甘麥鄰楊露譚婭楊瓊蒲紅州張順華朱礪
(1. 四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,成都 611130;2. 四川省旺蒼縣畜牧食品局,廣元 628200;3. 成都農(nóng)業(yè)科技職業(yè)學(xué)院,成都 6111305;4. 四川省南江縣農(nóng)業(yè)局,巴中 635600)
miR-143生物學(xué)功能的研究進(jìn)展
甘麥鄰1楊露2譚婭1楊瓊3蒲紅州4張順華1朱礪1
(1. 四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,成都 611130;2. 四川省旺蒼縣畜牧食品局,廣元 628200;3. 成都農(nóng)業(yè)科技職業(yè)學(xué)院,成都 6111305;4. 四川省南江縣農(nóng)業(yè)局,巴中 635600)
microRNA 是一類廣泛存在于真核生物中長度約為21-25 nt的非編碼RNA,通常在轉(zhuǎn)錄后水平抑制靶基因的表達(dá)。miR-143廣泛存在于不同物種中,近年來的研究表明miR-143是一個(gè)典型的多功能microRNA。現(xiàn)就miR-143在細(xì)胞增殖、分化、凋亡及腫瘤發(fā)生等方面的生物學(xué)功能進(jìn)行綜述,以期為相關(guān)研究提供參考。
miR-143;生長發(fā)育;疾病
表1 miR-143調(diào)控的目標(biāo)基因及其發(fā)揮的生物學(xué)功能
1.1 miR-143對(duì)心血管系統(tǒng)的影響
心臟和血管組成的心血管系統(tǒng)在機(jī)體內(nèi)是一個(gè)相對(duì)封閉的管道系統(tǒng),其最重要的生理機(jī)能就是維持血液循環(huán),保證機(jī)體內(nèi)環(huán)境的相對(duì)恒定和新陳代謝的正常進(jìn)行。血液循環(huán)一旦停止,生命活動(dòng)就不能正常進(jìn)行,最后將導(dǎo)致機(jī)體的死亡。
心臟是哺乳動(dòng)物胚胎發(fā)育時(shí)期最早形成的器官。Dicer基因參與了microRNA的形成[2],有研究發(fā)現(xiàn)Dicer敲除小鼠心臟特異性 microRNA 表達(dá)普遍下降,出生后4 d 內(nèi)全部死于擴(kuò)張型心肌病和心衰[3]。同時(shí),在心臟中存在的一些特異性并且高表達(dá)micro-RNA的異常表達(dá)也將導(dǎo)致心臟發(fā)育異常[4]。miR-143雖然不是心臟特異性表達(dá)的miRNA,但它也對(duì)心臟發(fā)育產(chǎn)生重要影響。ADD3(Adducin3)是一種細(xì)胞膜骨架蛋白,參與細(xì)胞膜網(wǎng)狀結(jié)構(gòu)的構(gòu)建和維持,還具有細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞膜離子轉(zhuǎn)運(yùn)等功能[5],Deacon等[6]發(fā)現(xiàn)miR-143-add3基因通路通過調(diào)節(jié)心肌細(xì)胞的形態(tài)影響心腔的形成和功能。敲除miR-143或中斷miR-143-add3交互作用抑制了心室心肌細(xì)胞f -肌動(dòng)蛋白(F-actin capping protein)重塑,阻礙了心室肌細(xì)胞的正常生長和伸長,導(dǎo)致心室坍塌和收縮下降。Miyasaka等[7]在模式動(dòng)物斑馬魚上發(fā)現(xiàn)miR-143的表達(dá)可以影響心跳節(jié)律,敲除miR-143引起維甲酸(Retinoic acid)信號(hào)通路脫抑制,造成心室流出道產(chǎn)生異常。
血管平滑肌細(xì)胞是血管的重要組成部分,在血管生成期間具有增殖和遷移能力,在成熟血管中則具有收縮功能,可調(diào)節(jié)動(dòng)脈張力和血壓。同時(shí)平滑肌細(xì)胞還具有高度的可塑性,在血管發(fā)生損傷時(shí)可以從收縮表型轉(zhuǎn)換便于增殖、遷移和膠原生成的狀態(tài),而這種轉(zhuǎn)換可導(dǎo)致動(dòng)脈粥樣硬化、高血壓等疾病的發(fā)生。miR-143常與miR-145共同影響血管平滑肌。Cordes等[8]的研究證實(shí)了miR-143和miR-145調(diào)控著平滑肌細(xì)胞的宿命和可塑性。miR-143和miR-145通過靶向結(jié)合Elk-1(Ets-like protein 1)、Klf4(Kruppel-like factor4)等基因,抑制平滑肌細(xì)胞的增殖,促進(jìn)平滑肌細(xì)胞分化,可以定向誘導(dǎo)心臟祖細(xì)胞分化為心臟平滑肌細(xì)胞。Boettger等[9]研究發(fā)現(xiàn)miR-143/145基因簇控制著平滑肌細(xì)胞的合成和收縮,并直接影響血管平滑肌的收縮。