惠冰 謝軼瓊 郭牧
(1.長安大學(xué) 公路學(xué)院, 陜西 西安 710064; 2.中交第一公路勘察設(shè)計(jì)研究院有限公司, 陜西 西安 710075)
多點(diǎn)激光布設(shè)參數(shù)對(duì)車轍深度計(jì)算誤差的影響*
惠冰1謝軼瓊2郭牧1
(1.長安大學(xué) 公路學(xué)院, 陜西 西安 710064; 2.中交第一公路勘察設(shè)計(jì)研究院有限公司, 陜西 西安 710075)
為評(píng)價(jià)多點(diǎn)激光車轍深度的計(jì)算誤差,研發(fā)了室內(nèi)車轍形態(tài)模擬設(shè)備,利用三維激光獲取模擬車轍橫斷面點(diǎn)云數(shù)據(jù),通過Matlab編程,借助5階巴特沃茲低通濾波器對(duì)數(shù)據(jù)進(jìn)行平滑處理,分別模擬了均布9點(diǎn)、13點(diǎn)、21點(diǎn)和非均布13點(diǎn)激光獲取的車轍橫斷面曲線,采用包絡(luò)線法計(jì)算三維激光和多點(diǎn)激光車轍最大深度,以絕對(duì)誤差和相對(duì)誤差為評(píng)價(jià)指標(biāo),分析輕、重兩個(gè)等級(jí)的U、W型車轍深度計(jì)算誤差受激光點(diǎn)數(shù)量與布設(shè)方式影響的規(guī)律.模擬結(jié)果表明:隨著激光點(diǎn)數(shù)量增加,兩種形態(tài)車轍橫斷面的深度計(jì)算誤差逐漸減小,均布9點(diǎn)、13點(diǎn)、21點(diǎn)和非均布13點(diǎn)激光的最大相對(duì)誤差分別為22.9%、12.8%、8.3%和16.4%;隨車轍嚴(yán)重等級(jí)的增大,絕對(duì)誤差逐漸增大而相對(duì)誤差逐漸減??;非均布13點(diǎn)激光對(duì)U型、W型車轍的深度計(jì)算相對(duì)誤差比均布13點(diǎn)激光時(shí)的最多分別增大4.8%和2.2%;多點(diǎn)激光車轍深度計(jì)算的絕對(duì)誤差會(huì)造成車轍嚴(yán)重等級(jí)低估,可能導(dǎo)致路況評(píng)價(jià)與養(yǎng)護(hù)決策的誤判.
道路工程;車轍深度;三維激光;多點(diǎn)激光;誤差分析
車轍是瀝青路面的主要病害類型之一,不僅直接影響行車的舒適性和安全性,還嚴(yán)重影響路面質(zhì)量及使用壽命[1-3].準(zhǔn)確、可靠的車轍深度檢測結(jié)果是路況評(píng)價(jià)與養(yǎng)護(hù)決策的重要依據(jù)之一[4-6].傳統(tǒng)的人工直尺法因檢測效率低且危險(xiǎn)性高,已被非接觸、自動(dòng)化的多點(diǎn)激光車轍檢測設(shè)備取代[7-8].目前我國普遍采用非均布13點(diǎn)激光設(shè)備進(jìn)行國、省干線公路的車轍定期檢測,受激光點(diǎn)數(shù)量與布設(shè)方式影響,無法得到連續(xù)的車轍橫斷面形態(tài),使得難以準(zhǔn)確獲取真實(shí)車轍隆起、凹陷處的最高點(diǎn)或最低點(diǎn),常導(dǎo)致車轍深度計(jì)算結(jié)果的低估[9].
