張海媛,劉洪麗,李 婧,康 偉
(1天津市軟土特性與工程環(huán)境重點實驗室,天津 300384;2天津城建大學(xué) 材料科學(xué)與工程學(xué)院,天津 300384)
SiO2/SiCN核殼陶瓷微球的制備及表征
張海媛1,2,劉洪麗1,2,李 婧2,康 偉2
(1天津市軟土特性與工程環(huán)境重點實驗室,天津 300384;2天津城建大學(xué) 材料科學(xué)與工程學(xué)院,天津 300384)
采用乳液技術(shù)和先驅(qū)體轉(zhuǎn)化法相結(jié)合,利用改性后SiO2顆粒表面的雙鍵引發(fā)聚硅氮烷(PSN)原位聚合,得到SiO2/PSN核殼結(jié)構(gòu)微球,經(jīng)高溫裂解過程成功制備SiO2/SiCN核殼陶瓷微球。研究SiO2與PSN原料的質(zhì)量比、固化時間和熱解溫度對核殼微球形成過程和形貌的影響,并采用SEM,EDS,TEM,F(xiàn)T-IR,XRD對微球的微觀形貌、化學(xué)成分及物相進(jìn)行表征。結(jié)果表明:SiO2與PSN質(zhì)量比為1∶4時,200℃固化4h得到表面顆粒分布均一、包覆完全的SiO2/PSN核殼微球;經(jīng)800~1200℃熱處理后,得到能保持原來形貌的非晶態(tài)SiO2/SiCN核殼陶瓷微球;1400℃熱解產(chǎn)物發(fā)生結(jié)晶,生成了SiO2,SiC和Si3N4晶相。
聚硅氮烷;乳液法;先驅(qū)體轉(zhuǎn)化法;核殼陶瓷微球
SiO2具有純度高、密度低、比表面積大、分散性能好以及優(yōu)越的熱穩(wěn)定性、化學(xué)惰性和光學(xué)及力學(xué)性能,被廣泛用于陶瓷、橡膠、塑料、涂料、催化劑載體及隔熱等領(lǐng)域[1-4]。但是作為高溫隔熱材料,在溫度超過800℃條件下,SiO2粒子對0.75~8μm波段紅外熱輻射幾乎是透明的,使其很難阻止熱輻射這種熱量傳遞方式,限制了SiO2在高溫環(huán)境中的應(yīng)用[5]。近年來,為提高SiO2的高溫隔熱性能,SiO2基核殼結(jié)構(gòu)材料不斷被研發(fā)出來[6-9]。葉曉云[10]采用SiO2為基底,利用異丙醇鋯的水解縮合在SiO2微球表面沉積ZrO2層,獲得了具有較低紅外發(fā)射率的SiO2/ZrO2核殼納米粒子。王廣海等[11]利用鈦酸四丁酯水解反應(yīng),在SiO2內(nèi)核上包覆TiO2制備出核殼結(jié)構(gòu)SiO2/TiO2顆粒,可作為填料應(yīng)用于近紅外反射涂層。Son等[12]以SiO2為模板采用溶膠-凝膠法制備SiO2/TiO2核殼微球,并研究了其光學(xué)散射性能??芍壳把芯慷嗍且匝趸锇睸iO2為主,在SiO2表面包覆非氧化物陶瓷層,形成核殼結(jié)構(gòu)陶瓷微球的研究卻鮮見報道。與氧化物陶瓷相比,硅基非氧化物陶瓷具有優(yōu)良的高溫穩(wěn)定性、抗蠕變、抗紅外輻射等性能[13-15],以其作為核殼結(jié)構(gòu)微球殼層,可提高SiO2基核殼結(jié)構(gòu)微球的高溫隔熱性能,從而能夠使核殼微球穩(wěn)定應(yīng)用于各類超高溫環(huán)境中。本工作采用乳液制備技術(shù)[16,17]和先驅(qū)體轉(zhuǎn)化法[18-20]相結(jié)合的工藝手段,以硅烷偶聯(lián)劑3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)改性的SiO2為核,利用改性后SiO2表面的雙鍵引發(fā)聚硅氮烷(PSN)原位聚合,形成SiO2/PSN核殼結(jié)構(gòu)微球,經(jīng)高溫?zé)峤獾玫絊iO2/SiCN核殼陶瓷微球。研究SiO2與PSN的質(zhì)量比、固化時間和熱解溫度對核殼微球的形成過程及形貌的影響。
1.1 原料
PSN:分子量為2500~3000g/mol,中國科學(xué)院化學(xué)研究所自制;SiO2顆粒,粒徑1~5μm,廣州市燊納貿(mào)易有限公司;硅烷偶聯(lián)劑3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS),化學(xué)純,南京優(yōu)普化工有限公司;乳化劑OP-10、乙腈,分析純,天津市江天統(tǒng)一科技有限公司。
1.2 SiO2顆粒的改性
在三口瓶中加入一定量的SiO2和100mL無水乙醇,充分超聲分散15min。再加入MPS,于40℃下反應(yīng)24h。然后將反應(yīng)液倒入離心管中,在轉(zhuǎn)速5000r/min下離心3min,倒掉上清液,再加入無水乙醇中超聲后離心,如此反復(fù)3次,得到MPS改性的SiO2顆粒(MPS-SiO2)。
