李萃萃, 張曼輝, 夏 涵, 戴宜武
(1.南方醫(yī)科大學(xué), 廣東 廣州 510515 2.陸軍總醫(yī)院附屬八一腦科醫(yī)院超聲科, 北京100010 3.北京中醫(yī)藥大學(xué)東方醫(yī)院麻醉科, 北京100078)
大麻二酚抑制小鼠脊髓損傷后炎癥反應(yīng)及促進(jìn)功能恢復(fù)的研究
李萃萃1, 張曼輝2, 夏 涵3, 戴宜武1
(1.南方醫(yī)科大學(xué), 廣東 廣州 510515 2.陸軍總醫(yī)院附屬八一腦科醫(yī)院超聲科, 北京100010 3.北京中醫(yī)藥大學(xué)東方醫(yī)院麻醉科, 北京100078)
目的:探討大麻二酚抑制小鼠急性脊髓損傷后炎癥反應(yīng)及其機(jī)制。方法:將C57/BL6小鼠隨機(jī)分為3組(假手術(shù)組、對(duì)照組和用藥組),每組8只,共24只。用藥組和對(duì)照組小鼠用鉗夾法夾斷小鼠脊髓,假手術(shù)組不夾斷脊髓,術(shù)后每日為小鼠擠壓膀胱,幫助排尿。術(shù)后1h、12h、24h、36h、48h、60h給藥,依據(jù)小鼠體重,對(duì)照組和假手術(shù)組腹腔注射安慰劑(0.25mL/10g,1%吐溫80+生理鹽水),用藥組予以腹腔注射30mg/kg大麻二酚(1.2mg/mL,溶劑為1%吐溫80+生理鹽水)。術(shù)后72h評(píng)價(jià)小鼠脊髓神經(jīng)功能,行BMS(Basso mouse scale,BMS)評(píng)分,并通過(guò)ELISA檢測(cè)組織中高遷移率族蛋白1(HMGB1)和腫瘤壞死因子-α(TNF-α)含量。結(jié)果:BMS(Basso mouse scale,BMS)評(píng)分,假手術(shù)組>用藥組>對(duì)照組(P<0.05);脊髓組織中HMGB1和TNF-α含量均為假手術(shù)組<用藥組<對(duì)照組(P<0.05)。結(jié)論:大麻二酚能通過(guò)抑制脊髓損傷小鼠模型HMGB1表達(dá)來(lái)抑制小鼠炎癥反應(yīng),從而對(duì)脊髓損傷小鼠脊髓神經(jīng)功能保護(hù)。
大麻二酚; 脊髓損傷; 炎 癥; 運(yùn)動(dòng)功能
脊髓損傷(spinal cord injury, SCI)是脊柱損傷臨床最嚴(yán)重的并發(fā)癥一種嚴(yán)重的神經(jīng)系統(tǒng)損傷,可致軀體運(yùn)動(dòng)、感覺以及自主神經(jīng)功能障礙,包括原發(fā)性和繼發(fā)性損傷。原發(fā)性損傷系外力直接或間接致脊髓受損,繼發(fā)性損傷系脊髓在原發(fā)性損傷后發(fā)生氧化應(yīng)激、炎癥反應(yīng)等一系列生理生化機(jī)制,致原發(fā)性損傷組織周圍組織發(fā)生進(jìn)一步損傷,使脊髓損傷進(jìn)一步加重并擴(kuò)大脊髓損傷范圍[1]。原發(fā)性脊髓損傷已發(fā)生且難以逆轉(zhuǎn),因此能有效抑制繼發(fā)性脊髓損傷,對(duì)脊髓損傷具有重要意義。高遷移率族蛋白1(high mobility group box-1 protein,HMGB1)在真核細(xì)胞核內(nèi)表達(dá),系一種非組蛋白DNA結(jié)合蛋白,同時(shí)也是一種危險(xiǎn)分子蛋白,參與炎癥反應(yīng)[2]。HMGB1在脊髓損傷中高度表達(dá), 能加重脊髓炎癥反應(yīng)[1,3]。
大麻二酚系天然植物大麻提取物,無(wú)精神效應(yīng),具有抗炎作用[4]。目前國(guó)內(nèi)大麻二酚對(duì)脊髓損傷的治療尚無(wú)報(bào)道。本研究通過(guò)脊髓損傷模型探討驗(yàn)證大麻二酚對(duì)脊髓損傷的抗炎作用及對(duì)功能恢復(fù)的幫助。
1.1 材料:小鼠(C57BL/6,北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司),10周,雄性,20~25g;大麻二酚(98%)購(gòu)于上海源葉生物有限公司;ELISA試劑盒(Minneapolis, MN, USA)。
1.2 方 法