為了評(píng)價(jià)多點(diǎn)激光設(shè)備對(duì)車轍深度的計(jì)算誤差,Ksaibat[10]對(duì)比3點(diǎn)、5點(diǎn)車轍檢測技術(shù)與人工直尺表明車轍深度檢測結(jié)果存在顯著差異;Mallela等的[11]研究指出,13至30個(gè)傳感器的車轍檢測設(shè)備會(huì)對(duì)車轍深度造成2~4 mm的低估;Bennett[12]比較了30點(diǎn)激光ROMDAS路面檢測儀和1.5 m直尺法,表明車轍深度檢測結(jié)果存在3mm偏差;Simpson[13-14]的研究表明,5點(diǎn)激光檢測的車轍深度相關(guān)系數(shù)約為0.4,說明5點(diǎn)激光車轍檢測設(shè)備的可靠度不高,至少需要9點(diǎn)激光才能較為準(zhǔn)確地表征車轍橫斷面形態(tài)以滿足檢測精度要求;馬榮貴等[15]建立了車轍雙余弦數(shù)學(xué)模型,模擬5點(diǎn)至41點(diǎn)激光車轍深度,檢測結(jié)果發(fā)現(xiàn),9點(diǎn)和13點(diǎn)激光的最大車轍檢測誤差分別為29.3%和14%,當(dāng)采用21點(diǎn)激光時(shí)才能保證車轍深度的最大誤差不超過5%;Tsai等[16]的研究表明,3點(diǎn)和5點(diǎn)激光車轍檢測設(shè)備的平均誤差分別為63%和44%,當(dāng)激光點(diǎn)數(shù)量達(dá)到25個(gè)時(shí),車轍深度檢測誤差小于10%,并指出由于激光點(diǎn)數(shù)量有限,不能全面、準(zhǔn)確獲取車轍橫斷面形態(tài),這導(dǎo)致了車轍深度計(jì)算誤差的產(chǎn)生.
上述研究表明,多點(diǎn)激光車轍檢測設(shè)備的檢測誤差受激光點(diǎn)數(shù)量影響較大,但是因?yàn)闊o法獲取連續(xù)車轍橫斷面形態(tài),難以準(zhǔn)確量化多點(diǎn)激光檢測結(jié)果與車轍深度真實(shí)值的誤差;同時(shí)沒有考慮不同車轍形態(tài)與嚴(yán)重等級(jí)的影響,并且沒有針對(duì)我國目前廣泛采用的非均布13點(diǎn)激光檢測設(shè)備進(jìn)行研究.新興的三維激光技術(shù)因其獲取的高精度、高密度激光點(diǎn)云數(shù)據(jù),能近乎真實(shí)地建立連續(xù)車轍橫斷面形態(tài),為準(zhǔn)確量化與分析多點(diǎn)激光車轍深度計(jì)算誤差奠定了基礎(chǔ)[13].文中自主研發(fā)了室內(nèi)車轍形態(tài)模擬設(shè)備,利用三維激光獲取輕、重兩個(gè)嚴(yán)重等級(jí)的U、W型車轍橫斷面形態(tài),在此基礎(chǔ)上分別模擬了均布9點(diǎn)、13點(diǎn)、21點(diǎn)和非均布13點(diǎn)激光檢測設(shè)備的離散橫斷面形態(tài),以三維激光檢測車轍深度為真實(shí)值,分析不同激光點(diǎn)數(shù)量與布設(shè)方式對(duì)車轍深度檢測誤差的影響,研究結(jié)果可為掌握多點(diǎn)激光車轍檢測設(shè)備的誤差變化規(guī)律、提升車轍深度檢測準(zhǔn)確性提供參考.
1.1 室內(nèi)三維激光檢測系統(tǒng)與原理
文中采用的室內(nèi)三維激光檢測系統(tǒng)由兩部分組成:一是LMI Gocator 2080型三維激光發(fā)射器,視場范圍為390~1 260 mm,每條輪廓線包含640個(gè)數(shù)據(jù)點(diǎn);二是長×寬×高為2.5 m×1.5 m×2.0 m的鋁合金架,三維激光發(fā)射器可沿橫梁進(jìn)行往復(fù)運(yùn)動(dòng),且橫梁的高度可在1.0~2.0 m內(nèi)調(diào)節(jié),如圖1所示.為了保證室內(nèi)三維激光檢測精度,試驗(yàn)設(shè)備架設(shè)高度為1.5 m,檢測頻率為788.298 Hz,有效視場約為900 mm.
