亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Several congruences involving harmonic numbers

        2017-06-27 08:10:15YANGJizhenWANGYunpeng
        關(guān)鍵詞:恒等式國家自然科學(xué)基金調(diào)和

        YANG Jizhen, WANG Yunpeng

        (1.Department of Mathematics, Luoyang Normal College, Luoyang, Henan 471934;2.Department of Mathematics and Physical, Luoyang Institute of Science and Technology, Luoyang, Henan 471022)

        Several congruences involving harmonic numbers

        YANG Jizhen1, WANG Yunpeng2*

        (1.Department of Mathematics, Luoyang Normal College, Luoyang, Henan 471934;2.Department of Mathematics and Physical, Luoyang Institute of Science and Technology, Luoyang, Henan 471022)

        The purpose of this paper is to establish several congruences involving harmonic numbers. Letp>3 be a prime. With the help of some combinatorial identities and congruences, the following congruences is generated:

        The congruences are also established as

        and

        whereBn(n∈) are Bernoulli numbers andqp(a)=(ap-1-1)/pis usually called a Fermat quotient providedpa.

        congruences; harmonic numbers; combinatorial identities

        1Introduction

        Harmonic numbers play important roles in number theory, analysis algorithms and special function. Forα∈, the generalized harmonic numbers are defined by

        whenα=1, they reduce to the well-known harmonic numbers

        In 1862, Wolstenholme[1]proved that if p > 3 is a prime, then

        (1)

        which imply that

        In 1938, LEHMER[2]showed

        (2)

        (3)

        Using these congruences, SUN[3]obtained a series of congruences involving harmonic numbers. For example,

        (4)

        In this paper, we establish several congruences for sums involving harmonic numbers. Our main result is as follows.

        2Main result

        Theorem 1Letp> 3 be a prime. Then

        (5)

        and

        (6)

        Theorem 2Letp> 3 be a prime. Then

        (7)

        (8)

        and

        (9)

        3Some lemmas

        We first state some basic facts which will be used very often. For any prime p, it is well-known that

        wherenis a integer. We also have

        Thus

        wheremis a integer and n is a positive integer. Whenp>3,

        Lemma 1Letnbe a positive integer. Then

        (10)

        Whenn≥3, we have

        (11)

        ProofBoth of the above identities are due to Wei (cf. [4, Theorem 1 and Theorem 6]).

        Lemma 2 Letnbe a positive integer. Then

        (12)

        (13)

        ProofThese two identities were deduced by Chen( cf. [5, (2.8), (2.9)]).

        ).

        (14)

        ProofWe have

        Note that (cf. [6, Corollary5.2(b)])

        (15)

        and (cf. [7, (5.4)])

        (16)

        Therefore

        4The proofs of (5)-(9)

        Proof of (5) Observe that

        (modp).

        In view of (3) and (4), we have

        (17)

        Since

        (modp),

        we have

        (modp).

        Note that (cf. [3, Corollary1.1])

        (18)

        therefore

        with the help of (4), (17) and (18). This proves (5).

        Using the same method, we can deduce the following congruences:

        (19)

        (20)

        (21)

        Whenp> 5 , we have

        (22)

        (23)

        Proof of (6) Observe that

        Takingn=p-1 in (11), we have

        sinceHp-1≡0 (modp2). Hence

        with the help of (5). This concludes the proof of (6).

        (24)

        sinceH(p-1)/2≡-2qp(2) (modp). Observe that

        Thus

        with the help of (4), (14), (15), (24). This proves (7).

        -2qp(2)+2H2k-Hk(modp),

        which implies that

        Therefore

        (modp).

        In view of (10), we have

        In light of (12), we obtain

        Also

        and hence

        (25)

        Combining the above, we obtain

        as desired.

        Furthermore, we can deduce the following congruences:

        (26)

        and

        (27)

        ).

        Thus

        4HkH2k-8qp(2)H2k+4qp(2)Hk)≡

        4HkH2k-4qp(2)Hn-k) (modp),

        which implies that

        with the help of (8) and (25). The proof of (9) is now completed.

        [1] WOLSTENHOLME J. On certain properties of prime numbers [J]. Quart J Math, 1862, 5: 35-39.

        [2] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J]. Ann of Math, 1938, 39: 350-360.

        [3] SUN Z W. Arithmetic theory of harmonic numbers [J].Proc Amer Math Soc, 2012, 140: 415-428.

        [4] WEI C A. Chu-Vandermonde convolution and harmonic number identities [J]. Integr Transf Spec F, 2014, 24: 324-330.