Elia等[10]在急性血管損傷的大鼠模型中過表達(dá)miR-143和mir-145發(fā)現(xiàn),新生內(nèi)膜的形成會(huì)減少,同時(shí)miR-143和mir-145缺失會(huì)引起血管平滑肌細(xì)胞分化不完全,從而導(dǎo)致主動(dòng)脈的結(jié)構(gòu)發(fā)生改變。與Cordes等的研究結(jié)果不同,Xin等[11]的研究發(fā)現(xiàn)缺乏miR-143和mir-145的老鼠并不表現(xiàn)明顯的平滑肌分化異常,生活力表現(xiàn)正常,但是由于血管張力的降低,缺乏miR-143和mir-145的老鼠血壓顯著降低,同時(shí)由于肌動(dòng)蛋白纖維的混亂和平滑肌細(xì)胞遷移活性的降低嚴(yán)重阻礙了血管損傷后的內(nèi)膜增生。這可能與一個(gè)靶基因可以受多個(gè)microRNA調(diào)控,同時(shí)一個(gè)microRNA也可以調(diào)控多個(gè)靶基因發(fā)揮不同的生物學(xué)功能的特性有關(guān)[12]。Bhattachariya等[5]發(fā)現(xiàn)在門靜脈中miR-143/145基因簇對(duì)維持拉伸誘導(dǎo)的收縮分化和鈣信號(hào)中也發(fā)揮著重要作用。
1.2 miR-143對(duì)脂肪細(xì)胞分化和能量代謝的影響
Esau等[13]的研究發(fā)現(xiàn)miR-143可以促進(jìn)脂肪細(xì)胞分化。他們將反義核苷酸轉(zhuǎn)染到3T3細(xì)胞中發(fā)現(xiàn),抑制miR-143可以抑制脂肪細(xì)胞的分化,同時(shí)miR-143的靶基因細(xì)胞外信號(hào)調(diào)節(jié)激酶5(Extracellular signal regulated kinase,ERK5) 低 表達(dá),因此他們推測(cè)miR-143的作用途徑可能是通過靶向結(jié)合ERK5進(jìn)而對(duì)脂肪細(xì)胞的分化產(chǎn)生影響。Yi 等[14]發(fā)現(xiàn)miR-143可以通過靶向結(jié)合多效生長因子(Pleiotrophin,PTN)促進(jìn)3T3脂肪細(xì)胞分化。Li[15]等通過測(cè)序技術(shù)在豬上也發(fā)現(xiàn)miR-143參與脂肪細(xì)胞的分化。Takanabe等[16]在高脂誘導(dǎo)肥胖的小鼠脂肪組織中并沒有發(fā)現(xiàn)miR-143與ERK5基因的顯著負(fù)相關(guān)關(guān)系。而后來He等[17]沉默小鼠miR-143后沒有發(fā)現(xiàn)脂肪細(xì)胞任何的異常分化,一些脂肪形成標(biāo)志基因PPARγ(Peroxisome proliferatoractivated receptorγ) 和 C/EBPα(CCAAT/enhancer binding proteinα)的表達(dá)也沒有受到明顯的影響,抑制miR-143后ERK5基因的轉(zhuǎn)錄未發(fā)生明顯的抑制。在小鼠脂肪形成過程中,他們通過雙熒光素酶報(bào)告系統(tǒng)確定成纖維細(xì)胞生長因子7(fibroblast growth factor 7,F(xiàn)gf-7)為miR-143的靶基因,猜測(cè)Fgf-7可能通過激活酪氨酸激酶(Tyrosine kinase)信號(hào)系統(tǒng)促進(jìn)脂肪細(xì)胞的增殖和分化。造成miR-143靶基因差異的原因可能是因?yàn)閷?shí)驗(yàn)對(duì)象不同,Esau等的實(shí)驗(yàn)材料是人類細(xì)胞,而He等使用的是小鼠。
目前的研究表明miR-143可以影響甘油三酯(Triacylglyceride,TAG)的積累和糖酵解過程,影響機(jī)體的能量代謝。Xie等[18]發(fā)現(xiàn)在前脂肪細(xì)胞中,miR-143通過調(diào)節(jié)脂肪生成標(biāo)記基因和增加甘油三酯積累加速脂肪在早期階段的形成。Wang等[19]在豬脂肪細(xì)胞上的研究也表明miR-143可以通過增加脂肪細(xì)胞中甘油三酯的積累促進(jìn)脂肪形成。Zhao等[20]發(fā)現(xiàn)miR-143可以抑制糖酵解并降低膠質(zhì)瘤樣干細(xì)胞的多能性。Peschiaroli等[21]關(guān)于腫瘤細(xì)胞的研究表明miR-143可以調(diào)控己糖激酶2(hexokinase 2,HK 2)的表達(dá)。
1.3 miR-143對(duì)運(yùn)動(dòng)系統(tǒng)和神經(jīng)系統(tǒng)的影響
在課堂教學(xué)中滲透馬克思主義的哲學(xué)理論是哲學(xué)課的題中應(yīng)有之義。在理論知識(shí)的教學(xué)中,必須在”哲理”上下功夫,注重科學(xué)性,堅(jiān)持以理服人,增強(qiáng)知識(shí)的可信度,培育學(xué)生的認(rèn)同情感。
