吳丹+楊君君+楊帆+張波泳+杜婕+王躍飛+許瑞卿
摘 要 建立了一種快速分析人和大鼠糞便中堿性和中性揮發(fā)性代謝產(chǎn)物的氣相色譜質(zhì)譜聯(lián)用法(GCMS)。糞便樣品采用75%甲醇溶液提取,加入氨水,使溶液中氨水的終濃度為1%(pH=10)后,GCMS檢測(cè)分析。采用CPSil 5毛細(xì)管柱(25 m × 0.25 mm × 0.12 m); 載氣: 高純氦氣,流速1 mL/min; 程序升溫; 使用電子轟擊(EI)離子源,電子能量: 70 eV; 進(jìn)樣口溫度: 220℃,離子源溫度: 230℃,傳輸線溫度: 280℃; 電子倍增器電壓: 0.95 kV,全掃描模式,掃描范圍: m/z 10~600; 溶劑延遲: 3 min。通過檢索NIST標(biāo)準(zhǔn)譜庫,采用對(duì)照品比對(duì)及質(zhì)譜數(shù)據(jù)解析的方法,在人的糞便樣品中檢測(cè)到11種堿性和中性揮發(fā)性代謝產(chǎn)物,在大鼠的糞便樣品中檢測(cè)到7種堿性和中性揮發(fā)性代謝產(chǎn)物。本方法處理過程簡單,靈敏度高,適用于人和大鼠糞便中堿性和中性揮發(fā)性代謝產(chǎn)物的快速分析。
關(guān)鍵詞 氣相色譜質(zhì)譜聯(lián)用法; 糞便; 腸道菌群; 堿性代謝產(chǎn)物
本研究建立了一種快速分析糞便中堿性和中性揮發(fā)性代謝產(chǎn)物的氣相色譜質(zhì)譜聯(lián)用法(GCMS),糞便樣品采用75%甲醇溶液提取后,加入終濃度為1%氨水調(diào)至pH=10,即可進(jìn)行分析。 避免了繁瑣的衍生化等前處理步驟,提高了樣品處理效率,保證了樣品中成分檢測(cè)的可靠性; 同時(shí)采用氣相色譜質(zhì)譜聯(lián)用法檢測(cè)分析,保證了樣品檢測(cè)的靈敏度。樣品溶液采用液體直接進(jìn)樣分析,采用NIST標(biāo)準(zhǔn)質(zhì)譜庫檢索并結(jié)合對(duì)照品比對(duì)、化合物質(zhì)譜裂解規(guī)律解析糞便中堿性和中性揮發(fā)性代謝產(chǎn)物。在人的糞便中檢測(cè)到11種堿性和中性揮發(fā)性代謝產(chǎn)物,主要包括吲哚、對(duì)甲基苯酚、3甲基吲哚、長鏈脂肪醇、長鏈脂肪酸酯、二氫膽固醇等; 在大鼠糞便中檢測(cè)到7種堿性和中性揮發(fā)性代謝產(chǎn)物,主要是長鏈脂肪酸酯和二氫膽固醇等。本方法操作簡單,處理時(shí)間短,靈敏度高,適用于人和大鼠糞便中堿性和中性揮發(fā)性代謝產(chǎn)物的快速分析。
2 實(shí)驗(yàn)部分
2.1 儀器、材料與試劑
2.5 數(shù)據(jù)處理
樣品中未知揮發(fā)性成分的定性分析: 通過Mass Hunter工作站檢索NIST 14.0標(biāo)準(zhǔn)質(zhì)譜庫獲得化合物信息,選擇分?jǐn)?shù) > 60的揮發(fā)性成分,并結(jié)合對(duì)照品比對(duì)、化合物質(zhì)譜裂解規(guī)律解析糞便中堿性和中性揮發(fā)性代謝產(chǎn)物。
3 結(jié)果與討論
3.1 樣品處理方法優(yōu)化
糞便中成分復(fù)雜,具有不同極性的化合物,因此本研究中考察了以甲醇、75%甲醇、50%甲醇作為提取溶劑對(duì)揮發(fā)性代謝物的提取效率。采用75%甲醇作為提取溶劑時(shí),色譜峰多且峰面積最大,因此采用75%甲醇溶液作為提取溶劑。糞便中含有大量堿性化合物,因此,需堿化處理糞便提取液,使堿性成分由離子態(tài)轉(zhuǎn)化為游離態(tài),有利于氣化; 本研究選擇氨水作為堿化試劑,當(dāng)氨水終濃度為1%時(shí),糞便提取液pH=10,因此將樣品溶液中氨水終濃度調(diào)為1%。
3.2 人和大鼠糞便中堿性和中性揮發(fā)性代謝產(chǎn)物GCMS分析結(jié)果
按照2.4節(jié)建立的GCMS條件分析混合對(duì)照品溶液以及人和大鼠糞便供試品溶液,圖2為空白溶劑(圖2A)、混合對(duì)照品(圖2B)、人糞便H3(圖2C)和大鼠糞便R2供試品溶液(圖2D)的GCMS總離子流圖。采用NIST標(biāo)準(zhǔn)質(zhì)譜庫檢索并結(jié)合對(duì)照品比對(duì)、化合物質(zhì)譜裂解規(guī)律解析的方法,在人的糞便樣品中共檢測(cè)到11種堿性和中性揮發(fā)性代謝產(chǎn)物,在大鼠的糞便樣品中檢測(cè)到7種堿性和中性揮發(fā)性代謝產(chǎn)物,人和大鼠的糞便樣品中堿性和中性揮發(fā)性代謝產(chǎn)物GCMS譜庫檢索結(jié)果見表1。
3.3 人和大鼠的糞便樣品中的堿性和中性揮發(fā)性代謝產(chǎn)物比例分析
通過峰面積歸一化法分別計(jì)算人和大鼠的糞便樣品的測(cè)定結(jié)果中各個(gè)代謝產(chǎn)物的比例,結(jié)果如圖5所示。從圖5A可見,不同人的糞便樣品代謝物比例存在較大差異,尤其是對(duì)甲基苯酚(H1: 6.52%,H2: 11.31%,H3: 34.56%),吲哚(H1: 4.17%,H2: 15.47%,H3: 15.67%),3甲基吲哚(H1: 2.09%,H2: 0.86%,H3: 7.68%),二氫膽固醇(H1: 56.01%,H2: 36.36%,H3: 23.74%)。從圖5B可見,不同大鼠的糞便樣品代謝物比例差異則相對(duì)較小。人的糞便樣品中對(duì)甲基苯酚、吲哚、3甲基吲哚和二氫膽固醇所占比例超過63%,大鼠糞便中未檢測(cè)到對(duì)甲基苯酚,吲哚、3甲基吲哚和二氫膽固醇所占比例低于20%。人的糞便樣品中長鏈脂肪酸甲酯所占比例較?。℉1: 5.44%,H2: 26.92%,H3: 8.55%),大鼠糞便中長鏈脂肪酸甲酯所占比例較大(R1: 75.66%,R2: 81.95%,R3: 87.24%)。
4 結(jié) 論
采用氣相色譜質(zhì)譜聯(lián)用法分析人和大鼠糞便中堿性和中性代謝產(chǎn)物,與現(xiàn)有方法相比,本方法簡單、靈敏,可用于糞便樣品中堿性和中性揮發(fā)性代謝產(chǎn)物的分析。