圖1 室內(nèi)三維激光檢測系統(tǒng)
三維激光技術(shù)主要基于光學(xué)三角法原理,由1個(gè)激光發(fā)射器和1個(gè)包含電耦合裝置(CCD)或互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)傳感器的數(shù)字照相機(jī)組成.當(dāng)采集數(shù)據(jù)時(shí),激光發(fā)射器向掃描對(duì)象表面發(fā)出線激光,照相機(jī)以圖像的方式獲取線激光.然后,應(yīng)用次像素峰值檢測算法來分析線激光圖像,找到線激光次像素的位置,將線激光的形變轉(zhuǎn)化為物體表面的形變,如圖2所示.
圖2 三維激光檢測原理示意圖[17]
1.2 室內(nèi)車轍形態(tài)模擬設(shè)備
為了模擬不同車轍形態(tài),文中自行研制了室內(nèi)車轍形態(tài)模擬設(shè)備(專利號(hào):ZL 2014 2 0187645.6),長×寬×高為1.5 m×1.5 m×0.4 m,剛性底座上方縱、橫向均布設(shè)電動(dòng)伸縮桿,橫向間距為5 cm,縱向間距為10 cm,電動(dòng)伸縮桿伸縮行程范圍為0~30 mm,底部通過數(shù)據(jù)線由計(jì)算機(jī)進(jìn)行控制,如圖3所示.
1—數(shù)據(jù)連接線;2—?jiǎng)傂缘鬃?—電動(dòng)伸縮桿;4—柔性板;
車轍形態(tài)模擬步驟為:通過水準(zhǔn)氣泡儀對(duì)模擬設(shè)備進(jìn)行校準(zhǔn),將左、右兩側(cè)伸縮桿提升至預(yù)訂高度后固定,調(diào)整中部伸縮桿提升高度范圍以使表面橡膠柔性薄板分別模擬U型和W型車轍形態(tài).試驗(yàn)過程中,視具體情況分別通過調(diào)節(jié)左、中、右部伸縮支架提升高度模擬不同車轍形態(tài)及其嚴(yán)重程度,伸縮桿高差即為模擬車轍深度.
2.1 連續(xù)車轍橫斷面形態(tài)建立
通過室內(nèi)車轍形態(tài)模擬設(shè)備分別模擬了U、W型兩種典型車轍形態(tài),利用三維激光獲取兩種形態(tài)的橫斷面激光點(diǎn)云數(shù)據(jù),采用5階巴特沃茲低通濾波器進(jìn)行平滑處理,消除材料表面紋理和高頻激光信號(hào)波動(dòng)的影響.5階巴特沃茲低通濾波器的轉(zhuǎn)移函數(shù)為[17]
(1)
式中,a=s/ωc,ωc為其截止頻率.數(shù)據(jù)處理過程中,采樣頻率設(shè)置為100 Hz,截止頻率為0.5 Hz.
圖4為三維激光所獲取的U、W型車轍橫斷面激光點(diǎn)云數(shù)據(jù),其中實(shí)線為平滑處理后的連續(xù)車轍橫斷面形態(tài).
圖4 平滑處理后的車轍橫斷面
JTG H20—2007《公路技術(shù)狀況評(píng)定標(biāo)準(zhǔn)》將輪跡處深度大于10 mm 的縱向帶狀凹槽定義為車轍,輕度車轍的深度在10~15 mm之間,重度車轍的深度15 mm以上.文中采用上述標(biāo)準(zhǔn)分輕、重兩個(gè)嚴(yán)重等級(jí)共獲取10組橫斷面形態(tài),用以分析多點(diǎn)激光對(duì)不同嚴(yán)重程度車轍計(jì)算誤差的影響.