骨骼和骨骼肌是運(yùn)動(dòng)系統(tǒng)的主要組成部分,miR-143對(duì)骨細(xì)胞和骨骼肌細(xì)胞的分化都有重要影響。成骨相關(guān)轉(zhuǎn)錄因子(Osterix,Osx)是由Nakashima[22]等發(fā)現(xiàn)的成骨細(xì)胞特異性轉(zhuǎn)錄因子,Osx對(duì)維持骨骼的生長和動(dòng)態(tài)平衡具有重要的調(diào)控作用。Li等[23]發(fā)現(xiàn)miR-143在分化的成骨細(xì)胞中表達(dá)下降,同時(shí)他們證實(shí)miR-143可以靶向結(jié)合成骨形成相關(guān)轉(zhuǎn)錄因子抑制成骨分化。Zuo等[24]在豬骨骼肌衛(wèi)星細(xì)胞中過表達(dá)(或抑制)ssc-miR-143-3p會(huì)誘導(dǎo)增加(或減少)慢肌纖維標(biāo)志性基因和蛋白的表達(dá),證實(shí)了miR-143可以調(diào)控骨骼肌細(xì)胞肌纖維的分化,其作用途徑可能是通過HDAC4-MEF2(Histone deacetylase 4- myocyte enhancer factor-2)通路調(diào)節(jié)MYH7基因(Beta-myosin heavy chin gene)。Chen等[25]利用鱖魚研究發(fā)現(xiàn)抑制miR-143之后MyoD(Myogenic differentiation)基因和快速肌球蛋白重鏈(Fast myosin heavy chain)基因的表達(dá)顯著上調(diào),研究提示miR-143參與調(diào)控了脊椎動(dòng)物肌纖維類型的分化。Li等[26]發(fā)現(xiàn)miR-135和miR-143抑制劑可能誘發(fā)牙髓干細(xì)胞肌原性的分化。Soriano-Arroquia等[27]發(fā)現(xiàn)miR-143在衛(wèi)星細(xì)胞中的表達(dá)隨年齡的增長而下降,通過進(jìn)一步研究發(fā)現(xiàn)miR-143可能通過靶向結(jié)合IGFBP5(Insulin-like growth factorbinding protein 5)參與了衛(wèi)星細(xì)胞與年齡相關(guān)的功能調(diào)節(jié)。
目前有關(guān)miR-143在神經(jīng)發(fā)育方面的研究較少,但近期Rani等[28]在靈長類的狹鼻猴類分支中發(fā)現(xiàn)了一個(gè)有趣的lncRNA,命名為IncND(Neurodeveloment,ND),該研究表明:在靈長類動(dòng)物神經(jīng)前體細(xì)胞中LncND通過介導(dǎo)miRNA調(diào)控Notch信號(hào)通路從而影響大腦皮質(zhì)的擴(kuò)張。lncND有16個(gè)miR-143-3p的miRNA反應(yīng)元件,通過LncND結(jié)合和釋放miR-143-3p調(diào)控Notch受體的表達(dá)。他們發(fā)現(xiàn)在發(fā)育的人類腦的腦室和腦室下帶中,LncND在放射狀膠質(zhì)細(xì)胞(Radial glia cells,RGCs)中大量富集。在神經(jīng)母細(xì)胞瘤細(xì)胞中下調(diào)能夠降低細(xì)胞的增殖,誘導(dǎo)神經(jīng)分化。
1.4 miR-143對(duì)免疫系統(tǒng)和生殖系統(tǒng)的影響
脾臟是機(jī)體最大的免疫器官,Lagos-Qaintana等[29]通過測(cè)序發(fā)現(xiàn)miR-143在小鼠脾中高度表達(dá),約占所有miRNA總豐度的30%,推測(cè)miR-143在脾臟發(fā)育和分化過程中發(fā)揮著重要作用。Trakooljul等[30]在禽類的研究中發(fā)現(xiàn)14 d的小雞脾臟中miR-143顯著高表達(dá)。Yuan等[31]的研究報(bào)道m(xù)iR-143通過調(diào)節(jié)細(xì)胞凋亡和自噬的相互作用而調(diào)控小膠質(zhì)細(xì)胞存活,miR-143和促凋亡蛋白(P53 up-regulated modulator of apoptosis,PUMA)共同調(diào)控小膠質(zhì)細(xì)胞的功能發(fā)揮。PUMA的表達(dá)在轉(zhuǎn)錄后水平受miR-143調(diào)節(jié),anti-miR-143能夠通過上調(diào)PUMA調(diào)節(jié)細(xì)胞的自噬和凋亡,減輕甲基苯丙胺引起的小膠質(zhì)細(xì)胞的死亡。在整體的動(dòng)物模型上,anti-miR-143腦微注射進(jìn)海馬腦區(qū),能夠緩解小鼠腦內(nèi)甲基苯丙胺導(dǎo)致的小膠質(zhì)細(xì)胞減少,在miR-143基因敲除小鼠體內(nèi)也得到了進(jìn)一步的證實(shí)。
