亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Several congruences involving harmonic numbers

        2017-06-27 08:10:15YANGJizhenWANGYunpeng
        關(guān)鍵詞:恒等式國家自然科學(xué)基金調(diào)和

        YANG Jizhen, WANG Yunpeng

        (1.Department of Mathematics, Luoyang Normal College, Luoyang, Henan 471934;2.Department of Mathematics and Physical, Luoyang Institute of Science and Technology, Luoyang, Henan 471022)

        Several congruences involving harmonic numbers

        YANG Jizhen1, WANG Yunpeng2*

        (1.Department of Mathematics, Luoyang Normal College, Luoyang, Henan 471934;2.Department of Mathematics and Physical, Luoyang Institute of Science and Technology, Luoyang, Henan 471022)

        The purpose of this paper is to establish several congruences involving harmonic numbers. Letp>3 be a prime. With the help of some combinatorial identities and congruences, the following congruences is generated:

        The congruences are also established as

        and

        whereBn(n∈) are Bernoulli numbers andqp(a)=(ap-1-1)/pis usually called a Fermat quotient providedpa.

        congruences; harmonic numbers; combinatorial identities

        1Introduction

        Harmonic numbers play important roles in number theory, analysis algorithms and special function. Forα∈, the generalized harmonic numbers are defined by

        whenα=1, they reduce to the well-known harmonic numbers

        In 1862, Wolstenholme[1]proved that if p > 3 is a prime, then

        (1)

        which imply that

        In 1938, LEHMER[2]showed

        (2)

        (3)

        Using these congruences, SUN[3]obtained a series of congruences involving harmonic numbers. For example,

        (4)

        In this paper, we establish several congruences for sums involving harmonic numbers. Our main result is as follows.

        2Main result

        Theorem 1Letp> 3 be a prime. Then

        (5)

        and

        (6)

        Theorem 2Letp> 3 be a prime. Then

        (7)

        (8)

        and

        (9)

        3Some lemmas

        We first state some basic facts which will be used very often. For any prime p, it is well-known that

        wherenis a integer. We also have

        Thus

        wheremis a integer and n is a positive integer. Whenp>3,

        Lemma 1Letnbe a positive integer. Then

        (10)

        Whenn≥3, we have

        (11)

        ProofBoth of the above identities are due to Wei (cf. [4, Theorem 1 and Theorem 6]).

        Lemma 2 Letnbe a positive integer. Then

        (12)

        (13)

        ProofThese two identities were deduced by Chen( cf. [5, (2.8), (2.9)]).

        ).

        (14)

        ProofWe have

        Note that (cf. [6, Corollary5.2(b)])

        (15)

        and (cf. [7, (5.4)])

        (16)

        Therefore

        4The proofs of (5)-(9)

        Proof of (5) Observe that

        (modp).

        In view of (3) and (4), we have

        (17)

        Since

        (modp),

        we have

        (modp).

        Note that (cf. [3, Corollary1.1])

        (18)

        therefore

        with the help of (4), (17) and (18). This proves (5).

        Using the same method, we can deduce the following congruences:

        (19)

        (20)

        (21)

        Whenp> 5 , we have

        (22)

        (23)

        Proof of (6) Observe that

        Takingn=p-1 in (11), we have

        sinceHp-1≡0 (modp2). Hence

        with the help of (5). This concludes the proof of (6).

        (24)

        sinceH(p-1)/2≡-2qp(2) (modp). Observe that

        Thus

        with the help of (4), (14), (15), (24). This proves (7).

        -2qp(2)+2H2k-Hk(modp),

        which implies that

        Therefore

        (modp).

        In view of (10), we have

        In light of (12), we obtain

        Also

        and hence

        (25)

        Combining the above, we obtain

        as desired.

        Furthermore, we can deduce the following congruences:

        (26)

        and

        (27)

        ).

        Thus

        4HkH2k-8qp(2)H2k+4qp(2)Hk)≡

        4HkH2k-4qp(2)Hn-k) (modp),

        which implies that

        with the help of (8) and (25). The proof of (9) is now completed.

        [1] WOLSTENHOLME J. On certain properties of prime numbers [J]. Quart J Math, 1862, 5: 35-39.

        [2] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J]. Ann of Math, 1938, 39: 350-360.

        [3] SUN Z W. Arithmetic theory of harmonic numbers [J].Proc Amer Math Soc, 2012, 140: 415-428.