2.2 車轍橫斷面形態(tài)模擬
以平滑后的連續(xù)車轍橫斷面形態(tài)為基礎(chǔ),模擬有效檢測范圍內(nèi)等間距或非等間距布設(shè)多個(gè)激光位移傳感器所獲取的車轍形態(tài).文中利用Matlab軟件編程,將橫斷面寬度和激光點(diǎn)分布間距按照1/4比例分別模擬均布9點(diǎn)、均布13點(diǎn)、均布21點(diǎn)和非均布13點(diǎn)激光檢測設(shè)備所獲取的間斷車轍橫斷面,如圖5所示;其中,非均布13點(diǎn)激光是目前我國應(yīng)用最為廣泛的車轍檢測技術(shù),采用非等間距布設(shè)有9個(gè)垂直激光傳感器,在輪跡帶處密集而非輪跡帶處稀疏,左、右兩端各布設(shè)2個(gè)斜射激光傳感器,如圖5(c)所示.
圖5 多點(diǎn)激光傳感器獲取的車轍橫斷面曲線
Fig.5 Curves of rut transverse section acquired by multiple sensors
2.3 車轍深度計(jì)算方法與檢測誤差評(píng)價(jià)指標(biāo)
按照J(rèn)TG E60—2008《公路路基路面現(xiàn)場測試規(guī)程》中“T 0973-3”規(guī)定的包絡(luò)線法計(jì)算得出兩側(cè)輪跡處橫斷面包絡(luò)線與道路表面間的最大垂直距離,即為車轍深度.文中采用絕對(duì)誤差ΔRD和相對(duì)誤差δRD評(píng)價(jià)車轍深度檢測誤差,分析激光點(diǎn)數(shù)量和布設(shè)間距變化對(duì)檢測誤差影響.絕對(duì)誤差ΔRD和相對(duì)誤差δRD分別為
ΔRD=|RDn-RD0|
(2)
(3)
式中,RD0為三維線激光點(diǎn)云數(shù)據(jù)平滑處理后的連續(xù)車轍橫斷面所計(jì)算的車轍深度,RDn為多點(diǎn)激光所獲取的間斷車轍橫斷面所計(jì)算的車轍深度.ΔRD為多點(diǎn)激光檢測設(shè)備所測車轍深度偏離真實(shí)值的大小,表示多點(diǎn)激光設(shè)備車轍深度計(jì)算結(jié)果的準(zhǔn)確性;δRD為絕對(duì)誤差與車轍深度真實(shí)值之比,表示多點(diǎn)激光設(shè)備車轍深度計(jì)算結(jié)果的可靠性.
3.1 U型車轍深度檢測模擬結(jié)果
針對(duì)輕、重兩個(gè)等級(jí)的U型車轍,分別計(jì)算均布9點(diǎn)、均布13點(diǎn)、非均布13點(diǎn)以及均布21點(diǎn)激光的車轍深度,并給出車轍深度計(jì)算誤差,結(jié)果如表1所示.
從表1可以得出如下結(jié)論:
1)隨著激光點(diǎn)數(shù)量的增加,車轍深度的絕對(duì)誤差和相對(duì)誤差均逐漸減?。痪?點(diǎn)、均布13點(diǎn)、非均布13點(diǎn)以及均布21點(diǎn)激光的最大相對(duì)誤差分別為22.9%、12.8%、16.4%和8.3%;隨著車轍嚴(yán)重程度的增大,車轍深度的絕對(duì)誤差逐漸增大,但相對(duì)誤差逐漸減小.可見,對(duì)于車轍嚴(yán)重路段,多點(diǎn)激光檢測誤差要小于車轍輕微路段.