Huang等[32]通過測(cè)序發(fā)現(xiàn)miR-143在奶牛卵巢和睪丸中均高表達(dá),預(yù)測(cè)miR-143的靶基因可能參與了GnRH(Gonadotropin-releasing hormone)細(xì)胞信號(hào)通路。Zhang等[33]發(fā)現(xiàn)miR-143可以抑制前顆粒細(xì)胞和下調(diào)相關(guān)基因的表達(dá)抑制原始卵泡,參與卵巢發(fā)育和調(diào)節(jié)卵巢功能。Shi等[34]發(fā)現(xiàn)大鼠胚胎移植后子宮miR-143在5-7 d的表達(dá)水平高于3-4 d,通過進(jìn)一步的研究發(fā)現(xiàn)子宮miR-143的表達(dá)可能參與了動(dòng)物成功受孕,其機(jī)制可能是通過調(diào)節(jié)白血病抑制因子受體(Leukemia inhibitory factor receptor,Lifr)影響胚泡植入的過程。
2.1 miR-143與炎癥反應(yīng)
Yu等[35]利用測(cè)序技術(shù)發(fā)現(xiàn)miR-143在過敏性鼻炎患者鼻黏膜中表達(dá)水平降低。Teng等[36]也發(fā)現(xiàn)miR-143在變應(yīng)性鼻炎中表達(dá)下降,miR-143通過靶向結(jié)合IL-13Rα1(Interleukin 13 recepor α1 ),誘導(dǎo)變應(yīng)性鼻炎患者的鼻上皮細(xì)胞炎性細(xì)胞因子和黏液產(chǎn)生。Tam等[37]發(fā)現(xiàn)完全弗氏佐劑( Complete freunds adjuvant,CFA)炎性疼痛能夠引起 miR-143表達(dá)顯著下調(diào)。Pekow等[38]發(fā)現(xiàn),與正常結(jié)腸黏膜相比,慢性結(jié)腸炎患者miR-143和miR-145表達(dá)量下調(diào)明顯。Chivukula等[39]利用葡聚糖硫酸鈉(Dextran sulfate sodium salt)誘導(dǎo)急性潰瘍性結(jié)腸炎模型小鼠,結(jié)果發(fā)現(xiàn),野生型小鼠結(jié)腸上皮細(xì)胞可快速增殖,填補(bǔ)損傷傷口,而敲除miR-143和miR-145的小鼠,腸道細(xì)胞無法切換到這種修復(fù)模式,傷口不能愈合,因此小鼠無法生存。miR-143和miR-145可能作用于IGFBP5促進(jìn)傷口的愈合,敲除miR-143和miR-145后則可抵消這種效應(yīng)。Xia等[40]發(fā)現(xiàn)在表皮葡萄球菌(Staphylococcus epidermidis)的脂磷壁酸(Lipoteichoic acid,LTA)可以誘導(dǎo)miR-143抑制丙酸菌屬(Propionibacterium acnes)介導(dǎo)的炎癥反應(yīng)。
2.2 miR-143與腫瘤
2.2.1 對(duì)消化系統(tǒng)腫瘤的影響 近年的研究報(bào)道發(fā)現(xiàn),miR-143幾乎對(duì)從口腔到結(jié)直腸的整個(gè)消化道以及消化腺腫瘤的發(fā)生都產(chǎn)生了影響。
Xu等[41]在口腔鱗狀上皮細(xì)胞癌中發(fā)現(xiàn)miR-143表達(dá)量明顯減少,miR-143可以顯著抑制口腔鱗狀上皮細(xì)胞癌的遷移和入侵能力,miR-143可能作用于黏附分子CD44變異型-3(CD44 v3)信號(hào)通路影響原癌基因c-Met磷酸化抑制腫瘤。He和Jia等[42,43]分別發(fā)現(xiàn)miR-143可以通過靶向結(jié)合QKI-5(Quaking 5)和STAT3(Signal transducers and activators of transcription 3)抑制食管鱗狀細(xì)胞癌的增殖和入侵能力。Zhuang等[44]發(fā)現(xiàn)在胃癌組織和胃癌細(xì)胞系中miR-143水平顯著下降,同時(shí)miR-143可以通過與其目標(biāo)基因IGF1R(Insulin-like growth factor1receptor)和BCL2(B-cell lymphoma-2)的結(jié)合,影響人類胃癌細(xì)胞株對(duì)順鉑的耐藥性。Chen等[45]在結(jié)腸癌的研究表明miR-143可以通過抑制KRAS(Kirsten rat sarcoma viral oncogene)的翻譯從而抑制結(jié)腸癌。Borralho等[46]發(fā)現(xiàn)miR-143可以抑制裸鼠異體移植腫瘤的生長。Akao等[47]也發(fā)現(xiàn)miR-143對(duì)結(jié)直腸腫瘤有抑制作用。Su等[48]發(fā)現(xiàn)miR-143和mirR-145可以通過調(diào)控IGF1R從而抑制大腸癌細(xì)胞增殖。
