2.3 基于傾角影響線差值曲率的損傷識別指標
根據(jù)曲率公式(9),對于實際梁橋結構,其變形非常微小,觀測點的傾角影響線差值的一階導數(shù)的平方幾乎接近于0,可以忽略不計,因此傾角影響線差值的曲率可以用差值公式的二階導數(shù)Δθ″ab(x)表示。

(9)
根據(jù)式(6)—式(8),當傾角觀測點S位于損傷區(qū)域右側時,其差值曲率如下:
當移動荷載位于簡支梁橋結構無損傷區(qū)域時:
Δθ″ab(x)=0。
(10)
當移動荷載位于簡支梁橋結構損傷區(qū)域時:
(11)
可以看出,傾角影響線差值曲率公式與損傷位置和損傷程度有關,而與觀測點的選取無關,說明可以利用該指標對簡支梁橋結構進行損傷位置識別分析。同時,利用傾角影響線差值曲率識別出損傷位置后,根據(jù)公式可以推算出剛度折減系數(shù)的數(shù)值,因此可以識別出損傷程度。
3 存在局部損傷的簡支梁橋結構損傷識別分析
為了驗證利用傾角影響線建立的損傷識別指標的正確性,建立40 m跨混凝土結構簡支梁模型,節(jié)點間距為1 m,共41個節(jié)點,40個單元。橋梁采用C40混凝土,彈性模量E=3.25×107kN/m2,截面如圖3所示,慣性矩I=0.453 4 m4,影響線加載采用荷載FP=1×105N。

圖3 橫截面示意圖 Fig.3 Cross section
3.1 簡支梁橋出現(xiàn)單處損傷的識別
為觀察簡支梁橋結構未損傷時的實測傾角影響線,分別建立梁端支座(測點1)、簡支梁1/4跨(測點2)及跨中位置(測點3)3個觀測點測量無損傷簡支梁在移動荷載下的實測傾角影響線,如圖4所示。可以看出,測點選擇越靠近簡支梁支座處,傾角影響線的數(shù)值越大,識別度也越高,說明測點越靠近支座位置,利用傾角傳感器進行傾角測量所得的測量結果準確性越高。結合現(xiàn)有傾角傳感器的測量精度,進行實測時應該盡量選擇靠近支座位置安放傾角傳感器。同時從圖4還發(fā)現(xiàn),當測點選取靠近跨中位置時,簡支梁傾角影響線的數(shù)值出現(xiàn)變號的情況。

圖4 簡支梁無損傷時的傾角影響線Fig.4 Angular influence line of simple-supported beam without damage
根據(jù)上述分析,在簡支梁橋支座處放置傾角傳感器,測量簡支梁出現(xiàn)局部損傷時梁端的傾角影響線。利用傾角影響線差值及差值曲率進行損傷識別分析。簡支梁橋損傷模擬采用區(qū)段剛度降低的方法,設定損傷區(qū)域(0.3~0.4)l,在損傷區(qū)域分別設定20%,10%,5%等3種損傷程度。利用傾角影響線進行損傷識別的結果如圖5所示。

圖5 簡支梁橋的損傷識別曲線Fig.5 Damage identification curve of simple-supported beam
圖5 a)表示利用傾角影響線差值進行損傷識別。可以看出,傾角影響線差值在損傷區(qū)段出現(xiàn)峰值,且峰值大小與損傷程度有很大關系,損傷程度越大,識別敏感性越高,說明利用該指標可以對簡支梁橋進行損傷位置的識別。
圖5 b)表示簡支梁橋出現(xiàn)局部損傷時的傾角影響線差值曲率,利用式(12)求得。可以看出,在無損傷區(qū)域,簡支梁橋結構的傾角影響線差值曲率均為0,而在損傷區(qū)域差值曲率值均不為0,因此可以利用傾角影響線差值曲率對簡支梁橋進行損傷定位。隨著損傷程度的降低,傾角影響線差值曲率值逐漸變小,根據(jù)損傷區(qū)域傾角影響線差值曲率曲線的峰值,利用式(11)可以反推出剛度折減系數(shù)k的大小,據(jù)此可以判斷出損傷程度的大小。

(12)
3.2 簡支梁橋多處位置損傷時的識別
通過上述分析,利用傾角影響線建立的損傷識別指標對單個位置損傷的識別效果較好,可以明顯地判斷出損傷位置?,F(xiàn)研究簡支梁橋出現(xiàn)多處損傷的情況。簡支梁橋分析模型仍采用上述結構分析模型,分別在簡支梁橋(0.2~0.3)l,(0.45~0.55)l,(0.6~0.7)l處設定損傷位置,損傷程度均為20%,傾角觀測點仍選擇簡支梁橋支座處。分析結果如圖6 a)所示??梢钥闯?,在無損傷區(qū)域,簡支梁橋結構的傾角影響線差值曲率均為0,而在損傷區(qū)域差值曲率值均不為0,說明利用傾角影響線差值曲率損傷識別指標可以對多處損傷程度相同的情況進行損傷位置判定。由于3處損傷的損傷程度均為20%,所以理論上3處的影響線差值曲率應該近似相等,但是從圖6 a)可以看出,其傾角位移影響線差值曲率數(shù)值并不相等,說明損傷之間是有影響的,所以對于多損傷的情況,傾角影響線差值曲率損傷識別指標可以進行損傷定位,對于損傷程度的判定會有一定誤差。

