曾觀娣,何姣姣,孫雪松
(暨南大學(xué) 生命與健康工程研究院,廣東 廣州 510632)
化膿鏈球菌磷酸化蛋白組的分析
曾觀娣,何姣姣,孫雪松*
(暨南大學(xué) 生命與健康工程研究院,廣東 廣州 510632)
化膿鏈球菌是一種革蘭氏陽(yáng)性致病菌,嚴(yán)重威脅人類及家禽健康。運(yùn)用溶液酶解的方法將化膿鏈球菌中的全蛋白消化成肽段,利用TiO2富集化膿鏈球菌中的磷酸化肽段和 Finnigan Surveyor HPLC系統(tǒng)串聯(lián)LTQ-Orbitrap質(zhì)譜對(duì)富集的磷酸化肽段進(jìn)行分析。鑒定到167個(gè)磷酸化肽段,對(duì)應(yīng)57個(gè)磷酸化蛋白。生物信息學(xué)分析顯示這些蛋白主要涉及到細(xì)胞生物合成、細(xì)胞有機(jī)物及其衍生物代謝、信號(hào)傳遞、基因轉(zhuǎn)錄、生物應(yīng)激等生理過(guò)程。通過(guò)STRING軟件對(duì)這57個(gè)磷酸化蛋白進(jìn)行相互作用網(wǎng)絡(luò)分析,發(fā)現(xiàn)7個(gè)磷酸化蛋白相互作用網(wǎng)絡(luò)?;撴溓蚓牧姿峄鞍捉M為深入解析化膿鏈球菌的毒力、耐藥的發(fā)生發(fā)展機(jī)制提供理論基礎(chǔ),為開(kāi)發(fā)新的抗菌藥物提供新視角。
磷酸化蛋白組;化膿鏈球菌;LTQ-Orbitrap;STRING
化膿鏈球菌(Streptococcuspyogenes)是致病性革蘭氏陽(yáng)性A族鏈球菌,廣泛存在于自然界、人和動(dòng)物糞便、健康人的鼻咽部,引起各種化膿性炎癥、猩紅熱、敗血癥等疾病[1]。我國(guó)養(yǎng)殖業(yè)發(fā)達(dá),豬、牛、羊、馬和雞感染鏈球菌,可呈現(xiàn)地方性爆發(fā),具有高發(fā)病率和高致死率的特點(diǎn),給養(yǎng)殖戶造成巨大的經(jīng)濟(jì)損失。目前,還沒(méi)有針對(duì)人的鏈球菌疫苗,針對(duì)豬的疫苗也只是僅有半年的有效期。
目前,針對(duì)化膿鏈球菌的研究集中于超級(jí)抗原(SAgs)的發(fā)現(xiàn)、生物功能與病癥的相關(guān)性[2]、多價(jià)疫苗的開(kāi)發(fā)[3]、臨床樣本中化膿鏈球菌的鑒定與識(shí)別[4]、化膿鏈球菌產(chǎn)生耐藥及感染宿主的分子機(jī)制[5]。蛋白磷酸化是翻譯后修飾至關(guān)重要的一步,幾乎可以可逆地調(diào)節(jié)細(xì)菌所有的生物過(guò)程。但是,目前關(guān)于化膿鏈球菌磷酸化蛋白組卻鮮有報(bào)道,已有的研究多是針對(duì)單一的磷酸化蛋白功能研究[6-8]。本文系統(tǒng)研究了化膿鏈球菌的磷酸化蛋白質(zhì)組。該研究將會(huì)更深入地了解化膿鏈球菌的毒力來(lái)源、耐藥性的發(fā)生發(fā)展以及為疫苗的研究奠定基礎(chǔ)。
1.1 材料
試劑:氟化鈉、2-甘油磷酸、釩酸鈉、焦磷酸鈉、氯化鈉、氯化鉀、磷酸二氫鈉、磷酸二氫鉀、尿素、硫尿、碳酸氫銨、二硫蘇糖醇(DTT)、CHAPS、碘乙酰胺(IAA)、蛋白酶抑制劑(PMSF)、硫代硫酸鈉、鐵氰化鉀、乙腈均購(gòu)自Sigma公司,胰蛋白酶購(gòu)自Promega公司,核酶購(gòu)自GE公司。所有試劑均用超純水配置。
材料:Michrom Bioresources公司的C18柱,Calbiochem的TiO2Enrichment kit,GE Healthcare 的PD-10脫鹽柱,Michrom Bioresources公司的C18柱。
儀器:德國(guó)Thermo生產(chǎn)的linear ion trap (LTQ)-Orbitrap質(zhì)譜儀、紫外分光光度計(jì)和真空冷凍離心機(jī);寧波新芝生物儀器公司的超聲波細(xì)胞破碎儀;江蘇蘇凈安泰公司的超凈工作臺(tái);美國(guó)GE公司的核酸蛋白測(cè)定儀;德國(guó)Eppendorf公司的小型冷凍離心機(jī);美國(guó)Mollipore公司的MILLIPORE純水系統(tǒng)。
1.2 菌株與培養(yǎng)