        [4] WEI C A. Chu-Vandermonde convolution and harmonic number identities [J]. Integr Transf Spec F, 2014, 24: 324-330.

        [5] CHEN Y, HOU Q, JIN H. The Able-Zeilberger algorithm [J].Electron J Comb, 2011, 8: 17.

        [6] SUN Z H. Congruences concerning Bernoulli numbers and Bernoulli polynom-ials[J].Discrete Appl Math, 2000, 105: 193-223.

        [7] SUN Z W, TAURASO R. New congruences for central binomial coefficients [J]. Adv in Appl Math, 2010, 45: 125-148.

        [8] SUN Z W. A new series for π3and related congruences [J]. Internat J Math, 2015, 26(8): 1-23.

        [9] SPIESS J. Some identities involving harmonic numbers [J]. Math Comput, 1990, 55: 839-863.

        [10] CHYZAK F. An extension of Zeilbergers fast algorithm to general holonomic functions[J]. Discrete Math, 2000, 217: 115-134.

        [11] MESTROVIC R. Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun[J]. Int J Number Theory, 2012,8(4):1-5.

        2017-02-24.

        國家自然科學(xué)基金青年基金項目(11601543,11601216);河南省科技攻關(guān)(國際科技合作)項目(172102410069);河南省高等學(xué)校重點科研項目(16B110009);河南省高等學(xué)校青年骨干教師培養(yǎng)計劃項目(2015GGJS-115);洛陽師范學(xué)院青年基金項目(2013-QNJJ-001).

        1000-1190(2017)03-0277-05

        一類含有調(diào)和數(shù)的同余式

        楊繼真1, 王云鵬2

        (1.洛陽師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院, 河南 洛陽, 471934; 2.洛陽理工學(xué)院 數(shù)理部, 河南 洛陽, 471022)

        該文目的是創(chuàng)建一系列含有調(diào)和數(shù)的同余式.當(dāng)p>3為一素數(shù)時,利用已有的組合恒等式和同余式,得到了如下的同余式:

        同時也得到了

        這里Bn(n∈)稱為Bernoulli數(shù),當(dāng)pa時,qp(a)=(ap-1-1)/p稱為Fermat商.

        同余式; 調(diào)和式; 組合恒等式

        O156.1

        A

        *通訊聯(lián)系人. E-mail: wangruipeng1981@126.com.

        猜你喜歡
        恒等式國家自然科學(xué)基金調(diào)和
        活躍在高考中的一個恒等式
        民族文匯(2022年23期)2022-06-10 00:52:23
        常見基金項目的英文名稱(一)
        五味調(diào)和醋當(dāng)先
        一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
        從“調(diào)結(jié)”到“調(diào)和”:打造“人和”調(diào)解品牌
        調(diào)和映照的雙Lipschitz性質(zhì)
        我校喜獲五項2018年度國家自然科學(xué)基金項目立項
        Weideman公式的證明
        2017 年新項目
        國家自然科學(xué)基金項目簡介
        欧美性受xxxx黑人猛交| 亚洲av偷拍一区二区三区| 99热婷婷一区二区三区| 末成年人av一区二区| 免费无遮挡禁18污污网站| 亚洲三级黄色| 国内精品熟女一区二区| 青青草小视频在线播放| 国产精品18久久久| 国产在视频线精品视频www666| 久久久亚洲日本精品一区| 美女在线一区二区三区视频| 人妻少妇偷人精品无码| 中文字幕在线亚洲一区二区三区| 日本一区不卡高清在线观看| 国产伦一区二区三区色一情| 国产精品无码一区二区在线看| 成人无码h真人在线网站| 亚洲一区二区三区一区| 免费av片在线观看网址| 午夜成人精品福利网站在线观看| 欧美色图50p| 99久久婷婷国产精品综合网站| 日日摸天天碰中文字幕你懂的| 久久午夜福利无码1000合集| 国产精品白浆在线观看无码专区| 日本久久精品免费播放| 人日本中文字幕免费精品| 亚洲性久久久影院| japanesehd中国产在线看| 国产乱子伦精品免费女| 中文字幕一区二区三区综合网| 中文人妻av久久人妻水蜜桃| 人妻被黑人粗大的猛烈进出| 亚欧免费无码AⅤ在线观看| 蜜桃传媒网站在线观看| 久久99精品国产麻豆宅宅| 亚洲欧美另类精品久久久| 久久国产精品国语对白| 欧美老妇多毛xxxxx极瑞视频| 国产国拍亚洲精品mv在线观看|