肝臟是機(jī)體最大的消化腺,Liu等[49]發(fā)現(xiàn)miR-143可以下調(diào)TLR2(Toll like receptor 2)在肝癌細(xì)胞中表達(dá),抑制肝癌細(xì)胞增殖和入侵。Pham等[50]研究結(jié)果表明miR-143通過MAPK(Mitogen-activated protein kinase)通路抑制COX-2(Cyclooxygenase 2)的表達(dá),抑制胰腺癌細(xì)胞的增殖。Hu等[51]的研究發(fā)現(xiàn)miR-143可以抑制胰腺癌的轉(zhuǎn)移并下調(diào)GEF1(grain extended filling 1)、GEF40(Grain extended filling 40)和KRAS基因的表達(dá)。
2.2.2 miR-143對(duì)生殖和泌尿系統(tǒng)腫瘤的影響 Yan等[52]的研究表明miR-143和miR-145可以協(xié)同作用于ERBB3(Epidermal growth factor receptor 3),抑制乳腺癌細(xì)胞的增殖和入侵。Clape等[53]發(fā)現(xiàn)miR-143的表達(dá)水平與晚期前列腺癌之間存在負(fù)相關(guān)關(guān)系,miR-143可能通過抑制ERK5信號(hào)抑制腫瘤生長。Xu等[54]發(fā)現(xiàn)miR-143可以通過抑制KRAS提高前列腺癌細(xì)胞對(duì)紫杉醇的敏感性,抑制前列腺癌的增殖和遷移。Chu等[55]發(fā)現(xiàn)miR-143可以通過KLK2(Kallikrein 2)抑制前列腺腫瘤。Zhang等[56]研究發(fā)現(xiàn)miR-143和mir-145表達(dá)下調(diào)可能導(dǎo)致DNA甲基轉(zhuǎn)移酶3 B(DNAmethyltransferase 3B,DnMT3B)的超表達(dá),從而導(dǎo)致子宮內(nèi)膜癌的預(yù)后變得更差。Chen等[57]發(fā)現(xiàn)miR-143可以影響宮頸鱗狀上皮細(xì)胞瘤的大小,但miR-143不參與紫杉醇敏感性反應(yīng),這與Xu等[54]的研究結(jié)果不同,可能是腫瘤所處微環(huán)境不同的緣故[58]。Puerta-cril等[59]的研究結(jié)果表明miR-143可結(jié)合miR-222和miR-452作為膀胱癌分級(jí)和無創(chuàng)診斷的生物標(biāo)記。
2.2.3 miR-143對(duì)其他部位腫瘤的影響 Xu等[60]發(fā)現(xiàn)miR-143可以抑制鼻咽癌;Zhang等[61]發(fā)現(xiàn)miR-143通過靶向結(jié)合PKC(Protein kinase C)調(diào)節(jié)肺癌細(xì)胞凋亡過程;Wang等[62]發(fā)現(xiàn)miR-143可以抑制表皮生長因子受體(Epithelial growth factor receptor,EGFR)信號(hào)抑制骨肉瘤的入侵。Liu等[63]在人類惡性膠質(zhì)瘤干細(xì)胞中發(fā)現(xiàn)miR-143可以通過BAG3(Bcl-2-associated athanogene 3)提高紫草素的抗腫瘤活性。
上述研究表明:miR-143可以抑制腫瘤的生長,其作用途徑可以是直接與生長、凋亡相關(guān)的基因靶向結(jié)合來抑制腫瘤的生長,或者是影響能量代謝抑制腫瘤生長,也可以通過相關(guān)途徑提高腫瘤對(duì)抗腫瘤藥物的敏感性或降低自身的耐藥性抑制腫瘤生長,還可以通過腫瘤微環(huán)境影響腫瘤的生長。
miR-143是一個(gè)典型的多功能microRNA,參與了機(jī)體的生長發(fā)育和疾病發(fā)生過程。其調(diào)控網(wǎng)絡(luò)也十分復(fù)雜,不僅可以作用于多個(gè)靶基因,還可以聯(lián)合其他microRNA共同發(fā)揮作用,但是目前的研究都是針對(duì)單個(gè)或少數(shù)幾個(gè)基因進(jìn)行功能驗(yàn)證,miR-143與其他非編碼RNA之間、miR-143各靶基因之間的相互作用還不甚了解,仍需進(jìn)一步深入探討。對(duì)其調(diào)控網(wǎng)絡(luò)的深入挖掘可以為調(diào)控生長發(fā)育以及疾病治療和診斷提供新的思路。miR-143在腫瘤組織中呈現(xiàn)低表達(dá),過表達(dá)miR-143可以抑制腫瘤生長,因此miR-143有可能用于癌癥的治療和腫瘤標(biāo)志物研究;但是過表達(dá)miR-143可能破壞機(jī)體正常功能,帶來嚴(yán)重的副作用,如要利用其治療癌癥則需要找到既不嚴(yán)重影響機(jī)體正常機(jī)能又對(duì)抑制腫瘤有效的平衡點(diǎn);由于miR-143并不是腫瘤特異表達(dá)miRNA,因此單獨(dú)作為腫瘤標(biāo)志物診斷癌癥不太可靠,需要聯(lián)合其他腫瘤標(biāo)志物來進(jìn)行診斷。對(duì)這些問題的深入探討將為我們更深入了解microRNA的作用機(jī)制和利用microRNA提供幫助。
