)胞系和5個(gè)冰凍MCL腫瘤組織中都可以檢測(cè)到MCL-1的表達(dá),并且在blastoid/大細(xì)胞型中MCL-1的表達(dá)水平最高。對(duì)于MCL,Müller等[27]研究證實(shí),即使藥理學(xué)靶向阻斷BCL-2/BCL-XL,源自該淋巴瘤亞型的細(xì)胞系仍然對(duì)細(xì)胞凋亡有抗性。值得注意的是,在RNA干擾介導(dǎo)下敲除或化學(xué)阻斷MCL-1后,該抗性被逆轉(zhuǎn),并且使用多激酶抑制劑NVPBEZ235能進(jìn)一步增強(qiáng)該逆轉(zhuǎn)。
MCL-1在白血病細(xì)胞中也有相似的表現(xiàn),Aich?berger等[28]發(fā)現(xiàn)MCL-1在原發(fā)性慢性粒細(xì)胞白血病(chronic myeloid leukemia,CML)細(xì)胞中表達(dá),并且應(yīng)用MCL-1小干擾RNA(siRNA)和MCL-1反義寡核苷酸在CML來源的細(xì)胞系中觀察到MCL-1表達(dá)下調(diào)和細(xì)胞生存能力下降。Glaser等[29]和 Xiang等[30]發(fā)現(xiàn)MCL-1對(duì)急性骨髓性白血?。╝cute myeloid leukemia,AML)的發(fā)生發(fā)展起到重要的作用,即便在其他抗凋亡家族蛋白內(nèi)源性表達(dá)的前提下,MCL-1的遺傳缺失也能夠引起腫瘤細(xì)胞的死亡,這提示其他抗凋亡蛋白的內(nèi)源性表達(dá)水平不足以促進(jìn)細(xì)胞存活。研究發(fā)現(xiàn)MCL-1在慢性淋巴細(xì)胞白血?。╟hronic lympho?cytic leukemia,CLL)中表達(dá)上調(diào),并與預(yù)后不良標(biāo)記物和治療耐藥相關(guān),其表達(dá)水平能夠預(yù)示患者的臨床結(jié)果,而沉默MCL-1則能誘導(dǎo)腫瘤細(xì)胞凋亡[31-34]。
現(xiàn)有抑制MCL-1表達(dá)的藥物能夠協(xié)同其他化療藥物以及BCL-2抑制劑(ABT-737等)發(fā)揮促凋亡和抗腫瘤的作用,然而由于絕大部分都不是直接或特異的MCL-1抑制劑,在患者身上表現(xiàn)出明顯的毒性[35]。對(duì)于抗凋亡蛋白MCL-1表達(dá)水平增高的惡性血液腫瘤,靶向阻斷MCL-1可能是個(gè)性化治療的關(guān)鍵步驟[36]。由于小分子BH3類似物通過與MCL-1的BH3結(jié)合槽結(jié)合釋放BIM等BH3家族蛋白,進(jìn)而起到促凋亡抗腫瘤的作用,小分子BH3類似物的開發(fā)和成功評(píng)價(jià)成為治療MCL-1依賴性惡性腫瘤的里程碑(圖1)[37]。由于MCL-1的疏水性結(jié)合槽和內(nèi)源性配體(僅BH3蛋白)的高親和力,抑制MCL-1活性的BH3類似物的鑒定較為困難。之前最有前景的BH3類似物有ABT-199(venetoclax)和ABT-737及其衍生物 ABT-263(Navitoclax)等[38-41],其中 ABT-263 已經(jīng)進(jìn)入到Ⅰ、Ⅱ期臨床研究[40,42],ABT-199已被美國食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于特定染色體異?;颊叩穆粤馨图?xì)胞性白血病[41-42],但都是靶向BCL-2和BCL-XL蛋白的。最近發(fā)現(xiàn)靶向MCL-1的BH3類似物中比較有前景的有A-1210477及相關(guān)類似物和S63845,因其與MCL-1的高親和力和低毒性備受矚目。
3.1 A1210477
A-1210477及其類似物是通過高通量篩選和結(jié)構(gòu)指導(dǎo)設(shè)計(jì)制備出的吲哚-2-羧酸核心衍生物,其和MCL-1的親和力(0.45 nM)比吲哚-2-羧酸高100倍,且對(duì)MCL-1表現(xiàn)出很好的選擇性[43-44]。A-1210477和幾種相關(guān)類似物能夠解離活細(xì)胞中MCL-1與BIM或NOXA的相互作用[45]。在被證明依賴于MCL-1存活的MM和非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)細(xì)胞系中,化合物A-1210477和相關(guān)類似物能夠觸發(fā)線粒體胱天蛋白酶依賴性細(xì)胞凋亡的標(biāo)志物。經(jīng)過對(duì)作用機(jī)制的徹底分析,證明A-1210477和相關(guān)化合物通過直接作用于其靶點(diǎn)MCL-1來誘導(dǎo)BAX/BAK依賴性細(xì)胞死亡。研究證明A-1210477通過與BCL-2/BCL-XL抑制劑ABT-263的協(xié)同作用,在多種癌細(xì)胞系中誘導(dǎo)凋亡??傊珹-1210477及其類似物是在癌細(xì)胞中表現(xiàn)出明確靶向活性的第一種MCL-1選擇性的、可靠的BH3模擬物[46],但是還需要更多的體內(nèi)體外試驗(yàn)評(píng)價(jià)其藥效和安全性。