1.2.1 脊髓損傷模型建立:用3.6%水合氯醛腹腔注射麻醉小鼠(0.01L/kg),備皮(T10棘突為中心)。酒精消毒,背部正中切口(約2cm),逐層切開,暴露棘突,將肌肉分離,用咬骨鉗將T9~11棘突和全椎板咬除。以T10為中心暴露硬脊膜(約9mm的圓形區(qū)),用顯微外科血管夾將其鉗夾3s(造模成功標(biāo)志:鉗夾脊髓損傷瞬間,小鼠尾部痙攣性擺動(dòng),雙下肢和軀體抽動(dòng)后雙下肢癱瘓),脊髓損傷后逐層縫合肌肉,并縫合皮膚。假手術(shù)組僅作椎板雙側(cè)切除,不鉗夾。術(shù)后每天擠壓膀胱(早中晚3次)幫助排尿。
1.2.2 用藥和給藥時(shí)間:依據(jù)小鼠體重,對(duì)照組和假手術(shù)組腹腔注射安慰劑(0.25mL/10g,1%吐溫80+生理鹽水),用藥組予以腹腔注射30mg/kg大麻二酚(1.2mg/mL,溶劑為1%吐溫80+生理鹽水)。藥物現(xiàn)配現(xiàn)用,給藥時(shí)間為模型建立后1h、12h、24h、36h、48h、60h。
1.2.3 神經(jīng)行為學(xué)評(píng)分:小鼠后肢運(yùn)動(dòng)功能BMS(Basso mouse scale,BMS)評(píng)分用于評(píng)價(jià)脊髓神經(jīng)功能。由不知道分組情況的研究人員進(jìn)行測(cè)試, 受試SCI小鼠測(cè)試前均需排空膀胱,0~2分(評(píng)價(jià)踝關(guān)節(jié)運(yùn)動(dòng)),3~4分(評(píng)價(jià)后肢對(duì)后半身支撐和向前步進(jìn)的情況),5~8分(評(píng)價(jià)步進(jìn)過(guò)程中后爪位置和前后肢體的協(xié)調(diào)性及軀干的穩(wěn)定性),9分為正常運(yùn)動(dòng)小鼠。
1.2.4 HMGB1和TNF-α組織含量測(cè)定:酶聯(lián)免疫吸附法(ELISA)。脊髓損傷72h后,麻醉小鼠,活取小鼠脊髓T10節(jié)段上下約1cm,放入冷凍管并迅速置于液氮中冷凍,待取完所有標(biāo)本時(shí)將標(biāo)本放入-80℃冰箱中冷藏,待使用時(shí)取出。按照ELISA試劑盒操作使用說(shuō)明,測(cè)定脊髓損傷組織中HMGB1和TNF-α的含量。
2.1 各組小鼠間BMS評(píng)分比較:全部24只小鼠均成功造模,通過(guò)BMS評(píng)分檢測(cè)小鼠損傷后各時(shí)間點(diǎn)下肢及軀體運(yùn)動(dòng)功能恢復(fù)情況,用藥后72h對(duì)各組小鼠進(jìn)行BMS評(píng)分,用藥組BMS評(píng)分明顯高于對(duì)照組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。兩兩比較可見,假手術(shù)組>用藥組>對(duì)照組,見表1。顯然,SCI小鼠經(jīng)大麻二酚治療后脊髓神經(jīng)功能有所恢復(fù),但不能恢復(fù)到正常水平。
表1 各組小鼠BMS評(píng)分結(jié)果
注:兩兩比較采用SNK法。假手術(shù)組vs對(duì)照組:q=51.983,P<0.05;用藥組vs對(duì)照組:q=3.907,P<0.05;假手術(shù)組vs用藥組:q=48.076,P<0.05
2.2 各組小鼠脊髓組織HMGB1和TNF-α的含量比較:用藥后72h對(duì)損傷脊髓周圍組織中HMGB1和TNF-α的含量進(jìn)行測(cè)定。各組HMGB1含量比較,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。兩兩比較結(jié)果為:對(duì)照組>用藥組>假手術(shù)組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05);各組TNF-α含量比較,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。兩兩比較結(jié)果為:對(duì)照組>用藥組>假手術(shù)組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05),見表2。
表2 各組間脊髓組織HMGB1和TNF-α的含量比較
注:兩兩比較采用SNK法。HMGB1含量:假手術(shù)組vs對(duì)照組:q=30.889,P<0.05;用藥組vs對(duì)照組:q=8.714,P<0.05;假手術(shù)組vs用藥組:q=22.175,P<0.05
TNF-α含量:假手術(shù)組vs對(duì)照組:q=24.221,P<0.05;用藥組vs對(duì)照組:q=5.308,P<0.05;假手術(shù)組vs用藥組:q=18.913,P<0.05
