亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        具對(duì)稱電極結(jié)構(gòu)的中溫固體氧化物電解池電解水制氫技術(shù)

        2017-06-27 01:31:07陸玉正張耀明
        關(guān)鍵詞:結(jié)構(gòu)

        陸玉正,王 軍,蔣 川,楊 嵩,張耀明

        ?

        具對(duì)稱電極結(jié)構(gòu)的中溫固體氧化物電解池電解水制氫技術(shù)

        陸玉正,王 軍※,蔣 川,楊 嵩,張耀明

        (東南大學(xué)能源與環(huán)境學(xué)院,江蘇省太陽能技術(shù)重點(diǎn)試驗(yàn)室,南京 210018)

        該文基于傳統(tǒng)陽極-電解質(zhì)-陰極結(jié)構(gòu)的固體氧化物電解池,設(shè)計(jì)并研究了一種新型的具有對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池。采用化學(xué)沉淀法制備了電解質(zhì)材料Ce0.8Sm0.2O1.9-Na2CO3(NSDC)以及選擇與之兼容性良好的電極材料Ni0.8Co0.15Al0.05LiO2-δ(NCAL)。該文利用X射線衍射法與環(huán)境掃描電子顯微鏡對(duì)制備的材料進(jìn)行了性能表征和分析,分析結(jié)果表明合成的NSDC粉體材料也為螢石型結(jié)構(gòu),其粒子大小范圍約為30~80 nm?;谥苽涞碾娊赓|(zhì)材料和電極材料,進(jìn)一步制備了具有對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池的單電池。電化學(xué)試驗(yàn)結(jié)果表明:在電解池模式,單電池具有良好的制氫性能。互換電極后,仍表現(xiàn)出良好的電化學(xué)性能。理論分析和試驗(yàn)結(jié)果充分說明,該電解池具有良好的結(jié)構(gòu)對(duì)稱性。為中溫固體氧化物電解制氫技術(shù)與太陽能光熱、光電技術(shù)耦合研究提供參考。

        電極;壓力;氫;中溫固體氧化物電解池

        0 引 言

        固體氧化物電解池(solid oxide electrolysis cell,SOEC)可以將電能和熱能轉(zhuǎn)化為化學(xué)能,可視為固體氧化物燃料電池(solid oxide fuel cell,SOFC)的逆過程。按操作溫度大致可分為高溫段(900~1 100 ℃)、中溫段(600~850 ℃)和低溫段(400~600 ℃)[1]。目前中國(guó)許多科研院所都在進(jìn)行制氫的研究工作。毛宗強(qiáng)等在化石燃料制氫等方面取得了諸多的成果[1-2]。梁慧榮等對(duì)生物及有機(jī)廢料的超臨界水熱化學(xué)制氫進(jìn)行研究[3-4];Liu等對(duì)光催化分解水制氫方面進(jìn)行了研究[5-6];范慧等[7-10]在可逆燃料電池-電解池材料及系統(tǒng)研究方面取得了巨大地突破;張文強(qiáng)等[11]將核能高溫氣冷堆與制氫技術(shù)相結(jié)合,完成了高溫固體氧化物單電池制氫測(cè)試平臺(tái)和關(guān)鍵材料的研究[12-14]及系統(tǒng)的熱力學(xué)分析[15],其高溫氣冷試驗(yàn)堆(HTR-10)[11],被認(rèn)為是最有希望用于制氫的核能系統(tǒng)。

        Idaho工程、環(huán)境國(guó)家試驗(yàn)室和Ceramatec公司聯(lián)合研制出由10個(gè)電池單片構(gòu)成的電解池堆,產(chǎn)氫速率大于90 L/h[16]。2009年該研究團(tuán)隊(duì)進(jìn)一步研制了3個(gè)電解池模塊,穩(wěn)定運(yùn)行1 080 h,平均產(chǎn)氫率為1.2 m3/h[17]。丹麥RISO國(guó)家試驗(yàn)室聯(lián)合歐洲能源研究所制備了固體氧化物電解池單體,當(dāng)電解電壓為1.48 V時(shí),電解電流密度達(dá)到?3.6 A/cm2[18-19]。