3.2 S63845
S63845是基于NMR片段篩選和隨后結(jié)構(gòu)指導(dǎo)發(fā)現(xiàn)的一種高選擇性和有效的MCL-1抑制劑。研究顯示S63845與MCL-1的親和性很高(0.19 nM),是之前發(fā)表的MCL-1抑制劑A-1210477的20倍。與以前發(fā)表的BH3類似物相似,S63845的共晶結(jié)構(gòu)與MCL-1的BH3的結(jié)合槽結(jié)合,其羧酸鹽部分與典型的促生存BCL-2家族成員抑制劑錨點(diǎn)Arg263有很強(qiáng)的相互作用,其芳香支架嵌入到疏水口袋P2中,而末端三氟甲基部分延伸到P4[47]。免疫共沉淀實(shí)驗(yàn)證實(shí)S63845選擇性靶向MCL-1,實(shí)驗(yàn)顯示S63845破壞了HeLa細(xì)胞中BAK和BAX與MCL-1的結(jié)合,而對(duì)這些促凋亡蛋白與BCL-XL或BCL-2的相互作用沒有影響。研究者還發(fā)現(xiàn)BAX-和BAK缺陷的H929細(xì)胞對(duì)S63845具有抗性,進(jìn)一步表明S63845通過靶向活性殺死癌細(xì)胞,即通過直接抑制MCL-1激活BAX/BAK依賴性線粒體凋亡途徑。
有研究提示,在25個(gè)MM細(xì)胞系中僅2個(gè)細(xì)胞系對(duì)S63845不敏感,而且對(duì)BCL-2抑制劑藥效受限的細(xì)胞系對(duì)S63845也有敏感性,提示MCL-1抑制劑可能對(duì)那些標(biāo)準(zhǔn)治療藥物耐受的情況有效[47]。在異體移植人MM大鼠模型中,S63845表現(xiàn)出劑量依賴性,并且在AMO1模型組8只大鼠中7只在100 d治療(25 mg/kg,iv)之后完全復(fù)原,在實(shí)驗(yàn)過程中大鼠表現(xiàn)出良好的耐受性,沒有觀察到明顯的體質(zhì)量降低。在11個(gè)代表性淋巴瘤和慢性髓性白血病細(xì)胞系中,僅有3個(gè)細(xì)胞系對(duì)S63845不敏感,7個(gè)c-myc誘導(dǎo)的人霍奇金淋巴瘤全部表現(xiàn)出明顯的敏感性[47]。在腫瘤組織和正常組織都表達(dá)鼠MCL-1蛋白的c-myc誘導(dǎo)的霍奇金淋巴瘤大鼠中,連續(xù)5 d靜脈注射25 mg/kg的S63845能夠治愈70%的霍奇金淋巴瘤大鼠,而對(duì)正常組織無不良反應(yīng)。接下來研究者又評(píng)價(jià)了S63845對(duì)8個(gè)急性淋巴細(xì)胞白血?。╝cute lympho?blastic leukemia,ALL)細(xì)胞系的作用,結(jié)果所有細(xì)胞系均對(duì)S63845敏感,同時(shí)在急性髓細(xì)胞白血?。╝cute myeloid leukemia,AML)動(dòng)物模型中也得到相同的結(jié)果,并且不會(huì)殺死正常的造血祖細(xì)胞[46]。
實(shí)驗(yàn)證實(shí)S63845是一個(gè)高度有效和選擇性的MCL-1抑制劑,在已知依賴MCL-1的腫瘤衍生細(xì)胞系中表現(xiàn)出較好的體內(nèi)體外抗腫瘤活性,而且正常組織對(duì)其有效濃度能夠耐受。目前S63845的臨床前研究表現(xiàn)優(yōu)異,有待于臨床研究的進(jìn)一步驗(yàn)證[48-49]。
MCL-1在很多腫瘤的發(fā)生發(fā)展和生存中均起到關(guān)鍵的作用,對(duì)血液系統(tǒng)腫瘤也起到重要作用。隨著研究的進(jìn)一步發(fā)展,MCL-1的生理病理機(jī)制都進(jìn)一步被展示,極大地促進(jìn)了靶向MCL-1抑制劑的開發(fā)。MCL-1的抑制劑S63845在抗腫瘤活性方面表現(xiàn)優(yōu)異,耐受性良好,與之前在MCL-1基因敲除動(dòng)物模型中出現(xiàn)嚴(yán)重不良反應(yīng)不同。這可能是因?yàn)殚g歇性藥理學(xué)阻斷MCL-1與完全缺失MCL-1基因不同,也可能是因?yàn)镸CL-1抗凋亡以外的功能并不能被藥理學(xué)抑制劑阻斷而能被基因敲除阻斷。綜上所述,靶向MCL-1的BH3類似物可以達(dá)到強(qiáng)大的抗腫瘤活性也能找到合適的治療窗,是抗腫瘤藥物研發(fā)的新靶點(diǎn)。
[1] Michels J,O`Neill JW,Dallman CL,et al.Mcl-1 is required for Akata6B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage[J].Oncogene,2004,23(28):4818-4827.