1.3 SiO2/PSN核殼微球的制備
本實驗采用水包油(O/W)型乳液體系制備PSN包覆改性SiO2,水油比為15∶1。油相體系為PSN先驅(qū)體;水相體系為乳化劑OP-10,乙腈/去離子水(質(zhì)量比為1∶1)。將改性SiO2分散在水相體系中,逐滴加入油相,進(jìn)行乳化,超聲分散獲得均一乳液。將乳液倒入高壓反應(yīng)釜中,恒溫烘箱中進(jìn)行固化。反應(yīng)結(jié)束后,依次采用去離子水和乙醇進(jìn)行清洗,80℃烘干,得到干燥的SiO2/PSN微球。
1.4 SiO2/SiCN核殼陶瓷微球的制備
將核殼結(jié)構(gòu)微球粉末放入石英坩堝中,置入高溫箱式氣氛燒結(jié)爐中,在氮氣氣氛中進(jìn)行熱解,以4℃/min的升溫速率分別升溫至800,1000,1200,1300,1400℃熱解2h,然后以5℃/min的降溫速率冷卻至室溫,即可得到SiO2/SiCN核殼陶瓷微球,其制備流程如圖1所示。
圖1 SiO2/SiCN核殼陶瓷微球形成過程示意圖Fig.1 Schematic illustration of the formation of the SiO2/SiCN core-shell ceramic microspheres
1.5 測試表征
采用Nicolet 380型傅里葉紅外光譜儀(FT-IR)對樣品的化學(xué)結(jié)構(gòu)進(jìn)行分析;采用S-4800掃描電子顯微鏡(SEM)以及JEM-1011型透射電子顯微鏡(TEM)觀察微球形貌;采用D/max-2500型X射線衍射儀(XRD)測定裂解產(chǎn)物的物相,Cu靶,測量角度范圍為10°~80°。
2.1 改性SiO2顆粒表征
圖2 純SiO2和MPS改性SiO2的紅外譜圖Fig.2 Infrared spectra of pure SiO2 and MPS-SiO2
(1)
2.2 SiO2/PSN核殼微球的形貌及形成過程
圖3為不同PSN用量在200℃固化4h制備的SiO2/PSN核殼微球的SEM像??梢钥闯?,純SiO2微球表面光滑,但大小不均,粒徑約為1~5μm(圖3(a));當(dāng)SiO2與PSN的質(zhì)量比為1∶2時,有少量PSN顆粒鍵合在SiO2表面,但SiO2表面不能被完全包覆(圖3(b));隨著PSN用量的增加,包覆程度逐漸增加,當(dāng)SiO2與PSN質(zhì)量比為1∶4時,SiO2表面被PSN顆粒完全包覆,形成表面顆粒分布均勻、包覆程度較理想的SiO2/PSN核殼微球(圖3(c));當(dāng)質(zhì)量比為1∶6時,PSN包覆程度增大,過量的PSN聚集在SiO2表面且分布不均,導(dǎo)致SiO2/PSN核殼微球不能保持規(guī)則的球形形貌(圖3(d))。
圖4為200℃時不同固化時間得到的SiO2/PSN核殼微球的SEM圖??梢钥闯觯S著固化時間的增加,PSN殼層從微凝膠狀轉(zhuǎn)變?yōu)橹旅芡暾念w粒狀。當(dāng)固化時間為2h時(圖4(a)),固化反應(yīng)初期PSN固化程度較低,SiO2表面形成微凝膠狀的PSN殼層,造成大部分顆粒粘連在一起;固化時間為4h時(圖4(b)),PSN顆粒完全固化在SiO2表面,形成表面顆粒分布均勻、包覆完全的核殼結(jié)構(gòu)微球;提高固化時間到6h時,微球保持了穩(wěn)定核殼結(jié)構(gòu),與4h固化反應(yīng)得到的顆粒產(chǎn)物沒有明顯區(qū)別。由此可知,在200℃反應(yīng)4h時PSN完全固化在SiO2微球表面,得到了包覆度良好的SiO2/PSN核殼微球。從不同固化時間復(fù)合微球的形貌可初步分析核殼結(jié)構(gòu)形成機理為:乳液聚合體系中,PSN在膠束內(nèi)通過自聚合反應(yīng)形成乳膠粒,乳膠粒吸附到改性SiO2微球的表面后, 可與改性SiO2微球表面所帶的雙鍵發(fā)生加成反應(yīng),隨著反應(yīng)時間的延長聚合物顆粒鍵合在SiO2微球的表面,形成SiO2微球為內(nèi)核、PSN為殼的穩(wěn)定核殼結(jié)構(gòu)[21]。
圖3 SiO2與PSN不同質(zhì)量比制備的SiO2/PSN核殼微球的SEM像 (a)純SiO2;(b)1∶2;(c)1∶4;(d)1∶6Fig.3 SEM images of the SiO2/PSN core-shell microspheres prepared with different mass ratios of SiO2 and PSN(a)pure SiO2;(b)1∶2;(c)1∶4;(d)1∶6