[1]Ambros V. microRNAs:tiny regulators with great potential[J]. Cell, 2001, 107(7):823-826.
[2]Pham JW, Pellino JL, Lee YS, et al. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila[J]. Cell, 2004, 117(1):83-94.
[3]Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6):2111-2116.
[4]Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317.
[5]Bhattachariya A, Dahan D, Ekman M, et al. Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice[J]. Acta Physiologica, 2015, 215(3):133-143.
[6]Deacon DC, Nevis KR, Cashman TJ, et al. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis[J]. Development, 2010, 137(11):1887-1896.
[7]Miyasaka KY, Kida YS, Banjo T, et al. Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expressionof miR-143[J]. Mechanisms of Development, 2011, 128(1-2):18-28.
[8]Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate decisions[J]. Nature, 2009, 460(7256):705-710.
[9]Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster[J]. Journal of Clinical Investigation, 2009, 119(9):2634-2647.
[10]Elia L, Quintavalle M, Zhang J, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice:correlates with human disease[J]. Cell Death & Differentiation, 2009, 16(12):1590-1598.
[11]Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Genes & Development, 2009, 23(18):2166-2178.
[12]Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA.[J]. Science, 2012, 337(6099):1159-1161.
[13]Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. Journal of Biological Chemistry, 2004, 279(50):52361-52365.
[14]Yi C, Xie WD, Li F, et al. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin[J]. Febs Letters, 2011, 585(20):3303-3309.
[15]Li G, Li Y, Li X, et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing[J]. Journal of Cellular Biochemistry, 2011, 112(5):1318-1328.
[16]Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochemical & Biophysical Research Communications, 2008, 376(4):728-732.
[17]He Z, Yu J, Zhou C, et al. MiR-143 is not essential for adipose development as revealed by in vivo antisense targeting[J]. Biotechnology Letters, 2013, 35(4):499-507.