        從熱力學(xué)角度,電解水消耗的能量由電能和熱能兩部分組成[20-21]。

        從熱力學(xué)的角度看,高溫運(yùn)行可以提高制氫效率并降低能量損失。但是溫度過高,一方面,高溫?zé)嵩措y以獲得,另一方面,對(duì)電解池的材料以及密封材料提出很高的要求。因此適當(dāng)?shù)慕档碗娊鉁囟?,?duì)電解制氫的產(chǎn)業(yè)化是有利的。

        基于以上綜述,固體氧化物電解池制氫技術(shù)是制氫研究的重點(diǎn)方向之一。選擇合適的材料、研究符合具有產(chǎn)業(yè)化前景的固體氧化物電解池越來越受到重視。本文從材料方面創(chuàng)新,研究一種新的電解質(zhì)材料Ce0.8Sm0.2O1.9-Na2CO3(NSDC,釤摻雜氧化鈰-碳酸鹽復(fù)合材料),基于新研制的電解質(zhì)材料,進(jìn)一步研制出一種新型的對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池,該電解池可以運(yùn)行在550 ℃左右。根據(jù)該電解池的溫度運(yùn)行特性,研究了太陽能與電解池聯(lián)合制氫系統(tǒng),制氫過程所需要的熱能和電能均有太陽能提供。將中溫固體氧化物電解制氫技術(shù)與太陽能光熱、光電技術(shù)耦合,可以開拓太陽能新的應(yīng)用領(lǐng)域。

        1 太陽能中溫電解水蒸氣制氫系統(tǒng)

        中溫固體氧化物電解池所需要的電能和熱能可以由太陽能提供,從而實(shí)現(xiàn)太陽能高效電解制氫。系統(tǒng)主要由固體氧化物電解池、碟式太陽能熱利用裝置、光伏發(fā)電裝置和換熱系統(tǒng)構(gòu)成,如圖1所示。

        solar為系統(tǒng)接收到的太陽能輻射總功率,kW,可分為dish和pv,可表示為:

        solar=pv+dish(2)

        dish·η=heat,SOEC+heat,H2O(3)

        pv·η=electricity(4)

        式中η為碟式太陽能光熱轉(zhuǎn)換效率,與聚光器、接收器、傳熱特性等相關(guān)[7]。η為光伏電池的光電轉(zhuǎn)換效率,與光伏電池的材料和制備工藝等相關(guān)[22]。electricity為太陽能經(jīng)過光伏電池轉(zhuǎn)換后獲得的電能,給SOEC所需要的電能,kW。dish將太陽能轉(zhuǎn)換為熱能后分為heat,SOEC、heat,H2O分別給SOEC和換熱器Ⅱ提供熱源。光伏發(fā)電系統(tǒng)的直流電能經(jīng)過太陽能控制器轉(zhuǎn)換后,給SOEC提供電解所需要的電能,實(shí)現(xiàn)了太陽能高效制氫。其中,SOEC是該系統(tǒng)的關(guān)鍵技術(shù)。

        2 對(duì)稱電極結(jié)構(gòu)SOEC

        2.1 對(duì)稱電極結(jié)構(gòu)SOEC基本原理

        對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池結(jié)構(gòu)與對(duì)稱電極結(jié)構(gòu)的固體氧化物燃料電池結(jié)構(gòu)完全一致,只是運(yùn)行狀態(tài)相反,如圖2所示。化學(xué)反應(yīng)過程為:

        氫氣極:

        2H2O+4e→2H2+2O2-(5)

        空氣極:

        2O2--4e→O2(6)

        總反應(yīng):

        2H2O→2H2+O2(7)

        由圖2可知,該化學(xué)反應(yīng)過程與氧離子型固體氧化物電解池(O-SOEC)的化學(xué)反應(yīng)相同,但對(duì)稱電極結(jié)構(gòu)的SOEC與O-SOEC的區(qū)別在于陰極與陽極呈現(xiàn)對(duì)稱結(jié)構(gòu),即陰極與陽極的材料相同、制作工藝相同且在電解質(zhì)兩側(cè)呈現(xiàn)對(duì)稱形式。