References
1 LIN Zhang, ZU XianPeng, XIE HaiSheng, JIN HuiZi, YANG Niao, LIU XinRu, ZHANG WeiDong. Acta Pharmaceutica Sinica, 2016, 51(6): 843-852
林 璋, 祖先鵬, 謝海勝, 金慧子, 楊 鳥, 劉心如, 張衛(wèi)東. 藥學(xué)學(xué)報(bào), 2016, 51(6): 843-852
2 WANG Sheng, HUANG XiaoXing, YU PengFei, XU XiaoTao, WANG YiFei, LIU Li, MEI QiBing. Chinese Pharmacological Bulletin, 2014, 30(8): 1045-1049
王 生, 黃曉星, 余鵬飛, 徐小濤, 王一飛, 劉 莉, 梅其炳. 中國藥理學(xué)通報(bào), 2014, 30(8): 1045-1049
3 Cummings J H, Pomare E W, Branch W J, Naylor C P, Macfarlane G T. Gut, 1987, 28(10): 1221-1227
4 Rasmussen H S, Holtug K, Mortensen P B. Scand. J. Gastroenterol., 1988, 23(2): 178-182
5 JIANG ZhenZuo, WANG YueFei, CHEN RongRong, ZHU Yan, ZHANG Lei, LIU Shuang, LIU HaiLi. Chinese J. Anal. Chem., 2014, 42(3): 429-435
江振作, 王躍飛, 陳榮榮, 朱 彥, 張 蕾, 劉 雙, 劉海利. 分析化學(xué), 2014, 42(3): 429-435
6 JIANG ZhenZuo, ZHANG ChunZe, WANG YueFei, FU WenZheng. Chinese J. Anal. Chem., 2016, 44(8): 1178-1184
江振作, 張春澤, 王躍飛, 付文政. 分析化學(xué), 2016, 44(8): 1178-1184
7 Zhao X, Jiang Z, Yang F, Wang Y, Gao X, Wang Y, Chai X, Pan G, Zhu Y. PLoS One, 2016, 11(12): e0167032
8 Yao C K, Muir J G, Gibson P R. Aliment Pharmacol. Ther., 2016, 43(2): 181-196
9 Marchesi J R, Adams D H, Fava F. Gut, 2016, 65(2): 330-339
10 Hughes R, Kurth M J, McGlynn H, Rowland I. Nutr. Cancer., 2008, 60(2): 259-266
11 McCall I C, Betanzos A, Weber D A, Nava P, Miller G W, Parkos C A. Toxicol. Appl. Pharmacol., 2009, 241(1): 61-70
12 Toden S, Bird A R, Topping D L, Conlon M A. Cancer Biol. Ther., 2006, 5(3): 267-272
13 Watanabe H, Miyamoto Y, Enoki Y, Ishima Y, Kadowaki D, Kotani S, Nakajima M, Tanaka M, Matsushita K, Mori Y, Kakuta T, Fukagawa M, Otagiri M, Maruyama T. Pharmacol. Res. Perspect., 2015, 3(1): e00092
14 Wu I W, Hsu K H, Hsu H J, Lee C C, Sun C Y, Tsai C J, Wu M S. Nephrol. Dial. Transplant., 2012, 27(3): 1169-1175
15 Jing Y J, Ni J W, Ding F H, Fang Y H, Wang X Q, Wang H B, Chen X N, Chen N, Zhan W W, Lu L, Zhang R Y. Kidney Int., 2016, 89(2): 439-449
16 Dou L, JourdeChiche N, Faure V, Cerini C, Berland Y, DignatGeorge F, Brunet P. J. Thromb. Haemost., 2007, 5(6): 1302-1308
17 Wu C C, Hsieh M Y, Hung S C, Kuo K L, Tsai T H, Lai C L, Chen J W, Lin S J, Huang P H, Tarng D C. J. Am. Soc. Nephrol., 2016, 27(4): 1254-1264
18 Rasmussen M K, Balaguer P, Ekstrand B, DaujatChavanieu M, GerbalChaloin S. PLoS One, 2016, 11(5): e0154629
19 Phua L C, Koh P K, Cheah P Y, Ho H K, Chan E C. J. Chromatogr. B, 2013, 937(20): 103-113
20 De Loor H, Bammens B, Evenepoel P, De Preter V, Verbeke K. Clin. Chem., 2005, 51(8): 1535-1538
21 Gao X, Pujos G E, Sebedio J L. Anal. Chem., 2010, 82(15): 6447-6456