[18]Xie H, Bing L, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J]. Diabetes, 2009, 58(5):1050-1057.
[19]Wang T, Li M, Guan J, et al. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism[J]. International Journal of Molecular Sciences, 2011, 12(11):7950-7959.
[20]Zhao S, Liu H, Liu Y, et al. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells[J]. Cancer Letters, 2013, 333(2):253-260.
[21]Peschiaroli A, Giacobbe A, Formosa A, et al. miR-143 regulates hexokinase 2 expression in cancer cells. [J]. Oncogene, 2013, 32(6):797-802.
[22]Nakashima K, Xin Z, Kunkel G, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell, 2002, 108(1):17-29.
[23]Li E, Zhang J, Yuan T, et al. MiR-143 suppresses osteogenic differentiation by targeting Osterix[J]. Molecular & Cellular Biochemistry, 2014, 390(1-2):69-74.
[24]Zuo J, Wu F, Liu Y, et al. MicroRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein[J]. PLoS One, 2014, 10(4):1-21.
[25]Chen L, Wu P, Guo XH, et al. miR-143:a novel regulator of MyoD expression in fast and slow muscles of Siniperca chuatsi[J]. Current Molecular Medicine, 2014, 14(3):370-375.
[26]Li D, Deng T, Li H, et al. MiR-143 and miR-135 inhibitors treatment induces skeletal myogenic differentiation of human adult dental pulp stem cells[J]. Arch Oral Biol, 2015, 60(11):1613-1617.
[27]Soriano-Arroquia A, Mccormick R, Molloy AP, et al. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration[J]. Aging Cell, 2016, 15(2):361-369.
[28]Rani N, Nowakowski T, Zhou H, et al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA[J]. Neuron, 2016, 90(6):1174-1188.
[29]Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse[J]. Current Biology Cb, 2002, 12(9):735-739.
[30]Trakooljul N, Hicks JA, Liu HC. Identification of target genes and pathways associated with chicken microRNA miR-143[J]. Animal Genetics, 2010, 41(4):357-364.
[31]Yuan Z, Kai S, Ying B, et al. Mir-143/BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy:Implications for methamphetamine-mediated neurotoxicity[J]. Autophagy, 2016:1-22.
[32]Huang J, Ju Z, Li Q, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle[J]. International Journal of Biological Sciences, 2011, 7(7):1016-1026.
[33]Zhang J, Ji X, Zhou D, et al. miR-143 is critical for the formation of primordial follicles in mice[J]. Frontiers in Bioscience, 2013, 18(2):588-597.
[34]Shi T, Xing S, Lu Q, et al. MiR-143, and rat embryo implantation[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2015, 1850(4):708-721.
[35]Yu SQ, Zhang RX, Liu GJ, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis[J]. American Journal of Rhinology & Allergy, 2011, 25(6):242-246.
[36] Teng Y, Zhang R, Liu C, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochemical & Biophysical Research Communications, 2014, 457(1):58-64.
[37]Tam TS, Bastian I, Zhou XF, et al. MicroRNA-143 expression in dorsal root ganglion neurons[J]. Cell & Tissue Research, 2011, 346(2):163-173.
[38] Pekow JR, Dougherty U, Mustafi R, et al. miR-143 and miR-145 are downregulated in ulcerative colitis:Putative regulators of inflammation and protooncogenes[J]. Inflammatory Bowel Diseases, 2012, 18(1):94-100.
[39]Chivukula R, Shi G, Acharya A, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration[J]. Cell, 2014, 157(5):1104-1116.
[40]Xia X, Li Z, Liu K, et al. Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin[J]. Journal of Investigative Dermatology, 2015, 136(3):621-630.
[41] Xu P, Li Y, Yang S, et al. Micro-ribonucleic acid 143(MiR-143)inhibits oral squamous cell carcinoma(OSCC)cell migration and invasion by downregulation of phospho-c-Met through targeting CD44 v3[J]Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(1):43-51.
[42]He Z, Yi J, Liu X, et al. MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelialmesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma[J]. Molecular Cancer, 2016, 15(1):1-17.
[43]Jia L, Yu M, Zhang D, et al. MiR-143 inhibits tumor cell proliferation and invasion by targeting STAT3, in esophageal squamous cell carcinoma[J]. Cancer Letters, 2016, 373(1):97-108.
[44]Zhuang M, Shi Q, Zhang X, et al. Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2[J]. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2015, 36(4):2737-2745.
[45] Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis[J]. Oncogene, 2009, 28(10):1385-1392.
[46]Borralho PM, Gomes S, Lima RT, et al. miR-143 over-expression reduces the growth of xenograft tumors from colon carcinoma cells[J]. Bmc Proceedings, 2010, 4(Suppl 2):59.