        與傳統(tǒng)陰極-電解質(zhì)-陽極結(jié)構(gòu)的SOEC相比,采用對(duì)稱電極結(jié)構(gòu)的SOEC具有以下幾個(gè)明顯的優(yōu)點(diǎn):

        1)減輕了研究工作的任務(wù),傳統(tǒng)SOEC或SOFC需要研究陽極、陰極的材料性能以及陽極、陰極與電解質(zhì)的匹配問題;

        2)簡(jiǎn)化了電池制作工藝,只需考慮一個(gè)電極的制作以及與電解質(zhì)的工藝匹配問題;

        3)對(duì)稱電極結(jié)構(gòu)在實(shí)際應(yīng)用過程中更加方便,無需區(qū)分陽極和陰極,不影響電池的性能。

        此外,以納米復(fù)合材料為主體的對(duì)稱電極結(jié)構(gòu)SOEC的運(yùn)行溫度一般在400~700 ℃之間,與傳統(tǒng)的SOEC操作溫度(800~1 000 ℃)相比,低溫運(yùn)行更有利于降低系統(tǒng)成本和推進(jìn)商業(yè)化。

        2.2 對(duì)稱電極結(jié)構(gòu)SOEC單電池制作

        對(duì)稱電極結(jié)構(gòu)SOEC單電池的材料包括電解質(zhì)材料和電極材料兩部分。制備電解質(zhì)的方法主要有直接法和沉淀法。直接法是指先將所需原材料(硝酸鈰、硝酸釤等)按照一定比例直接混合,研磨后,放入箱式電阻爐內(nèi)進(jìn)行燒結(jié),爐冷或空冷后就得到了所需的電解質(zhì)。直接法制備過程中,硝酸鹽不易分解且產(chǎn)生NOX等有毒氣體。本文采用沉淀法制作電解質(zhì),即將硝酸鹽原材料使用碳酸鈉沉淀為碳酸鹽,再使用箱式電阻爐進(jìn)行燒結(jié)進(jìn)而得到所需的電解質(zhì)。本文制備電解質(zhì)材料Ce0.8Sm0.2O1.9-Na2CO3(NSDC,釤摻雜氧化鈰-碳酸鹽復(fù)合材料)的流程圖如圖3所示。電極材料(陰極、陽極)均選用Ni0.8Co0.15Al0.05LiO2-δ(NCAL,鎳鈷鋁鋰)。

        采用冷壓方法制備對(duì)稱電極結(jié)構(gòu)的SOEC,具體制備工藝步驟如下:

        1)將NCAL均勻地噴涂在泡沫鎳的表面;將NCAL粉末材料溶于松油醇與乙醇混合溶液中(松油醇∶乙醇= 1∶1),噴涂后,放入干燥箱干燥30 min,再次噴涂,再烘干,直到泡沫鎳表面呈現(xiàn)均勻的黑色。

        2)將表面噴涂NCAL的泡沫鎳剪切成電解池的磨具尺寸:直徑=13 mm。

        3)將剪切好的表面噴涂NCAL的泡沫鎳放入電解池磨具中,鋪上一層0.35 g NSDC粉體材料,壓實(shí)。

        4)在壓實(shí)的NSDC粉體材料的上面放入表面噴涂NCAL的泡沫鎳,再壓實(shí)。

        5)在10 MPa的壓力下,保壓10 s后,撤銷壓力,取出電池片。

        形成致密且機(jī)械強(qiáng)度良好的電解池樣品,樣品尺寸為直徑=13 mm,厚度=1 mm的紐扣型單電池片,實(shí)際有效反應(yīng)面積為0.64 cm2。

        3 表征及試驗(yàn)