脊髓損傷是一種急性、破壞性極強(qiáng)的疾病,可導(dǎo)致軀體運(yùn)動(dòng)和感覺功能障礙,多數(shù)幸存者成為了截癱患者,生活質(zhì)量差,而且增加社會(huì)負(fù)擔(dān)。脊髓損傷包括原發(fā)性脊髓損傷和繼發(fā)性脊髓損傷,目前階段原發(fā)性損傷無(wú)有效治療措施[5]。繼發(fā)性脊髓損傷加重血-脊髓屏障破壞,導(dǎo)致一系列通透性改變,導(dǎo)致脊髓出血、炎癥反應(yīng)和水腫,使未損傷部位神經(jīng)組織損傷,進(jìn)一步破壞神經(jīng)功能[6,7]。炎癥反應(yīng)在繼發(fā)性損傷中占有重要組成部分,因此控制炎癥反應(yīng)對(duì)脊髓損傷的治療具有重大意義。
BMS評(píng)分是評(píng)價(jià)脊髓損傷后小鼠神經(jīng)運(yùn)動(dòng)功能恢復(fù)情況。研究表明,大麻二酚能抑制神經(jīng)元細(xì)胞凋亡,對(duì)神經(jīng)系統(tǒng)具有保護(hù)作用[8]。本實(shí)驗(yàn)中,用藥組BMS評(píng)分比對(duì)照組評(píng)分高,說(shuō)明大麻二酚對(duì)脊髓損傷小鼠神經(jīng)功能具有保護(hù)作用。其機(jī)制可能是大麻二酚能夠減輕繼發(fā)性脊髓損傷,減輕炎癥反應(yīng),從而保護(hù)神經(jīng)元。
HMGB1是一種危險(xiǎn)蛋白分子,主要存在于真核細(xì)胞核中,是一種非組蛋白DNA結(jié)合蛋白。在神經(jīng)系統(tǒng)中,HMGB1通過(guò)激活和聚集炎癥相關(guān)細(xì)胞,激活炎癥反應(yīng),包括小膠質(zhì)細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞和NK細(xì)胞等,并釋放出炎癥因子加重炎癥反應(yīng),包括TNF-α等[9~11]。當(dāng)細(xì)胞受損或者細(xì)胞壞死后,HMGB1會(huì)被表達(dá)并釋放到細(xì)胞外[12]。在本實(shí)驗(yàn)中,我們發(fā)現(xiàn)用藥組組織中HMGB1含量比對(duì)照組低。說(shuō)明大麻二酚能降低組織中HMGB1的表達(dá)。目前大麻二酚降低HMGB1表達(dá)和釋放的機(jī)制未明確,有待繼續(xù)研究。TNF-α是一種重要的炎癥因子,正常情況下可有助于機(jī)體清除有害物質(zhì),對(duì)機(jī)體具有保護(hù)作用,當(dāng)機(jī)體收到損傷或炎癥時(shí)大量釋放,可調(diào)控其他因子的產(chǎn)生,在炎癥反應(yīng)過(guò)程中起到放大炎癥反應(yīng)作用,對(duì)機(jī)體產(chǎn)生更大的損傷[13,14]。TNF-α在神經(jīng)系統(tǒng)炎癥反應(yīng)中可由小膠質(zhì)細(xì)胞分泌[15,16]。
在本實(shí)驗(yàn)中,用藥組組織中TNF-α含量比對(duì)照組低,說(shuō)明大麻二酚具有抑制TNF-α表達(dá)的作用,同時(shí)大麻二酚能抑制組織中HMGB1表達(dá)。有研究證實(shí),HMGB1在炎癥反應(yīng)中能聚集并激活小膠質(zhì)細(xì)胞,促進(jìn)并放大炎癥反應(yīng)[16]。因此大麻二酚抑制炎癥反應(yīng)的機(jī)制可能是抑制HMGB1表達(dá)和釋放,從而抑制小膠質(zhì)細(xì)胞聚集和激活,抑制炎癥因子的釋放,從而抑制炎癥反應(yīng)的進(jìn)行,最終對(duì)脊髓損傷產(chǎn)生保護(hù)作用。
本研究采用小鼠模型,與文獻(xiàn)中常用的大鼠模型相比,相似的藥品劑量和注射濃度并沒有造成動(dòng)物死亡和任何腹膜炎反應(yīng)。說(shuō)明大麻二酚在一定劑量范圍內(nèi)是安全的,但由于大麻二酚的治療劑量范圍較窄,神經(jīng)系統(tǒng)急性損傷后的高血腦屏障通過(guò)性及細(xì)胞防衛(wèi)機(jī)制受損等因素可能增加藥物毒性風(fēng)險(xiǎn)[17]。需給予足夠的關(guān)注。
[1] Festoff, B W.Designing drugs that encourage spinal cord injury healing[J].Expert Opinionon Drug Discovery,2014, 9(10):1151~1165.