[2] Derenne S,Monia B,Dean NM,et al.Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L)is an essential survival protein of human myeloma cells[J].Blood,2002,100(1):194-199.
[3] Leverson JD,Zhang H,Chen J,et al.Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263(navitoclax)[J].Cell Death Dis,2015,6(1):e1590.
[4] Lin KH,Winter PS,Xie A,et al.Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia[J].Sci Rep,2016,10(6):27696.
[5] Wuillème-Toumi S,Robillard N,Gomez P,et al.Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival[J].Leukemia,2005,19(7):1248-1252.
[6] Cuconati A,Mukherjee C,Perez D,et al.DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells[J].Genes Dev,2003,17(23):2922-2932.
[7] Perciavalle RM,Opferman JT.Delving deeper:MCL-1's contributions to normal and cancer biology[J].Trends Cell Biol,2013,23(1):22-29.
[8] Fujise K,Zhang D,Liu J,et al.Regulation of apoptosis and cell cycle progression by MCL-1.Differential role of proliferating cell nuclear antigen[J].J Biol Chem,2000,275(50):39458-39465.
[9] Rinkenberger JL,Horning S,Klocke B,et al.Mcl-1 deficiency results in peri-implantation embryonic lethality[J].Genes Dev,2000,14(1):23-27.
[10]Opferman JT,Letai A,Beard C,et al.Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1[J].Nature,2003,426(6967):671-676.
[11]Dzhagalov I,Dunkle A,He YW.The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages[J].J Immunol,2008,181(1):521-528.
[12]Opferman JT,Iwasaki H,Ong CC.Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells[J].Science,2005,307(5712):1101-1104.
[13]Dzhagalov I,St John A,He YW.The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages[J].Blood,2007,109(4):1620-1626.
[14]Arbour N,Vanderluit JL,Le Grand JN.Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage[J].J Neurosci,2008,28(24):6068-7608.
[15]Le GS,Podar K,Amiot M,et al.VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis[J].Blood,2004,104(9):2886-2892.
[16]Zhang B,Gojo I,Fenton RG.Myeloid cell factor-1 is a critical survival factor for multiple myeloma[J].Blood,2002,99(6):1885-1893.