        本文采用XRD對(duì)材料的物相結(jié)構(gòu)進(jìn)行表征和采用SEM進(jìn)行固體、粉末、品微觀形貌觀測(cè)。

        3.1 表 征

        X射線衍射法(X-ray diffraction,XRD)是目前分析和研究粉體材料最常用的一種方法。根據(jù)測(cè)試圖片中特征峰的位置可以判斷物質(zhì)的物相。理論上來說,任何結(jié)晶物質(zhì)都具有特定的晶體結(jié)構(gòu)和相對(duì)應(yīng)的結(jié)構(gòu)參數(shù)。因此當(dāng)X射線入射時(shí),物質(zhì)會(huì)產(chǎn)生特定的X射線衍射峰。不同物質(zhì)的衍射譜圖都不相同。根據(jù)X射線衍射譜圖的特點(diǎn),可以對(duì)物質(zhì)結(jié)構(gòu)進(jìn)行分析。包括材料本身內(nèi)部的晶胞參數(shù),元素位置以及粒徑大小等信息[23]。

        本文使用的X射線衍射儀型號(hào)為Philips X’pert PROS diffractometer。XRD譜圖掃描范圍為10°到80°,掃描速度為8°/min。圖4給出了NSDC和NCAL兩種粉體材料在高溫?zé)Y(jié)后冷卻到常溫條件下的XRD衍射圖譜。所有的NSDC衍射峰與SDC(Ce0.8Sm0.2O1.9,PDF No. 75-0158)衍射峰對(duì)應(yīng)。沒有發(fā)現(xiàn)Na2CO3相,表明二氧化鈰-碳酸鹽(ceria-carbonates)是兩相材料,碳酸鹽是一種非晶態(tài)。NCAL(Ni0.8Co0.2Li-oxide,PDF No. 87-1562)的XRD衍射圖譜中沒有發(fā)現(xiàn)Al,這是由于Al的含量過低的緣故。一般的,氧化鈰(CeO2)具有螢石型結(jié)構(gòu)。本文制備的NSDC粉體材料的XRD衍射圖譜中的衍射峰與標(biāo)準(zhǔn)氧化鈰卡片的峰值對(duì)應(yīng)一致,沒有新相出現(xiàn)。該結(jié)果表明合成的NSDC粉體材料也為螢石型結(jié)構(gòu)[24-26]。

        微觀結(jié)構(gòu)表征可采用環(huán)境掃描電子顯微鏡(scanning electron microscope,SEM)進(jìn)行表征。圖5描述了NSDC和NCAL 2種粉體材料的SEM微觀結(jié)構(gòu)圖。由圖可知,NCAL材料晶粒尺寸較大,約為幾微米至幾十微米。NSDC粉體材料表現(xiàn)出一定的團(tuán)聚現(xiàn)象,主要是由于高溫?zé)Y(jié)工藝的緣故,其粒子大小范圍約為30~80 nm。

        電化學(xué)阻抗分析(electrochemical impedance spectroscopy,EIS)是通過測(cè)量阻抗隨正弦波頻率的變化,進(jìn)而分析電極過程動(dòng)力學(xué)、雙電層和擴(kuò)散等,研究電極材料、固體電解質(zhì)、導(dǎo)電高分子以及腐蝕防護(hù)等機(jī)理,是研究電化學(xué)反應(yīng)過程的重要方法[27]。本論文測(cè)試的阻抗特性如圖6所示,圖6a,b分別表示電池在空氣氣氛下和燃料電池環(huán)境下的阻抗特性,測(cè)試溫度分別為450 ℃(≈723 K)和550 ℃(≈823 K)。為了描述電池的內(nèi)阻,通過ZSimpWin軟件模擬電池的等效電路結(jié)構(gòu)為L(zhǎng)Ro (R1Q1)(R2Q2),如圖6c所示。等效電路擬合的阻抗結(jié)果如表1所示。等效電路中,表示測(cè)試系統(tǒng)中不銹鋼管產(chǎn)生的自感,Ro表示電解質(zhì)的歐姆電阻。R1Q1和R2Q2分別表示電荷轉(zhuǎn)移和質(zhì)量轉(zhuǎn)移過程。在空氣氣氛下,EIS曲線表現(xiàn)出一個(gè)半圓形狀。一般地,在高頻區(qū),半圓與材料的晶界有關(guān),在低頻區(qū),與電極有關(guān)。在氫氧氣氛下(燃料電池環(huán)境下),歐姆損失和界面電阻隨著溫度升高而降低,EIS曲線出現(xiàn)明顯的變形。與空氣氣氛環(huán)境相比,在氫氧氣氛下總的電阻明顯減小。