[47]Akao Y, Nakagawa Y, Hirata I, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors[J]. Cancer Gene Therapy, 2010, 17(6):398-408.
[48]Su J, Liang H, Yao W, et al. MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer[J]. PLoS One, 2014, 9(12):e114420-e114420.
[49]Liu X, Gong J, Xu B. miR-143 down-regulates TLR2 expression in hepatoma cells and inhibits hepatoma cell proliferation and invasion[J]. International Journal of Clinical & Experimental Pathology, 2015, 8(10):12738-12747.
[50]Pham H. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells[J]. Biochemical & Biophysical Research Communications, 2013, 439(1):6-11.
[51]Hu Y, Ou Y, Wu K, et al. miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway[J]. Tumor Biology, 2012, 33(6):1863-1870.
[52]Yan X, Chen X, Liang H, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer[J]. Molecular Cancer, 2014, 13(1):126-136.
[53]Clape C, Fritz V, Henriquet C, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice[J].PLoS One, 2009, 4(10):e7542.
[54]Xu B, Niu X, Zhang X, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS[J]. Molecular & Cellular Biochemistry, 2011, 350(1-2):207-213.
[55]Chu HY, Zhong DY, Tang JL, et al. A functional variant in miR-143 promoter contributes to prostate cancer risk[J]. Archives of Toxicology, 2014, 90(2):403-414.
[56]Zhang XM, Dong Y, Ti HJ, et al. Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and worse prognosis in endometrioid carcinomas[J]. Human Pathology, 2013, 44(11):2571-2580.
[57]Chen Y, Ma C, Zhang W, et al. Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer[J]. Diagnostic Pathology, 2014, 9(6):901-906.
[58]Almeida MI, Calin GA. The miR-143/miR-145 cluster and the tumor microenvironment:unexpected roles[J]. Genome Medicine, 2016, 8(1):1-3.
[59]Puerta-Gil P, García-Baquero R, Jia AY, et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer[J]. American Journal of Pathology, 2012, 180(5):1808-1815.
[60]Xu YF, Li YQ, Guo R, et al. Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling[J]. International Journal of Biochemistry & Cell Biology, 2015, 61:120-128.
[61]Zhang N, Su Y, Xu L. Targeting PKCε by miR-143 regulates cell apoptosis in lung cancer[J]. Febs Letters, 2013, 587(22):3661-3667.
[62]Wang Q, Cai J, Wang J, et al. MiR-143 inhibits EGFR-signalingdependent osteosarcoma invasion[J]. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2014, 35(12):12743-12748.
[63]Liu J, Qu CB, Xue YX, et al. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells[J]. Biochemical & Biophysical Research Communications, 2015, 468(1-2):105-112.
(責(zé)任編輯 狄艷紅)
Research Progress on miR-143’s Biological Function
GAN Mai-lin1YANG Lu2TAN Ya1YANG Qiong3PU Hong-zhou4ZHANG Shun-hua1ZHU Li1
(1. College of Animal Science and Technology,Sichuan Agricultural University,Chengdu 611130;2. Sichuan Food and Animal Husbandry Bureaus of Wangcang County,Guangyuan 628200;3. Chengdu Vocational College of Agriculture and Technology,Chengdu 6111305;4. Sichuan Agricultural Bureau of Nanjiang County,Bazhong 635600)
microRNAs are non-coding small RNAs with 21-25 nucleotides that ubiquitously are expressed in the eukaryote,and usually inhibit the expressions of its target genes at the post-transcriptional level. In recent years,miR-143 has been reported as canonical and multifunctional microRNA,which is widely expressed in various species. This paper reviews the biological functions of miR-143 such as cell proliferation,differentiation,apoptosis and tumorigenesis,aiming at providing a reference for relevant research.
miR-143;growth and development;disease
10.13560/j.cnki.biotech.bull.1985.2016-1158
2016-12-22
四川省科技支撐計(jì)劃項(xiàng)目(16ZC2838),四川省科技富民強(qiáng)縣專項(xiàng)行動(dòng)計(jì)劃項(xiàng)目(2015NZ0013),四川省教育廳科研項(xiàng)目(16ZB0038)
甘麥鄰,男,碩士研究生,研究方向:動(dòng)物遺傳育種與繁殖;E-mail:1660600546@qq.com
張順華,女,博士,碩士生導(dǎo)師,研究方向:豬的遺傳育種;E-mail:363445986@qq.com
朱礪,男,教授,博士生導(dǎo)師,研究方向:豬的遺傳育種;E-mail:zhuli7508@163.com