圖4 不同固化時間制備的SiO2/PSN核殼微球的SEM像 (a)2h;(b)4h;(c)6hFig.4 SEM images of the SiO2/PSN core-shell microspheres prepared with different curing time (a)2h;(b)4h;(c)6h
圖5 MPS改性SiO2和SiO2/PSN核殼微球的紅外譜圖Fig.5 Infrared spectra of MPS-SiO2 and the SiO2/PSN core-shell microspheres
(2)
2.3 SiO2/SiCN核殼陶瓷微球的形貌及物相分析
將SiO2/PSN核殼微球在氮氣保護(hù)下高溫?zé)峤馓幚?h,得到核殼結(jié)構(gòu)SiO2/SiCN陶瓷微球。圖6是微球在惰性氣氛下不同溫度熱處理2h后的SEM像和TEM像。可以看出,在800,1000℃與1200℃熱處理后,微球仍然能夠保持包覆均勻的核殼結(jié)構(gòu)。經(jīng)1400℃熱處理后,核殼結(jié)構(gòu)微球表面出現(xiàn)融合狀態(tài),產(chǎn)物不能維持原有的核殼形貌。圖6(e)是核殼微球1200℃熱解后的TEM像,可知微球粒徑約為3.75μm,殼層厚度約為100~150nm。
圖7是SiO2/PSN核殼微球不同溫度熱處理2h后的XRD圖譜。當(dāng)熱解溫度為800~1200℃時,只在2θ= 23°處出現(xiàn)一個寬峰,屬于無定型SiO2的特征峰,表明微球熱解后呈非晶態(tài),熱解產(chǎn)物為非晶態(tài)SiO2/SiCN核殼陶瓷微球。當(dāng)熱解溫度為1300℃時,2θ=22.79°處的SiO2特征峰變尖銳,SiO2由無定型態(tài)轉(zhuǎn)變?yōu)榻Y(jié)晶態(tài);當(dāng)熱解溫度升高到1400℃時,在2θ=35.82°,60.23°和71.98°處出現(xiàn)β-SiC衍射峰,在2θ=26.5°處出現(xiàn)Si3N4結(jié)晶峰,在2θ=22.79°出現(xiàn)SiO2衍射峰。表明微球1400℃熱解產(chǎn)物發(fā)生結(jié)晶,生成了SiO2,SiC和Si3N4晶相。
圖6 不同溫度熱解后樣品的SEM像和TEM像 (a)800℃,SEM;(b)1000℃,SEM;(c)1200℃,SEM;(d)1400℃,SEM;(e)1200℃,TEMFig.6 SEM images and TEM images of samples after pyrolysis at different temperatures (a)800℃,SEM;(b)1000℃,SEM;(c)1200℃,SEM;(d)1400℃,SEM;(e)1200℃,TEM
圖7 不同溫度熱解后SiO2/PSN核殼微球的XRD譜圖Fig.7 XRD patterns of the SiO2/PSN core-shell microspheres after pyrolysis at different temperatures
(1)采用乳液技術(shù)和先驅(qū)體轉(zhuǎn)化法相結(jié)合,利用改性后SiO2顆粒表面的雙鍵引發(fā)聚硅氮烷(PSN)原位聚合,得到SiO2/PSN核殼結(jié)構(gòu)微球,經(jīng)高溫裂解成功制備出SiO2/SiCN核殼陶瓷微球。
(2)在200℃下反應(yīng)4h,隨PSN用量的增加,PSN殼層包覆程度逐漸增加,當(dāng)SiO2與PSN的質(zhì)量比為1∶4時,SiO2表面被PSN完全包覆,形成表面顆粒分布均勻、包覆程度較理想的SiO2/PSN核殼微球。
(3)固化溫度為200℃時,隨著反應(yīng)時間的延長,PSN逐漸固化在SiO2表面,固化4h時PSN固化完全,形成SiO2微球為核、PSN為殼的核殼結(jié)構(gòu)微球。
(4)熱解溫度低于1200℃時,微球仍然能夠保持表面粗糙的核殼結(jié)構(gòu),得到非晶態(tài)SiO2/SiCN核殼陶瓷微球;熱解溫度為1300℃時,SiO2核由無定型態(tài)轉(zhuǎn)變?yōu)榻Y(jié)晶態(tài);熱解溫度升高到1400℃時,產(chǎn)物表面出現(xiàn)融合,產(chǎn)物結(jié)晶,生成了SiO2,SiC和Si3N4晶相。