        表1 用LRo(R1Q1)(R2Q2)模擬電路模擬阻抗結(jié)果

        3.2 試驗(yàn)與結(jié)果分析

        水供給流量設(shè)定為0.25 mL/min,加熱爐的溫度分別設(shè)定為=723 K(≈450 ℃)、=823 K(≈550 ℃)、=923 K(≈650 ℃)進(jìn)行試驗(yàn)。電解電流隨電壓變化的曲線如圖7所示。試驗(yàn)測(cè)得電池在電解模式的開路電壓分別為1.086、0.975、0.899 V,測(cè)試開路電壓接近理論開路電壓值。電解電壓達(dá)到1.5 V時(shí),=723、823、923 K時(shí),所對(duì)應(yīng)的電解電流密度為0.177、0.376、0.544 A/cm2。

        固體氧化物電解制氫技術(shù),其氫氣產(chǎn)生速率與電解電流密度相關(guān)[28-29],根據(jù)庫倫定律:

        對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池操作溫度適中,熱源可以從新能源中得到,例如聚光太陽能等。電解需要的電能隨著溫度的升高而降低,在100 ℃時(shí),電能在整個(gè)電解過程所需能量中的比例約為93%,當(dāng)操作溫度升高到550 ℃時(shí)約為83%,而溫度升高到1 000 ℃時(shí)只有約72%。隨著電能的降低,水的理論分解電壓也隨溫度的升高而降低,即中、高溫下(600~1 000 ℃)電解水可以降低制氫過程中電能的消耗,增加熱能的比例。

        4 結(jié) 論

        本文提出的對(duì)稱電極結(jié)構(gòu)的中溫固體氧化物電解池,具有電解電動(dòng)勢(shì)低,電解效率高,本文的初步研究可以得出以下結(jié)論:

        1)水供給流量為0.25 mL/min,加熱爐的溫度分別為=723 K(≈450 ℃)、=823 K(≈550 ℃)、=923 K(≈650 ℃)時(shí),試驗(yàn)測(cè)得電池在電解模式的開路電壓分別為1.086、0.975、0.899 V,測(cè)試開路電壓接近理論開路電壓值。電解電壓達(dá)到1.5 V時(shí),=723、823、923 K時(shí),所對(duì)應(yīng)的電解電流密度為0.177、0.376、0.544 A/cm2。

        2)對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池的操作溫度不宜過高,當(dāng)溫度超過923 K時(shí),性能衰減快,試驗(yàn)過程中每小時(shí)的衰減率達(dá)到2%。

        對(duì)稱電極結(jié)構(gòu)的固體氧化物電解池電解水蒸氣制氫可以與不穩(wěn)定新能源發(fā)電技術(shù)結(jié)合,如太陽能光伏發(fā)電和風(fēng)電,將不穩(wěn)定的新能源轉(zhuǎn)換為氫能儲(chǔ)存。

        [1] 毛宗強(qiáng). 低溫固體氧化物燃料電池[M]. 北京:上??茖W(xué)技術(shù)出版社,2013:21-42.

        [2] Huang J, Mao Z, Liu Z, et a1. Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrode[J]. Journal of Power Sources, 2008, 175: 238-243.

        [3] 梁慧榮,張耀君,郭烈錦. N摻雜Ta2O5的制備及其光催化分解水制氫性能研究[J]. 太陽能學(xué)報(bào),2006,27(10):1032.

        Liang Huirong, Zhang Yaojun, Guo Liejin. Fabrication of N-doped Ta2O5catalysis and its performance for photocatalytic production of hydreogen[J]. Acta Energiae Solaris Sinica, 2006, 27(10): 1032. (in Chinese with English abstract)

        [4] 師進(jìn)文,郭烈錦. Cr或V摻雜的HMS在甲酸溶液中的光催化產(chǎn)氫性能研究[J]. 化學(xué)學(xué)報(bào),2007,65(4):323.