2)對(duì)于U型車轍,非均布13點(diǎn)激光檢測的相對(duì)誤差比均布13點(diǎn)激光大0.028~0.048;隨著車轍嚴(yán)重程度逐漸減小,非均布與均布13點(diǎn)激光的最大相對(duì)誤差逐漸增大,表明目前我國廣泛采用的非均布13點(diǎn)激光在車轍輕微路段的檢測誤差明顯大于均布13點(diǎn)激光,這是由于非均布13點(diǎn)激光兩側(cè)的間距明顯大于均布13點(diǎn)激光,難以準(zhǔn)確獲取車轍兩側(cè)隆起的最高點(diǎn).
3)對(duì)于車轍斷面1和2,9點(diǎn)激光計(jì)算的絕對(duì)誤差為2.5 mm,檢測的車轍深度分別為8.4和9.7 mm,按照規(guī)范不屬于車轍;對(duì)于斷面4,9點(diǎn)激光計(jì)算的絕對(duì)誤差為2.9 mm,檢測的車轍深度為14.1 mm,將導(dǎo)致車轍嚴(yán)重等級(jí)被低估為“輕”;根據(jù)非均布13點(diǎn)激光檢測結(jié)果,也同樣存在車轍嚴(yán)重等級(jí)的低估.這表明,多點(diǎn)激光檢測產(chǎn)生的絕對(duì)誤差可能導(dǎo)致車轍嚴(yán)重等級(jí)低估,并且激光點(diǎn)數(shù)量越少越容易發(fā)生.從養(yǎng)護(hù)管理的角度,嚴(yán)重等級(jí)的低估可能造成路況評(píng)價(jià)與養(yǎng)護(hù)決策的失誤.
3.2 W型車轍深度檢測模擬結(jié)果
針對(duì)輕、重兩個(gè)等級(jí)的W型車轍,分別計(jì)算均布9點(diǎn)、均布13點(diǎn)、非均布13點(diǎn)以及均布21點(diǎn)激光的車轍深度,并分別給出了車轍深度計(jì)算誤差,結(jié)果如表2所示.
從表2可以得出如下結(jié)論:
1)隨著激光點(diǎn)數(shù)量的增加,車轍深度絕對(duì)誤差和相對(duì)誤差均明顯減小,均布9點(diǎn)、均布13點(diǎn)、非均布13點(diǎn)以及均布21點(diǎn)激光的最大相對(duì)誤差分別為17.9%、10.3%、12.0%和6.0%,表明增加激光點(diǎn)數(shù)量可以有效提高車轍檢測精度;隨著車轍嚴(yán)重等級(jí)的增加,絕對(duì)誤差逐漸增大但相對(duì)誤差逐漸減小,表明多點(diǎn)激光對(duì)于車轍嚴(yán)重路段的檢測精度高于車轍輕微路段.
表1 U型車轍深度檢測誤差計(jì)算結(jié)果
表2 W型車轍深度檢測誤差計(jì)算結(jié)果
2)對(duì)于W型車轍,非均布13點(diǎn)激光檢測的相對(duì)誤差比均布13點(diǎn)激光增大0.007~0.022;隨著車轍嚴(yán)重程度的增大,非均布與均布13點(diǎn)激光的誤差差值逐漸減小,表明對(duì)于W型車轍,激光點(diǎn)布設(shè)方式對(duì)深度檢測精度的影響較小.
3)對(duì)于斷面6,9點(diǎn)激光檢測的絕對(duì)誤差為2.1 mm,檢測的車轍深度為9.6 mm,按照規(guī)范不屬于車轍;對(duì)于斷面8,9點(diǎn)激光檢測的絕對(duì)誤差為2.2 mm,檢測的車轍深度為13.9 mm,將導(dǎo)致車轍嚴(yán)重等級(jí)被低估為“輕”;對(duì)于斷面8,均布、非均布13點(diǎn)激光檢測的車轍深度分別為14.9和14.6 mm,按照規(guī)范均屬于輕度車轍,可見也同樣存在車轍嚴(yán)重等級(jí)的低估.
3.3 原因分析
通過上述分析可知,激光點(diǎn)數(shù)量和布設(shè)方式均會(huì)對(duì)車轍深度檢測誤差產(chǎn)生影響;同時(shí),不同的車轍橫斷面形態(tài)也會(huì)導(dǎo)致深度計(jì)算誤差.