[17]Zhang YK,Wang H,Leng Y,et al.Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1[J].Bioche Bio Res Communic,2011,414(1):233-239.
[18]Follinarbelet V,Torgersen ML,Naderi EH,et al.Death of multiple myeloma cells induced by cAMP-signaling involves downregulation of Mcl-1 via the JAK/STAT pathway[J].Cancer Letters,2013,335(2):323-331.
[19]Besbes S,Billard C.First MCL-1-selective BH3 mimetics as potential therapeutics for targeted treatment of cancer[J].Cell Death Dis,2015,6(7):e1810.
[20]Gupta VA,Matulis SM,Conagepough JE,et al.Bone marrow microenvironment derived signals induce Mcl-1 dependence in multiple myeloma[J].Blood,2017,129(14):1969-1979.
[21]Campbell KJ,Bath ML,Turner ML,et al.Elevated Mcl-1 perturbs lymphopoiesis,promotes transformation ofhematopoietic stem/progenitor cells,and enhances drug resistance[J].Blood,2010,116(17):3197-3207.
[22]Grabow S,Delbridge AR,Aubrey BJ,et al.Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing pro-B cells to apoptosis[J].Cell Rep.2016,14(10):2337-2347.
[23]Grabow S,Kelly GL,Delbridge AR,et al.Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis[J].Cell Death Dis,2016,7(3):e2132.
[24]Wenzel SS,Grau M,Mavis C,et al.MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma[J].Leukemia,2013,27(6):1381-1390.
[25]Choudhary GS,Alharbi S,Mazumder S,et al.MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies[J].Cell Death Dis,2015,6(1):e1593.
[26]Khoury JD,Medeiros LJ,Rassidakis GZ,et al.Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology,ahigh proliferative state,and p53 overexpression[J].J Pathol,2003,199(1):90-97.
[27]Müller A,Zang C,Chumduri C,et al.Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma[J].Int J Cancer,2013,133(8):1813-1824.
[28]Aichberger KJ,Mayerhofer M,Krauth MT,et al.Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia(CML):evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides[J].Blood,2005,105(8):3303-3311.
[29]Glaser SP,Lee EF,Trounson E,et al.Anti-apoptotic Mcl-1 is essential for the development and sustained growth ofacute myeloid leukemia[J].Genes Dev,2012,26(2):120-125.
[30]Xiang Z,Luo H,Payton JE,et al.Mcl1 haploinsufficiency protectsmice from Myc-induced acute myeloid leukemia[J].J Clin Invest,2010,120(6):2109-2118.
[31]Awan FT,Kay NE,Savies ME,et al.Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin,cyclophosphamide,and rituximab[J].Blood,2009,133(3):535-537.
[32]Pepper C,Lin TT,Pratt G,et al.Mcl-1expression has in vitro and in vivo signi fi cance in chronic lymphocyticleukemia and is associated with other poor prognosticmarkers[J].Blood,2008,112(9):3807-3817.
[33]Hussain SR,Cheney CM,Johnson AJ,et al.Mcl-1 is a relevant therapeutic target in acute and chronic lymphoidmalignancies:downregulation enhances rituximab-mediated apoptosis andcomplement-dependent cytotoxicity[J].Clin Cancer Res,2007,13(7):2144-2150.
[34]Kitada S,Andersen MJ,Akar S,et al.Expression of apoptosis-regulating proteins in chronic lymphocyticleukemia:correlations with in vitro and in vivo chemoresponses[J].Blood,1998,91(9):3379-3389.
[35]Del V,Moore G,Schlis KD,et al.BCL-2 dependence and ABT-737 sensitivity in acute lymphoblasticleukemia BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia[J].Leukemia,2008,111(2):2300-2309.
[36]Del GMV,Letai A.BH3 profiling-measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions[J].Cancer Lett,2013,332(2):202-205.
[37]Besbes S,Mirshahi M,Pocard M,et al.New dimension in therapeutic targeting of BCL-2 family proteins[J].Oncotarget,2015,6(15):12862-12871.