        Shi Jinwen, Guo Liejin. Photocatalytic Performance of HMS doped with chromium or vanadium for hydrogen production in aqueous formic acid solution[J]. Acta Chimica Sinica, 2007, 65(4): 323. (in Chinese with English abstract)

        [5] Liu Qinggang, Yang Xiaofeng, Huang, Yanqiang, et al. A Schiff base modified gold catalyst for green and efficient H2production from formic acid[J]. Energy & Environmental Science, 2015, 8(11): 3204-3207.

        [6] Zhou Jinxia, Xia Zhi, Huang Tingyu, et al. An ionic liquid-organics-water ternary biphasic system enhances the 5-hydroxymethylfurfural yield in catalytic conversion of glucose at high concentrations[J]. Green Chemistry, 2015, 17(8): 4206-4216.

        [7] 范慧,宋世棟,韓敏芳. 固體氧化物電解池共電解H2O/CO2研究進(jìn)展[J]. 中國(guó)工程科學(xué),2013,15(2):107-112.

        Fan Hui, Song Shidong, Han Minfang. Development of H2O/CO2co-electrolysis in solid oxide electrolysis cell [J]. Engineering Science, 2013, 15(2): 107-112. (in Chinese with English abstract)

        [8] Han Minfang, Fan Hui, Peng Suping. H2O/CO2co-electrolysis in solid oxide electrolysis cells[J]. Engineering Science, 2014, 12(1): 43-50.

        [9] Song Shidong, Han Minfang, Zhan Jianqiang. NiCu-Zr0.1Ce0.9O2-δanode materials for intermediate temperature solid oxide fuel cells using hydrocarbon fuels[J]. Journal of Power Sources, 2013, 233: 62-68.

        [10] Hui Fan, Michael Keane, Prabhakar Sing, et al. Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell[J]. Journal of Power Sources, 2014, 26: 634-639.

        [11] 張文強(qiáng),于波,陳靖,等. 高溫固體氧化物電解水制氫技術(shù)[J]. 化學(xué)進(jìn)展,2008,20(5):778-792.

        Zhang Wenqiang, Yu Bo, Chen Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5): 778-792. (in Chinese with English abstract)

        [12] Yu B, Zhang W Q, Xu J M, et al. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3–δand its application for anode of SOEC[J]. International Journal of Hydrogen Energy, 2008, 33: 6873-6877.

        [13] Liang M D, Yu B, Wen M F, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J]. Journal of Power Sources, 2009, 90: 341-345.

        [14] Kong J R, Zhang Y, Deng C S, et al. Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis[J]. Journal of Power Sources, 2009, 186: 485-489.

        [15] Liu M Y, Yu B, Xu J M, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008, 177: 493-499.

        [16] O’brien J E, Stoots C M, Herring J S, et al. Hydrogen produc- tion performance of a 10-cell planar solid-oxide electrolysis stack[J]. Journal of Fuel Cell Science and Technology, 2006, 3: 213-219.

        [17] Stoots C M, O’brien J E, Condie K G, et al. High-temperature electrolysis for large-scale hydrogen production from nuclear energy-Experimental investigations[J]. International Journal of Hydrogen Energy, 2010, 35: 4861-4870.

        [18] Doenitz W, Dietrich G, Erdle E, et al. Electrochemical high temperature technology for hydrogen production or direct electicity generation[J]. International Journal of Hydrogen Energy, 1988, 13: 283-287.

        [19] Hauch A. Solid Oxide Electrolysis Cells-Performance and Durability[D]. Denmark: Ris? National Laboratory, Technical University of Denmark, 2007.

        [20] Liu Mingyi, Yu Bo, Xu Jingming, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008, 177: 493-499.

        [21] Meng N, Leung M K H, Leung D Y C. A modeling study on concentration over potentials of a reversible solid oxide fuel cell[J]. Journal of Power Sources, 2006, 163: 460-466.

        [22] Chow T T, Tiwari G N, et al. Hybrid solar: A review on photovoltaic and thermal power integration[J]. International Journal of Photoenergy, 2012, 10: 1155-1172.

        [23] 胡慧慶. 單部件燃料電池的性能研究[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué),2015.

        Hu Huiqing. Performance Study for Single Layer Fuel Cell[D]. Hefei:University of Science and Technology of China, 2015. (in Chinese with English abstract)

        [24] Palard M, Balencie J, Maguer A, et al. Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles[J]. Materials Chemistry and Physics, 2010, 120: 79-88.