圖6(a)所示為均布13點(diǎn)激光對(duì)U型車轍斷面3的深度計(jì)算結(jié)果.根據(jù)表1可知,平滑處理后的連續(xù)車轍橫斷面所計(jì)算的車轍深度RD0為14.6 mm,
圖6 U型車轍深度檢測誤差計(jì)算示意圖
均布13點(diǎn)激光檢測的最大車轍深度RD1為13.3 mm,絕對(duì)誤差為1.3 mm,這是由于激光點(diǎn)間距較大,獲取的間斷車轍橫斷面未能準(zhǔn)確得出隆起、凹陷處的最高點(diǎn)或最低點(diǎn),導(dǎo)致車轍深度檢測誤差產(chǎn)生.圖6(b)所示為非均布13點(diǎn)激光對(duì)U型車轍斷面3的深度計(jì)算結(jié)果,根據(jù)表1可知,非均布13點(diǎn)激光檢測的最大車轍深度RD1為12.6 mm,絕對(duì)誤差為2.0 mm,這是由于非均布13點(diǎn)激光在車轍橫斷面兩側(cè)的激光點(diǎn)間距明顯大于均布13點(diǎn)激光,導(dǎo)致檢測誤差增大.
圖7(a)所示為均布13點(diǎn)激光對(duì)W型車轍斷面9的深度檢測誤差計(jì)算結(jié)果,車轍深度RD0為19.5 mm,均布13點(diǎn)激光檢測的最大車轍深度RD1為18.2 mm,絕對(duì)誤差為1.3 mm;非均布13點(diǎn)激光檢測的最大車轍深度RD1為17.9 mm,絕對(duì)誤差為1.6 mm;可見非均布、均布13點(diǎn)激光的車轍深度檢測誤差差異較小,這是由于W型車轍的中間有隆起,采用包絡(luò)線法計(jì)算車轍深度時(shí)需分別將兩側(cè)最高點(diǎn)與中部隆起最高點(diǎn)相連,再分別計(jì)算左右轍槽的深度.
圖7 W型車轍深度檢測誤差計(jì)算示意圖
上述結(jié)果表明,多點(diǎn)激光計(jì)算的車轍深度誤差受激光點(diǎn)數(shù)量、布設(shè)方式和隆起高度、寬度等橫斷面形態(tài)特征影響.在實(shí)際檢測過程中,至少要選用均布21點(diǎn)激光才能使得車轍的相對(duì)誤差不超過10%,保證檢測結(jié)果的準(zhǔn)確性和可靠性.
綜上所述,得出以下結(jié)論.
1)隨著激光點(diǎn)數(shù)量增加,車轍深度相對(duì)誤差逐漸減小,均布9點(diǎn)、均布13點(diǎn)、非均布13點(diǎn)和均布21點(diǎn)激光對(duì)于U型車轍的最大相對(duì)誤差分別為22.9%、12.8%、16.4%和8.3%,對(duì)于W型車轍的最大相對(duì)誤差分別為17.9%、10.3%、12.0%和6.0%;隨著車轍嚴(yán)重程度的增大,絕對(duì)誤差逐漸增大但對(duì)相對(duì)誤差影響逐漸減??;至少要選用均布21點(diǎn)激光才能保證車轍的相對(duì)誤差小于10%.
2)對(duì)于U型車轍,非均布13點(diǎn)激光檢測的相對(duì)誤差比均布13點(diǎn)激光增大0.028~0.048,對(duì)于W型車轍增大0.007~0.022;這是由于包絡(luò)線法對(duì)于U型和W型車轍的深度計(jì)算方法有差異,并且非均布13點(diǎn)激光布設(shè)間距為輪跡帶密集,兩側(cè)稀疏,難以準(zhǔn)確獲取車轍兩側(cè)隆起處最高點(diǎn),導(dǎo)致車轍計(jì)算深度誤差較大.