[38]Kline MP,Rajkumar SV,Timm MM,et al.ABT-737,an inhibitor of Bcl-2 family proteins,is a potentinducer of apoptosis in multiple myeloma cells[J].Leukemia,2007,21(7):1549-1560.
[39]Tse C,Shoemaker AR,Adickes J,et al.ABT-263:a potent and orally bioavailable Bcl-2 family inhibitor[J].Cancer Res,2008,68(9):3421-3428.
[40]Souers AJ,Leverson JD,Boghaert ER,et al.ABT-199,a potent and selective BCL-2 inhibitor,achievesantitumor activity while sparing platelets[J].Nat Med,2013,19(2):202-208.
[41]Wilson WH,O'Connor OA,Czuczman MS,et al.Navitoclax,a targeted high-affinity inhibitor of BCL-2 in lymphoid malignancies:a phase 1 dose-escalation study of safety,pharmacokinetics,pharmacodynamics,and antitumor activity[J].Lancet Oncol,2010,11(12):1149-1159.
[42]Rudin CM,Hann CL,Garon EB,et al.PhaseⅡstudy of single-agent navitoclax(ABT-263)andbiomarker correlates in patients with relapsed small cell lung cancer[J].Clin Cancer Res,2012,18(11):3163-3169.
[43]Bruncko M,Wang L,Sheppard GS,et al.Structure-guided design of a series of MCL-1 inhibitors with high affinity andselectivity[J].J Med Chem,2015,58(5):2180-2194.
[44]Friberg A,Vigil D,Zhao B,et al.Discovery of potent myeloid cell leukemia 1(MCL-1)inhibitors usingfragment-based methods and structure-based design[J].J Med Chem,2012,56(1):15-30.
[45]Leverson JD,Zhang H,Chen J,et al.Potent and selective small-molecule MCL-1 inhibitors demonstrate on-targetcancer cell killing activity as single agents and in combination with ABT-263(navitoclax)[J].Cell Death Dis,2015,6(1):e1590.
[46]Besbes S,Pocard M,Mirshahi M.The first MCL-1-selective BH3 mimetics have therapeutic potential for chronic lymphocytic leukemia[J].Crit Rev Oncol Hematol,2016,100(1):32-36.
[47]Kotschy A,Szlavik Z,Murray J,et al.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J].Nature,2016,538(7626):477-482.
[48]Letai A.S63845,an MCL-1 Selective BH3 mimetic:another arrow in our quiver[J].Cancer Cell,2016,30(6):834-835.
[49]Flemming A.Anticancer drugs:breaking up a pro-survival interaction[J].Nat Rev Drug Discov,2016,15(12):820-821.
(2017-03-15收稿)
(2017-04-18修回)
(編輯:孫喜佳 校對(duì):楊紅欣)
Research progress on MCL-1 and its inhibitors in hematological malignancies
Bei SUN,Yintao YE
Bei SUN;E-mail:sunpei003@sina.com
Tianjin Medical University Cancer Institute and Hospital,National Clinical Research Center for Cancer;Key Laboratory of Cancer Prevention and Therapy,Tianjin;Tianjin's Clinical Research Center for Cancer,Tianjin 300060,China;Tianjin 300060,China
Myeloid cell leukemia-1(MCL-1)protein is one of the key antiapoptotic protein members of the B-cell lymphoma-2 protein family.Overexpression of MCL-1 is closely related to not only tumor progression but also resistance to targeted therapy and traditional chemotherapeutic drug.MCL-1 and its inhibitors have been studied in recent years.The mimetics of MCL-1 endogenous ligand BH3 have resulted in significant breakthroughs.In this study,the research progress on MCL-1 and its inhibitors in hematological malignancies is reviewed.
MCL-1,apoptosis,BH3 mimetics,hematological malignancies,targeted therapy
10.3969/j.issn.1000-8179.2017.11.301
天津醫(yī)科大學(xué)腫瘤醫(yī)院門診辦公室,國家腫瘤臨床醫(yī)學(xué)研究中心,天津市腫瘤防治重點(diǎn)實(shí)驗(yàn)室,天津市惡性腫瘤臨床醫(yī)學(xué)研究中心(天津市300060)
孫蓓 sunpei003@sina.com
孫蓓 專業(yè)方向?yàn)槟[瘤藥理學(xué)。
E-mail:sunpei003@sina.com