        [25] Reddy B M, Bharali P. Catalytic efficiency of ceria-zirconia and ceria-hafnia nanocomposite oxide for soot oxidation[J]. Catalysis Letters, 2008, 123: 327-333.

        [26] Eguchi K, Kunishaki T, Arai H. Effect of microsctructures on the lonic conductivity of ceria-calcia oxides[J]. Journal of American Ceramic Society, 1986, 69: 282-285.

        [27] Fan L D, Zhang H J, Chen M M, et al. Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38: 11398-11405.

        [28] 范慧. 可逆燃料電池-電解池氧電極復(fù)合改性研究[D]. 北京:中國(guó)礦業(yè)大學(xué),2014.

        Fan Hui. Study on Combined Modification of Oxygen Electrode for Reversible Solid Oxide Fuel Cell-electrolysis Cell[D]. Beijing: China University of Mining and Technology, 2014. (in Chinese with English abstract)

        [29] Sune Dalgaard Ebbesen, Mogens Mogensen. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells[J]. Journal of Power Sources, 2009, 193: 349-358.

        [30] Choi M B, Singh B, Wachsman E D, et al. Performance of La0.1Sr0.9Co0.8Fe0.2O3-δand La0.1Sr0.9Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2oxygen electrodes with Ce0.9Gd0.1O2barrier layer in reversible solid oxide fule cells[J]. Journal of Power Sources, 2013, 239: 361-373.

        Hydrogen production technology by solid oxide electrolysis cell with symmetrical eletrode at intermediate temperature

        Lu Yuzheng, Wang Jun※, Jiang Chuan, Yang Song, Zhang Yaoming

        (210018)

        Efficient, clean and sustainable energy become the focus of current energy research. Although solar power, wind power and tidal power are promising renewable energy sources, they are site-specific and intermittent, which is not suitable for continuous energy supply. Hydrogen, which is transportable and storable, could serve as an attractive option for energy carrier. Nowadays, it is important to develop a technology for producing hydrogen with high efficiency and low pollution. Solid oxide electrolysis cells (SOEC) based on solid oxide fuel cell (SOFC) technology provides a solution in which hydrogen is produced from water and oxygen is the only by-product. Hybrid hydrogen production integrating solar energy and solid oxide electrolysis cell (SOEC) is an energy conversion device with high performances. In this paper, a hydrogen production system was designed based on intermediate temperature solid oxide electrolysis cell. Solar energy was utilized as the only prime energy sources for the system. The demands of thermal energy and electricity for the hydrogen production were supplied by solar dish and photovoltaic subsystem, respectively and SOEC was the key component of the hybrid system. A new type of solid oxide electrolysis cell, having the symmetrical electrode structure, was proposed and studied in this paper, which was based on the solid oxide electrolysis cell with the conventional structure of anode-electrolyte-cathode. The chemical precipitation method was used to produce the electrolyte material, Ce0.8Sm0.2O1.9-Na2CO3(NSDC), and to find out the specific electrode material compatible well with the NSDC, the Ni0.8Co0.15Al0.05LiO2-δ(NCAL). X-ray diffraction (XRD) method and scanning electron microscope (SEM) were utilized in this paper for the description as well as the analysis of performance relating to the materials produced. The results showed that the NSDC also has a fluorite structure, the particle size of which was in the range from 30 to 80 nm. Further, the solid oxide electrolysis cell was fabricated though using the NSDC and NCAL obtained earlier. Under SOEC mode and current density of 0.376 A/cm2, the electrolyte voltage was 1.5 V at 823 K.The results of electrochemical experiments showed that a good performance of hydrogen production can be achieved by using the single cell in the electrolysis mode. Moreover, the electrochemical performance still remained in a good condition even the electrodes were switched. According to the theoretical analysis and the experimental results, it can be demonstrated that this new type of cell shows a good structural symmetry. In addition, intermediate-temperature system can promote electrode activity and lessen the over potential. Therefore, it is possible to increase the electric current density and consequently decrease the polarization losses at intermediate temperature, which improves the hydrogen production density and the electrolysis efficiency. Thus, this new hybrid hydrogen production system is advantages from both thermodynamic and kinetic standpoints. The hybrid hydrogen production integrating solar energy operation at intermediate temperature is much more efficient than low-temperature water electrolysis systems such as alkaline water electrolysis and solid polymer electrolyte water electrolysis. The obstacle for the development of SOEC technology is the cost. Fortunately, the cost of this new structure of SOEC with the symmetrical electrode is very low. It is our hope that the results we report here may pave a way for SOEC industrialization.