3)激光點(diǎn)數(shù)量不足與間距過大均會(huì)導(dǎo)致車轍深度計(jì)算結(jié)果的低估,現(xiàn)行非均布13點(diǎn)激光檢測設(shè)備對(duì)U型和W型車轍均存在嚴(yán)重等級(jí)誤判情況;從養(yǎng)護(hù)管理的角度,嚴(yán)重等級(jí)的誤判可能造成路況評(píng)價(jià)與養(yǎng)護(hù)決策的失誤.為減小誤差影響需要進(jìn)一步分析更多的車轍形態(tài)、嚴(yán)重程度,以對(duì)多點(diǎn)激光檢測數(shù)據(jù)進(jìn)行相應(yīng)修正.
4)高精度、高密度三維激光數(shù)據(jù)不僅可對(duì)現(xiàn)行車轍檢測技術(shù)進(jìn)行誤差分析,未來還可利用其獲取的連續(xù)車轍橫斷面形態(tài)準(zhǔn)確提取車轍面積、體積等多維度指標(biāo),為行車安全分析與養(yǎng)護(hù)決策奠定基礎(chǔ).
[1] XU T,HUANG X.Investigation into causes of in-place rutting in asphalt pavement [J].Construction and Building Materials,2012,28(1):525-530.
[2] 王端宜,黎侃,蔡旭.基于集料接觸特性的瀝青混合料抗車轍性能評(píng)價(jià) [J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(11):121-126,154. WANG Duan-yi,LI Kan,CAI Xu.Evaluation of rutting resistance of asphalt mixture based on aggregate contact characteristics [J].Journal of South China University of Technology(Natural Science Edition),2012,40(11):121-126,154.
[3] START M,KIM J,BERG W.Potential safety cost-effectiveness of treating rutted pavements [C]∥Transportation Research Record:Journal of the Transportation Research Board.Washington D C:Transportation Research Board of the National Academies,1998,1629:208-213.
[4] 黃曉明,張曉冰,鄧學(xué)鈞.瀝青路面車轍形成規(guī)律環(huán)道試驗(yàn)研究 [J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2000,30(5):96-101. HUANG Xiao-ming,ZHANG Xiao-bing,DENG Xue-jun.Asphalt pavement rutting prediction of high-grade highway [J].Journal of Southeast University(Natural Science Edition),2000,30(5):96-101.
[5] 曾峰,張肖寧,李智.應(yīng)用聚類分析法確定瀝青路面預(yù)防性養(yǎng)護(hù)方案 [J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,36(6):67-71. ZENG Feng,ZHANG Xiao-ning,LI Zhi.Determination of preventive maintenance program of asphalt pavement by means of clustering analysis [J].Journal of South China University of Technology(Natural Science Edition),2008,36(6):67-71.
[6] 支喜蘭,王威娜,張超,等.高速公路瀝青路面早期性能評(píng)價(jià)模型 [J].長安大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,2:1-4. ZHI Xi-lan,WANG Wei-na,ZHANG Chao,et al.Evaluation model of early performance of freeway asphalt pavement [J].Journal of Chang’an University(Natural Science Edition),2009,2:1-4.
[7] MCGHEE K H.Automated pavement distress collection techniques:a synthesis of highway practice [C]∥Proceedings of NCHRP Synthesis 334.Washington D C:Transportation Research Board,2004.
[8] 李莉,孫立軍,譚生光,等.用于路面車轍檢測的線結(jié)構(gòu)光圖像處理流程 [J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(5):710-715. LI Li,SUN Li-jun,TAN Sheng-guang,et al.Line-structured light image processing procedure for pavement rut detection [J].Journal of Tongji University(Natural Science Edition),2013,41(5):710-715.
[9] CHEN D H,BILVEU J,WALKER D,et al.Study of rut-depth measurements [J].Transportation Research Record:Journal of the Transportation Research Board,2001,1764:78-88.