[1] NOZAWA K,GAILHANOU H,RAISON L,et al.Smart control of monodisperse St?ber silica particles:effect of reactant addition rate on growth process[J].Langmuir,2005,21(4):1516-1523.
[2] WANG Y,BIRADAR A V,DUNCAN C T,et al.Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell:efficient and recyclable nanocatalysts[J].Journal of Materials Chemistry,2010,20(36):7834-7841.
[3] LEE J E,LEE D J,LEE N,et al.Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging[J].Journal of Materials Chemistry,2011,21(42):16869-16872.
[4] PENG Z,HWANG J,KIM B,et al.Microwave Dielectric Characterization of Silicon Dioxide[M].New Jersey,USA:John Wiley & Sons,Inc,2013.
[5] FENG J,YAN Y,CHEN D,et al.Study of thermal stability of fumed silica based thermal insulating composites at high temperatures[J].Composites Part B:Engineering,2011,42(7):1821-1825.
[6] MA L,YANG Y,HE C,et al.Insitupreparation and characterization of polyimide/silica composite hemispheres by inverse aqueous emulsion technique and sol-gel method[J].Colloid and Polymer Science,2015,293(4):1281-1287.
[7] ISHII H,IKUNO T,SHIMOJIMA A,et al.Preparation of core-shell mesoporous silica nanoparticles with bimodal pore structures by regrowth method[J].Journal of Colloid and Interface Science,2015,448:57-64.
[8] YANG P,ZHANG P,SHI C,et al.The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries[J].Journal of Membrane Science,2015,474:148-155.
[9] KIM H C,NOH S M,PARK S K.Synthesis and characterization of nanosilica ball—PMMA hybrid composites[J].Journal of Applied Polymer Science,2013,127(3):1653-1658.
[10] 葉曉云.二氧化硅/二氧化鋯核殼復(fù)合材料的制備及性能[J].化工進(jìn)展,2010,29(9):1710-1714.
YE X Y.Preparation and property of SiO2/ZrO2core-shell composite materials[J].Chemical Industry and Engineering Progress,2010,29(9):1710-1714.
[11] 王廣海,張躍.應(yīng)用于熱控的殼厚可控核殼結(jié)構(gòu)SiO2@ TiO2顆粒制備[J].無機化學(xué)學(xué)報,2012,28(1):171-175.
WANG G H,ZHANG Y.Synthesis of SiO2@TiO2core-shell particles with controlled shell thickness for thermal management applications[J].Chinese Journal of Inorganic Chemistry,2012,28(1):171-175.