        [5] CHEN Y, HOU Q, JIN H. The Able-Zeilberger algorithm [J].Electron J Comb, 2011, 8: 17.

        [6] SUN Z H. Congruences concerning Bernoulli numbers and Bernoulli polynom-ials[J].Discrete Appl Math, 2000, 105: 193-223.

        [7] SUN Z W, TAURASO R. New congruences for central binomial coefficients [J]. Adv in Appl Math, 2010, 45: 125-148.

        [8] SUN Z W. A new series for π3and related congruences [J]. Internat J Math, 2015, 26(8): 1-23.

        [9] SPIESS J. Some identities involving harmonic numbers [J]. Math Comput, 1990, 55: 839-863.

        [10] CHYZAK F. An extension of Zeilbergers fast algorithm to general holonomic functions[J]. Discrete Math, 2000, 217: 115-134.

        [11] MESTROVIC R. Proof of a congruence for harmonic numbers conjectured by Z.-W. Sun[J]. Int J Number Theory, 2012,8(4):1-5.

        2017-02-24.

        國家自然科學(xué)基金青年基金項目(11601543,11601216);河南省科技攻關(guān)(國際科技合作)項目(172102410069);河南省高等學(xué)校重點科研項目(16B110009);河南省高等學(xué)校青年骨干教師培養(yǎng)計劃項目(2015GGJS-115);洛陽師范學(xué)院青年基金項目(2013-QNJJ-001).

        1000-1190(2017)03-0277-05

        一類含有調(diào)和數(shù)的同余式

        楊繼真1, 王云鵬2

        (1.洛陽師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院, 河南 洛陽, 471934; 2.洛陽理工學(xué)院 數(shù)理部, 河南 洛陽, 471022)

        該文目的是創(chuàng)建一系列含有調(diào)和數(shù)的同余式.當(dāng)p>3為一素數(shù)時,利用已有的組合恒等式和同余式,得到了如下的同余式:

        同時也得到了

        這里Bn(n∈)稱為Bernoulli數(shù),當(dāng)pa時,qp(a)=(ap-1-1)/p稱為Fermat商.

        同余式; 調(diào)和式; 組合恒等式

        O156.1

        A

        *通訊聯(lián)系人. E-mail: wangruipeng1981@126.com.

        猜你喜歡
        恒等式國家自然科學(xué)基金調(diào)和
        活躍在高考中的一個恒等式
        民族文匯(2022年23期)2022-06-10 00:52:23
        常見基金項目的英文名稱(一)
        五味調(diào)和醋當(dāng)先
        一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
        從“調(diào)結(jié)”到“調(diào)和”:打造“人和”調(diào)解品牌
        調(diào)和映照的雙Lipschitz性質(zhì)
        我校喜獲五項2018年度國家自然科學(xué)基金項目立項
        Weideman公式的證明
        2017 年新項目
        國家自然科學(xué)基金項目簡介
        99精品视频在线观看免费 | 国产精品免费一区二区三区四区| 曰韩人妻无码一区二区三区综合部 | 丰满多毛的大隂户视频| 欧美刺激午夜性久久久久久久| 手机在线观看亚洲av| 一区二区三区最新中文字幕| 黄网站欧美内射| 亚洲AV毛片无码成人区httP| 青青青视频手机在线观看| 日韩精品成人区中文字幕| 鲁鲁鲁爽爽爽在线视频观看| 国产女高清在线看免费观看 | 青青草视频华人绿色在线| 亚洲天堂男人的av天堂| 精品人妻一区二区三区四区在线| 双乳被一左一右吃着动态图| 国产成人一区二区三区高清| 日本岛国一区二区三区四区| 国产成人av综合色| 国内精品久久久久久久久久影院| 亚洲专区在线观看第三页| 日本亚洲视频一区二区三区| 国产精品网站在线观看免费传媒 | 国产呦精品系列在线播放| 日韩狼人精品在线观看| 永久免费视频网站在线| 男人激烈吮乳吃奶视频免费| 免费看国产成年无码av| 亚洲国产精品av麻豆一区| 国产精品免费看久久久无码| 色先锋资源久久综合5566| 中文字幕精品亚洲二区| 国产亚洲精品国产精品| 无码福利写真片视频在线播放| 国产精品亚洲片夜色在线| 久久老熟女一区二区三区| 扒开腿狂躁女人爽出白浆| 波多野结衣中文字幕在线视频| 精品专区一区二区三区| 国产欧美日韩中文久久|