[10] KSAIBAT K.Comparison of rut-depth measurements obtained with four different techniques [J].Road and Transport Research,1996,5(2):80-91.
[11] MALLELA R,WANG H.Harmonising automated rut depth measurements-stage 2.Deterioration [R].Auckland:Auckland HTC Infrastructure Management Ltd,2006.
[12] BENNETT C R.Validation of ROMDAS transverse profile logger.Internal Report F003/1 [R].Auckland:Auckland HTC Infrastructure Management Ltd,2001.
[13] SIMPSON A L.Measurement of rutting in asphalt pavements [R].Austin:Civil Engineering,University of Texas at Austin,2001.
[14] SIMPOSN A L.Characterization of transverse profile [M].FHWA:Department of Transportation,2001.
[15] 馬榮貴,沙愛民,宋宏勛.路面車轍多路傳感器檢測誤差分析 [J].長安大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,27(3):34-41. MA Rong-gui,SHA Ai-min,SONG Hong-xun.Error analysis in road rut measurement with multi-sensors [J].Journal of Chang’an University(Natural Science Edition),2007,27(3):34-41.
[16] TSAI Yi-chang,LI Feng,Kaul V,et al.Characterizing pavement rut measurement errors with point-based lasers using emerging 3D Continuous Profile-based Laser Technology [C]∥Proceedings of NDE/NDT for Highways and Bridges:Structural Materials Technology(SMT) Conference.New York:[s.n.],2010.
[17] LI Feng.A methodology for characterizing pavement rutting condition using emerging 3D line laser imaging technology [D].Atlanta:Georgia Institute of Technology,2012.
Effect of Multi-Point Laser-Based Configurations on Calculation Error of Rut Depth Measurement
HUIBing1XIEYi-qiong2GUOMu1
(1.School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China;2.CCCC First Highway Consultants Co., Ltd., Xi’an 710075, Shaanxi, China)
In order to evaluate the accuracy of the multi-point laser-based rut depth measurement, first, an indoor rut pattern simulator was developed, and the point cloud data in the transverse section were measured by means of 3D laser technology. Next, by virtue of Matlab programming and fifth-order Butterworth low-pass filter, the rut transverse-section curves acquired by the uniform 9-point, 13-point, 21-point and the non-uniform 13-point lasers were simulated, respectively. Then, the wire line method was employed to calculate the maximum rut depth of 3D laser and multi-point laser. Finally, the influences of the laser point number and the layout scheme on the calculation error of U-shape and W-shape ruts with low and high severity were analyzed by taking absolute error and relative error as the evaluation indexes. The results show that (1) the depth calculation error of the two above-mentioned rut transverse sections gradually decrease with the increase of the laser point number; (2) the maximum relative errors of the uniform 9-point, 13-point, 21-point and the non-uniform 13-point lasers are 22.9%, 12.8%, 8.3% and 16.4%, respectively; (3) with the augment of rut severity, the absolute error increases gradually while the relative error declines; (4) the relative errors of the U-shape and W-shape rut depth calculation by using the non-uniform 13-point lasers are respectively 4.8% and 2.2% larger than those of the uniform 13-point laser; and (5) the absolute error of rut depth calculation via multi-point laser may cause the underestimation of rut severity level, which may result in the loss of perfect time for maintenance.
road engineering; rut depth; three-dimension laser; multi-point laser; error analysis
2016-07-15
國家自然科學(xué)基金資助項(xiàng)目(51508034);陜西省交通運(yùn)輸科技項(xiàng)目(12-15K);內(nèi)蒙古自治區(qū)交通運(yùn)輸科技項(xiàng)目(NJ-2015-31);長安大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(310821153104&310821151006) Foundation item: Supported by the National Natural Science Foundation of China(51508034)
惠冰(1982-),男,博士,講師,主要從事路面養(yǎng)護(hù)與管理研究.E-mail:huibing323@qq.com.
100 0-565X(2017)04-0081-06
U 418.3
10.3969/j.issn.1000-565X.2017.04.012