22 Xu W, Chen D, Wang N, Zhang T, Zhou R, Huan T, Lu Y, Su X, Xie Q, Li L, Li L. Anal. Chem., 2015, 87(2): 829-836
23 Verplanken K, Wauters J, Vercruysse V, Aluwe M, Vanhaecke L. Food Chem., 2016, 190(1): 944-951
24 Shi X, Wei X, Yin X, Wang Y, Zhang M, Zhao C, Zhao H, McClain C J, Feng W, Zhang X. J. Proteome Res., 2015, 14(2): 1174-1182
25 Yen S, McDonald J A, Schroeter K, Oliphant K, Sokolenko S, Blondeel E J, AllenVercoe E, Aucoin M G. J. Proteome Res., 2015, 14(3): 1472-1482
26 Saric J, Wang Y, Li J, Coen M, Utzinger J, Marchesi J R, Keiser J, Veselkov K, Lindon J C, Nicholson J K, Holmes E. J. Proteome Res., 2008, 7(1): 352-360
27 LIU YiDuan, YU KaiFan, ZHU WeiYun. World Chinese Journal of Digestology, 2016, 24(5): 706-713
劉藝端, 余凱凡, 朱偉云. 世界華人消化雜志, 2016, 24(5): 706-713
28 De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet J B, Massart S, Collini S, Pieraccini G, Lionetti P. Proc. Natl. Acad. Sci., 2010, 107(33): 14691-14696
Abstract A rapid gas chromatographytandem mass spectrometric (GCMS) method was developed for the analysis of alkaline and neutral volatile metabolites of human and rat feces. Feces were extracted by 75% (V/V) methanol solution. After addition of ammonia solution (pH 10, final concentration of 1%), the supernatant was subjected to GCMS analysis. In the experiment, a CPSil 5 (25 m × 0.25 mm × 0.12 μm) capillary column was utilized to separate the interesting compounds. Helium was employed as a carrier gas at a constant flow rate of 1 mL/min. Oven temperature was programmed as follows: the initial temperature was set at 50℃ and held for 1 min, then increased at 25℃/min to 150℃, sustained for 1 min; increased at 20℃/min to 200℃, held for 2 min; and finally increased at 10℃/min to 270℃, maintained for 5 min. The MS was operated in the electron impact ionization mode at -70 eV. The injector, ion source and transfer line temperatures were maintained at 220℃, 230℃ and 280℃, respectively. Mass data were acquired in full scan mode from m/z 10 to 600. The solvent delay time was set for 3 min. A total of 11 volatile components were identified in the feces from human and 7 in the feces from rats by retrieving the NIST library, comparing with the standards and analyzing the MS data. The method was simple and sensitive in the detection of alkaline and neutral volatile metabolites of feces from human and rats.
Keywords Gas chromatographytandem mass spectrometry; Feces; Gut microbiota; Alkaline metabolites
(Received 13 January 2017; accepted 10 April 2017)
This work was supported by the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (No. 2015ZX09J15102004004) and the Tianjin Support Plans for the Top of the Notch Youth Talents.