[2] Frank MG, Weber M D, Watkins L R,et al. Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming[J].Brain Behavior and Immunity,2015, 48:1~7.
[3] 張瑩,楊三強(qiáng),劉均港,等.血漿置換對(duì)系統(tǒng)性紅斑狼瘡患者外周血HMGB-1、TNF-α水平的影響[J].山東醫(yī)藥,2013,53(18):82~83.
[4] Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation[J].Bioorganic & Medicinal Chemistry,2015, 23(7):1377~1385.
[5] Lusilla-Palacios P, Castellano-Tejedor C.Spinal cord injury and substance use: a systematic review[J].Adicciones,2015, 27(4):294~311.
[6] Wang J, Pearse D D.Therapeutic hypothermia in spinal cord injury: the status of its use and open questions[J].International Journal of Molecular Sciences,2015, 16(8):16848~16879.
[7] Sharma H S.Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection[J].Journal of Neural Transmission,2011, 118(1):155~176.
[8] Schiavon A P, Soares L M, Bonato J M,et al.Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice[J].Neurotoxicity Research,2014, 26(4), 307~316.
[9] Frank M G, Weber M D, Fonken L K,et al.The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome[J].Brain Behavior and Immunity,2016,215~224.
[10] Hayakawa K, Mishima K, Nozako M,et al. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism[J].Stroke,2008, 39(3):951~958.
[11] Gelderblom M, Sobey C G, Kleinschnitz C,et al.Danger signals in stroke[J].Ageing Research Reviews,2015:77~82.
[12] Vénéreau E, Ceriotti C, Bianchi M E.DAMPs from Cell Death to New Life[J].FrontiersInImmunology,2015, 18(6): 422.
[13] 王曉燕,張流忠,周莉,等.膿毒癥患者血清CRP、TNF-α水平變化及意義[J].山東醫(yī)藥,2012,58(34):34~35.
[14] Cong L, Chen W.Neuroprotective effect of ginsenoside rd on spinal cord injury rats[J].Basic & Clinical Pharmacology & Toxicology,2016, 119(2): 193~201.
[15] Song F, Zeng K, Liao L,et al.Schizandrin a inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-kB and Jak2-Stat3 signaling pathways[J].PLoS One,2016, 11(2).
[16] Han B, Lu Y, Zhao H,et al.Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia[J].Journal of Clinical and Experimental Pathology,2015, 8(9):11199~11205.
[17] Maier I C, Schwab M E.Sprouting,regeneration and circuit formation in the injured spinal cord: factors and activity[J].Philosophical Transactions of the Royal Society B,2006,361(1473): 1611~1634.
Cannabidiol Can Inhibit Inflammation in a Mouse Model of Spinal Cord Injury
LICuicui,etal
(SouthernMedicalUniversity,GuangdongGuangzhou510515,China)
Objective:To investigate the inhibition of inflammation by cannabidiol in a mouse model of spinal cord injury and study its mechanism. Methords: 24 male C57Bl/6 mice were randomized into 3 groups: sham-operation group, control group and medication group. We established an spinal cord injury model by clip method, the mice in sham-operate group and control group were administered with a mixture of 1% of tween 80 and sterile saline (0.25mL/10g) and medication group were treated with cannabidiol (30mg/kg ; was dissolved in a mixture of 1% of Tween 80 and sterile saline (1.2mg/mL)) by intraperitioneal injection at 1h、12h、24h、36h、48h、60h after operation.72h after operation , BMS test was used to evaluate the neurological score, the expression levels of HMGB1 and TNF-αin spinal cord tissue were assayed by ELISA. Rsults: The BMS test showed that medication group had a higher score than the control group(P<0.05). The expression levels of HMGB1 and TNF-α in medication group were significant reduced as comparison with control group P<0.05), but significant increased than the sham-operation group(P<0.05). Conclusion: Cannabidiol can inhibit inflammation in a mouse model of spinal cord injury via inhibiting the expression of HMGB1.
Cannabidiol; Spinal cord injury; Inflammation; Motor function
1006-6233(2017)05-0767-04
國(guó)家自然科學(xué)基金,(編號(hào):81271391)
戴宜武
A
10.3969/j.issn.1006-6233.2017.05.018