圖6 簡支梁橋多處損傷時傾角影響線差值曲率Fig.6 Difference curvature of angular influence line of simply supported beam with multiple damage
圖6 b)表示3處損傷程度不相同時的傾角影響線差值曲率。損傷位置仍在簡支梁橋(0.2~0.3)l,(0.45~0.55)l,(0.6~0.7)l等3處,其損傷程度分別設定為20%,10%,5%。由圖可知,在損傷區(qū)域的傾角影響線差值曲率均不為0,說明利用傾角影響線差值曲率損傷識別指標可以對簡支梁橋多處出現(xiàn)不同程度的損傷情況進行損傷定位,能夠明顯地判斷出損傷區(qū)域,損傷識別效果較好。
3.3 靈敏度分析
上述分析所得數(shù)據(jù)是在理想情況下通過數(shù)值分析得到的,傾角取值為小數(shù)點后6位。現(xiàn)有高精度傾角傳感器的精度一般為0.001°,分辨率為0.000 5,探究將傾角數(shù)值取小數(shù)點后4位有效數(shù)字時對損傷識別的影響。以支座處的傾角影響線為例,損傷位置(0.3~0.4)l,提取損傷程度分別為未損傷、5%損傷、10%損傷、20%損傷時部分荷載移動時的支座傾角影響線數(shù)值,結果如表1所示。