        electrodes; pressure; hydrogen; intermediate temperature solid oxide electrolysis cells

        10.11975/j.issn.1002-6819.2017.09.031

        TK91

        A

        1002-6819(2017)-09-0237-06

        2016-10-22

        2017-03-10

        江蘇省科技支撐計(jì)劃項(xiàng)目(BE2013121)

        陸玉正,男(漢族),安徽廬江人,博士生,主要從事新能源技術(shù)研究。南京 東南大學(xué)能源與環(huán)境學(xué)院,210018。Email:mrluyuzheng@163.com

        王軍,男(漢族),江蘇鹽城人,博士,主要從事太陽能利用研究。南京 東南大學(xué)能源與環(huán)境學(xué)院,210018。Email:wj-jw@seu.edu.cn

        陸玉正,王 軍,蔣 川,楊 嵩,張耀明. 具對(duì)稱電極結(jié)構(gòu)的中溫固體氧化物電解池電解水制氫技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):237-242. doi:10.11975/j.issn.1002-6819.2017.09.031 http://www.tcsae.org

        Lu Yuzheng, Wang Jun, Jiang Chuan, Yang Song, Zhang Yaoming. Hydrogen production technology by solid oxide electrolysis cell with symmetrical eletrode at intermediate temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 237-242. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.031 http://www.tcsae.org

        猜你喜歡
        結(jié)構(gòu)
        DNA結(jié)構(gòu)的發(fā)現(xiàn)
        《形而上學(xué)》△卷的結(jié)構(gòu)和位置
        論結(jié)構(gòu)
        中華詩詞(2019年7期)2019-11-25 01:43:04
        新型平衡塊結(jié)構(gòu)的應(yīng)用
        模具制造(2019年3期)2019-06-06 02:10:54
        循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
        論《日出》的結(jié)構(gòu)
        縱向結(jié)構(gòu)
        縱向結(jié)構(gòu)
        我國(guó)社會(huì)結(jié)構(gòu)的重建
        人間(2015年21期)2015-03-11 15:23:21
        創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
        精品久久人人爽天天玩人人妻| 亚洲伊人久久大香线蕉| 中文字幕一区二区人妻秘书| 中文无码精品a∨在线观看不卡| 欧美午夜一区二区福利视频| 国产精品日日摸夜夜添夜夜添| 美女福利视频在线观看网址| 亚洲国产av无码精品无广告| 欧美成人免费全部| 亚洲精品国产一二三无码AV| 国产成年女人特黄特色毛片免| 日本伊人精品一区二区三区| 私人毛片免费高清影视院| 亚洲欧美精品91| 国产特黄1区2区3区4区| 五月天中文字幕日韩在线| 久久久老熟女一区二区三区| 97欧美在线| 一级黄色一区二区三区视频| 亚洲tv精品一区二区三区| 久久www色情成人免费观看| 国产麻豆一精品一AV一免费软件| 日韩精品成人一区二区三区| 亚洲欧洲日产国码av系列天堂 | 亚洲一区二区三区一站| 亚洲中文字幕人妻久久| 少妇性荡欲视频| 久久精品国产亚洲婷婷| 99久久精品人妻一区二区三区| 色老板美国在线观看| 精品国产v无码大片在线观看| 岛国视频在线无码| av黄色在线免费观看| 无码少妇一区二区性色av| 中年人妻丰满AV无码久久不卡| 伊人狼人激情综合影院| 国产成人午夜福利在线观看| 伊人久久无码中文字幕| 亚洲不卡av不卡一区二区| 户外精品一区二区三区 | 久久精品国产第一区二区三区|