本實(shí)驗(yàn)采用StreptococcuspyogenesMGAS5005(S.pyogensMGAS5005)菌株(保存于本實(shí)驗(yàn)室),培養(yǎng)基是含0.5%酵母浸出液化的Tod-Hewit培養(yǎng)基(THY),在37 ℃、5%二氧化碳培養(yǎng)箱中培養(yǎng)細(xì)菌,當(dāng)細(xì)菌長(zhǎng)到半對(duì)數(shù)期(OD600 nm≈0.7),將樣品低溫離心(4 ℃,5000 r/min)10 min,收集細(xì)菌。
1.3 蛋白質(zhì)樣品的制備
繼1.2操作離心后,去上清,加入預(yù)冷的1×PBS (10 mmol/L, pH 7.4),反復(fù)清洗細(xì)菌3次。向收集到的細(xì)菌中加入15 mmol/L Tris-HCl (pH 8.0), 7 mol/L尿素,2 mol/L硫脲,1% DTT,4% CHAPS 和5 mmol/L蛋白磷酸酶抑制劑 (氟化鈉、2-甘油磷酸、釩酸鈉、焦磷酸鈉),混勻;反復(fù)凍融3次,再在冰上超聲6次,30 s/次;裂解物在4 ℃,12000 r/min離心10 min,將上清轉(zhuǎn)移到新的離心管中。用BCA法測(cè)定蛋白濃度。每10 mg總蛋白提取物加入10 mmol/L DTT, 37 ℃還原蛋白;之后加入20 mmol/L碘乙酰胺,在室溫下避光處理45 min;將該混合物加入到PD-10 (GE Healthcare)脫鹽柱上脫鹽,將其蛋白緩沖液更換成25 mmol/L碳酸氫銨;加入胰蛋白酶(1∶100w/w), 37 ℃過(guò)夜酶解。
1.4 金屬親和層析富集磷酸化蛋白
按照TiO2Enrichment kit說(shuō)明書(shū),富集胰蛋白酶處理后的肽段中的磷酸化肽段,即在胰蛋白酶消化的肽段中加入200 mL TiO2Phosphobind緩沖液和50 g/L DHB,再加入50 mL TiO2樹(shù)脂,混勻;孵育30 min,去上清,用清洗液清洗樹(shù)脂3次;用Elution Buffer洗脫磷酸化肽段,共洗脫2次;洗脫液在真空冷凍離心機(jī)冷凍干燥,濃縮。
1.5 LTQ-Orbitrap質(zhì)譜分析磷酸化肽段
小學(xué)生在進(jìn)行閱讀時(shí),不按章法和技巧拿著書(shū)本就開(kāi)始讀,閱讀效果不明顯,這和他們年紀(jì)小,技能儲(chǔ)備貧乏不無(wú)關(guān)系。因此在閱讀教學(xué)中,老師要注重傳授高效的閱讀方法和技巧,讓學(xué)生合理展開(kāi)閱讀,讓閱讀更加高效。老師的技巧使學(xué)生有章法的進(jìn)行閱讀,閱讀效果達(dá)到預(yù)期,學(xué)生也能在閱讀行為中獲得成就感,從而產(chǎn)生閱讀的興趣。
將富集的磷酸化肽段溶解于5%乙腈和0.1%甲酸混合液中,并用Finnigan Surveyor HPLC系統(tǒng)串聯(lián)linear ion trap (LTQ)-Orbitrap質(zhì)譜儀處理樣品[9-10]。經(jīng)過(guò)孔徑100 mm,長(zhǎng)10 cm,粒徑5 mm的C18柱分離肽段。洗脫梯度條件:在LTQ-Orbitrap的實(shí)時(shí)監(jiān)控下,先用5.0%~36.5%乙腈和0.1%甲酸沖洗90 min[9,11]。質(zhì)譜參數(shù)設(shè)置如下:spray voltage 為1.80 kV,sheath和auxiliary gas flow為0,ion transfer tube temperature 為200 ℃;MS2和MS3的ion selection threshold計(jì)數(shù)分別為1000和500;在MS2中,activation Q 設(shè)為0.25,activation time設(shè)為30 ms,isolation window 的m/z設(shè)為3,碰撞能為35%并進(jìn)行串聯(lián)質(zhì)譜掃描;質(zhì)譜的resolution R設(shè)為60000;動(dòng)態(tài)清洗時(shí)間為90 s。質(zhì)譜設(shè)置了陽(yáng)離子模式及一級(jí)質(zhì)譜與二級(jí)質(zhì)譜間依賴于數(shù)據(jù)的自動(dòng)采集模式的開(kāi)關(guān)。每一個(gè)周期,在Orbitrap中一個(gè)完整的一級(jí)圖譜在AGC靶位是1×106,最大離子積累時(shí)間為500 ms,在LTQ二級(jí)質(zhì)譜后在AGC為5000的靶位前5位,最大離子積累時(shí)間是100 ms。為了檢測(cè)磷酸化的肽段,如果在二級(jí)質(zhì)譜中,肽段有-98.0、-49.0、-32.7、-24.5的峰,且這些峰是前5個(gè)最強(qiáng)峰之一,那么該肽段進(jìn)入三級(jí)質(zhì)譜[12]。