表1 不同荷載位置支座傾角影響線數(shù)值
可以看出,當傾角取小數(shù)點后4位有效數(shù)字時,不同的損傷情況測出的數(shù)值有明顯變化,并且同一損傷狀況下不同荷載位置的傾角影響線數(shù)值也有明顯的變化規(guī)律,說明在此精度下可以利用傾角影響線進行損傷識別檢測。相比常規(guī)傾角傳感器,其具有更高的靈敏度,測試結果更加精確。
4 結 論
1)利用損傷前后的傾角影響線差值可以實現(xiàn)對簡支梁橋的損傷識別,差值曲線在損傷區(qū)域出現(xiàn)峰值,具有良好的損傷識別效果。
2)簡支梁橋損傷前后的傾角影響線差值曲率在無損傷區(qū)域均為0,在損傷區(qū)域均不為0,據(jù)此進行簡支梁橋結構的損傷識別,準確度高,且對單處損傷和多處損傷均可進行損傷識別。不僅可以識別損傷位置,同時利用傾角影響線差值曲率公式可以實現(xiàn)對損傷程度的判定。
3)根據(jù)簡支梁橋的結構特點及現(xiàn)有高精度傾角傳感器的精度要求,進行傾角實測時的測點選擇應盡量靠近支座附近,可以增加準確度。
4)用傾角影響線方法對簡支梁橋結構進行損傷識別僅需要一個傾角傳感器即可完成操作,方法簡便,經(jīng)濟實用,便于工程推廣。
/References:
[1] 劉效堯,徐岳.橋梁[M]. 2版.北京:人民交通出版社,2011.
[2] 向天宇,趙人達,劉海波. 基于靜力測試數(shù)據(jù)的預應力混凝土連續(xù)梁結構損傷識別[J]. 土木工程學報,2003,36(11):79-82. XIANG Tianyu,ZHAO Renda,LIU Haibo. Identification methods for different structural damage based onfrequency response [J].China Civil Engineering Journal, 2003, 36(11):79-82.
[3] ZHANG Z, AKTANA E. Different levels of modeling for the purpose of bridge evaluation [J]. Applied Acoustics, 1997, 50(3): 189-204.
[4] OVANESOVAA V, SUAREZL E. Applications of wavelet transform: Applications to damage detection in framestructures[J]. Engineering Structures, 2004, 26(1): 39-49.
[5] 荊龍江,項貽強.基于柔度矩陣法的大跨斜拉橋主梁的損傷識別[J].浙江大學學報:工學版,2008,42(1):164-169. JING Longjiang, XIANG Yiqiang.Damage identification of main girders for long span cable-stayed bridge based on flexibility matrix[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1):164-169.
[6] CHOI M Y, KWON I B. Damage detection system of a real steeltruss bridge by neural networks[J]. Earthquake Engineering,2000, 3988:295-306.
[7] BARTHORPE R J, WORDEN K. Classification of multisite damage using support vector machines[J].Journal of Physics:Conference Series 305, 2011: 012059.
[8] 劉洪公,王學軍,李冰瑩,等.基于卷積神經(jīng)網(wǎng)絡的橋梁裂縫檢測與識別[J].河北科技大學學報,2016,37(5):485-490. LIU Honggong,WANG Xuejun,LI Bingying,et al. Detection and recognition of bridge crack based on convolutional neural network[J].Journal of Hebei University of Science and Technology,2016,37(5):485-490.
[9] 張延慶. 結構力學(上冊)[M]. 北京:科學出版社,2011.
[10]杜永峰,劉云帥,王曉琴. 基于撓度差值影響線曲率的簡支梁橋損傷識別[J]. 橋梁建設,2009,38(4):80-83. DU Yongfeng, LIU Yunshuai, WANG Xiaoqin. Damage identification of simply-supported beam bridges based on influence line curvature of deflection differential values[J].Bridge Construction,2009,38(4):80-83.
[11]李起航,張延慶,孫珂. 利用位移影響線對曲線橋進行損傷識別的影響因素研究[J]. 科學技術與工程,2015,15(8):115-120. LI Qihang, ZHANG Yanqing, SUN Ke. The analysis of influencing factors to the damage identification of curved bridge using the influence line of displacement[J]. Science Techno-logy and Engineering, 2015,15(8):115-120.
[12]SUN Ke,ZHANG Yanqing. Analysis of displacement influence line characteristics of simply supported beam with local damage [C]//4th International Conference on Structures and Building Materials. Guangzhou:[s.n.], 2014:364-368.
[13]孫珂,張延慶. 基于位移影響線曲率的小半徑彎橋損傷識別[J]. 浙江大學學報:工學版,2016,50(4):727-734. SUN Ke,ZHANG Yanqing. Damage identification of small-radius curved bridge based on curvation of displacement influence line [J].Journal of Zhejiang University:Engineering Science,2016,50(4):727- 734.
[14]HUANG J,SHENTON H W. Experimentally determined continuous displacement influence lines for bridges[C]// Structures Congress 2008: Crossing Borders. Vancouver:ASCE,2008:1-10.
[15]侯興民,楊學山,黃橋. 利用傾角儀測量橋梁的撓度[J].橋梁建設,2004(2):69-72. HOU Xingmin, YANG Xueshan, HUANG Qiao. Using inclinometers to measure bridge deflections[J].Bridge Construction,2004(2):69-72.
[16]劉愛華,李鄧化,董必政. 高精度雙軸傾角檢測裝置的設計與實現(xiàn)[J].北京信息科技大學學報(自然科學版),2013,28(5):51-55. LIU Aihua, LI Denghua, DONG Bizheng. Design and implementation of high accuracy dual axis inclination detection device[J].Journal of Beijing Information Science and Technology University,2013,28(5):51-55.
Damage identification of simply-supported beam bridges based on angular influence line
ZHANG Yanqing, WU Guifei, DENG Hongliang
(School of Architecture and Civil Engineering,Beijing University of Technology,Beijing 100124,China)
In order to promote the application of the influence line theory in structural damage identification, the damage identification indexes based on difference and difference curvature of angular influence line before and after the damage of the simply-supported beam bridges are proposed. The concept of angular influence line of simply-supported beam bridges is defined, the formula of angular influence line before and after the damage of the simply-supported beam bridges is derived, the formula of new damage identification indexes is deduced, and the feasibility of using the new damage identification indexes for damage identification is theoretically proved. To verify the correctness of the new damage identification indexes, the finite element model of simply-supported beam bridge is established. The result shows that the difference of angular influence line before and after the damage of the simply-supported beam bridges has a peak value in damage area; the difference curvature of angular influence line before and after the damage of the simply-supported beam bridges is 0 in the non-damage area, and not 0 in the damage area. The conclusion is that the difference of angular influence line before and after the damage of the simply-supported beam bridges can be used to determine the location of damage with high accuracy. By using the difference curvature of angular influence line, it not only has the good recognition effect to the single damage and multiple damage, but also can realize the recognition of the damage degree of the simply-supported beam bridges.
bridge engineering; simply-supported beam bridges; angular influence line; damage identification; difference; curvature
1008-1534(2017)03-0177-06
2017-02-25;
2017-04-28;責任編輯:馮 民
張延慶(1958-),男,山東茌平人,教授,博士,博導,主要從事工程結構數(shù)值分析、結構優(yōu)化、位移影響線等方面的研究。
E-mail:zhyq@bjut.edu.cn
U441
A
10.7535/hbgykj.2017yx03005
張延慶,吳貴飛,鄧洪亮.基于傾角影響線的簡支梁橋損傷識別[J].河北工業(yè)科技,2017,34(3):177-182. ZHANG Yanqing,WU Guifei,DENG Hongliang.Damage identification of simply-supported beam bridges based on angular influence line[J].Hebei Journal of Industrial Science and Technology,2017,34(3):177-182.