[12] SON S,HWANG S H,KIM C,et al.Designed synthesis of SiO2/TiO2core/shell structure as light scattering material for highly efficient dye-sensitized solar cells[J].ACS Applied Materials & Interfaces,2013,5(11):4815-4820.
[13] WANG H,LI X,YU J,et al.Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method[J].J Mater Chem,2004,14(9):1383-1386.
[14] BAKUMOV V,SCHWARZ M,KROKE E.Emulsion processing of polymer-derived porous Si/C/(O) ceramic bodies[J].Journal of the European Ceramic Society,2009,29(13):2857-2865.
[15] RESCHKE V,SCHEFFLER M.Micro-and nanospheres from preceramic polymers:process parameters and size control[J]. Journal of Materials Science,2012,47(15):5655-5660.
[16] BAKUMOV V,SCHWARZ M,KROKE E.Emulsion processing and size control of polymer-derived spherical Si/C/O ceramic particles[J].Soft Materials,2007,4(4):287-299.
[17] 楊蓓蓓,楊建軍,張建安,等.磁性SiO2/PSt中空復(fù)合微球的細(xì)乳液法制備及表征[J].化學(xué)學(xué)報,2013,71(3):392-396.
YANG P P ,YANG J J,ZHANG J A,et al.Preparation and characterization of magnetic SiO2/PSt hollow composite microspheres via miniemulsion polymerization[J].Acta Chimica Sinica,2013,71(3):392-396.
[18] LEI Y P,WANG Y D,SONG Y C,et al.Novel processable precursor for BN by the polymer-derived ceramics route[J].Ceramics International,2011,37(8):3005-3009.
[19] KROKE E,LI Y L,KONETSCHNY C,et al.Silazane derived ceramics and related materials[J].Materials Science & Engineering: R: Reports,2000,26(4):97-199.
[20] COLOMBO P,MERA G,RIEDEL R,et al.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J].Journal of the American Ceramic Society,2010,93(7):1805-1837.
[21] CHENG X,CHEN M,ZHOU S,et al.Preparation of SiO2/PMMA composite particles via conventional emulsion polymerization[J].Journal of Polymer Science Part A:Polymer Chemistry,2006,44(12):3807-3816.
(本文責(zé)編:王 晶)
Preparation and Characterization of SiO2/SiCN Core-shell Ceramic Microspheres
ZHANG Hai-yuan1,2,LIU Hong-li1,2,LI Jing2,KANG Wei2
(1 Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment,Tianjin 300384,China;2 School of Materials Science and Engineering, Tianjin Chengjian University,Tianjin 300384,China)
The SiO2/PSN core-shell microspheres were preparedviaan emulsion reaction combined with the polymer-derived ceramics (PDCs) method using polysilazane (PSN)insitupolymerization on the surface of SiO2modified by silane coupling agents MPS, followed by pyrolysis process to obtain SiO2/SiCN core-shell ceramic microspheres. The effects of raw mass ratio, curing time and pyrolysis temperature on the formation and the morphology of core-shell microspheres were studied. The morphology, chemical composition and phase transformation were characterized by SEM, EDS, TEM, FT-IR and XRD. The results show that after reaction for 4h at 200℃, SiO2completely coated PSN forms a core-shell microsphere with rough surface when the mass ratio of SiO2and PSN is 1∶4; when pyrolysis temperature is at 800-1200℃, amorphous SiO2/SiCN core-shell ceramic microspheres are prepared; at 1400℃, the amorphous phase partially crystallizes to produce SiO2, SiC and Si3N4phase.
polysilazane;emulsion method;polymer-derived ceramics method;core-shell ceramic microsphere
國家自然科學(xué)基金資助項目(51472175);天津應(yīng)用基礎(chǔ)與前沿技術(shù)研究計劃資助項目(15JZDC37200)
2015-09-10;
2016-12-07
劉洪麗(1971-),女,教授,博士,主要從事隔熱、高性能阻燃材料等方面的研究工作,聯(lián)系地址:天津城建大學(xué)材料科學(xué)與工程學(xué)院(300384),E-mail:liuhonglitianjin@163.com
10.11868/j.issn.1001-4381.2015.000641
TQ174
A
1001-4381(2017)05-0007-06