1.6 生物信息學(xué)分析
利用Blast2GO對(duì)50個(gè)磷酸化蛋白進(jìn)行注釋、獲得細(xì)胞定位、細(xì)胞功能、參與的生物學(xué)過(guò)程和細(xì)胞通路分析。用STRING系統(tǒng)構(gòu)建化膿鏈球菌磷酸化蛋白的相互作用圖[13-16]。登錄http://string-db.org/,進(jìn)入multiple names模式,輸入磷酸化蛋白相應(yīng)的基因名,自動(dòng)生成蛋白相互作用圖。參數(shù)設(shè)置如下:物種為化膿鏈球菌,可信度為0.40,相互作用蛋白不超過(guò)20個(gè)。
2.1 化膿鏈球菌磷酸化蛋白的鑒定
利用質(zhì)譜鑒定TiO2富集的磷酸化肽段,用SEQUEST軟件檢索NCBI中的化膿鏈球菌MGAS5005數(shù)據(jù)庫(kù)。搜索數(shù)據(jù)庫(kù)的結(jié)果顯示,本實(shí)驗(yàn)共鑒定到167個(gè)磷酸化肽段,總共對(duì)應(yīng)57個(gè)磷酸化的蛋白。表1顯示了鑒定到的肽段序列、磷酸化位點(diǎn)、所屬蛋白的詳細(xì)信息。圖1顯示了磷酸化肽段[S(p)IEES(p)LDLGWELLS(p)ILPRTELK]的二級(jí)質(zhì)譜圖。
對(duì)57個(gè)磷酸化蛋白的磷酸化位點(diǎn)進(jìn)行統(tǒng)計(jì)分析,結(jié)果顯示:化膿鏈球菌的磷酸化56.8%位于絲氨酸殘基、35.1%是蘇氨酸殘基、8.1%是酪氨酸殘基。
2.2 磷酸化蛋白的分類
圖1 用LTQ-Orbitrap質(zhì)譜鑒定到的磷酸化蛋白肽段[S(p)IEES(p)LDLGWELLS(p)ILPRTELK]的二級(jí)圖譜
圖2 磷酸化蛋白在細(xì)胞內(nèi)的定位、功能分類及參與的生物學(xué)過(guò)程
2.3 磷酸化蛋白相互作用圖
通過(guò)STRING系統(tǒng)構(gòu)建化膿鏈球菌中鑒定到的磷酸化蛋白的相互作用圖(圖3)。在已鑒定的57個(gè)磷酸化蛋白中,形成1個(gè)大的和6個(gè)小的相互作用的網(wǎng)絡(luò)。 其中大網(wǎng)絡(luò)中主要是與轉(zhuǎn)錄翻譯相關(guān),包括很多核糖體蛋白,說(shuō)明磷酸化對(duì)蛋白翻譯有重要的調(diào)控功能。其他6個(gè)小網(wǎng)絡(luò)分別是脂肪酸合成(Fab家族)、ATP合成(Ntp家族)、丙酮酸激酶的合成(Gpm、Pgk、Eno、TpiA家族)、磷酸鹽轉(zhuǎn)運(yùn)系統(tǒng)(Pst家族)、四氫葉酸合成(Fhs家族)和ATP結(jié)合盒(Opp家族)。
圖3 化膿鏈球菌中磷酸化蛋白的相互作用圖
表1 質(zhì)譜鑒定到的磷酸化位點(diǎn)
類型UniProtID基因名稱肽段序列磷酸化位點(diǎn)peptidyl-tRNAhydrolaseQ9A206.1pthVKMIVGLGNPGSKYEKS13DNA-directedRNApolymerasesubunitbeta’P0C0E0rpoCENVIIGKIIPAGTGMARYRT1178,Y1183V-typeATPsynthasesubunitIQ491H3ntpIQQAAQTALKMMSQK/QQTKKQLLGTRS132,T126,T306V-typeATPsynthasesubunitBQ9A1Q2.1atpBSIEESLDLGWELLSILPRTELKS424,S428,S437,T442GlycinebetainetransportATP-bindingproteinQ9A1N0opuAADQYPNQLSGGMQQRV-GLARALANSPKS166,S182,Y161oligopeptidetransportsystempermeaseproteinQ490U9oppBYLVDLQASDWVRFARY387oligopeptidetransportATP-bindingproteinOppFP0A2V6oppFMSEKLVEVKDLEISFGEGKS14,S2ABCtransportersubstrate-bindingproteinQ9A1E5M5005_Spy0270ATIALASTLVLAACGSSKS16,S25,S26,T11,T17transcriptionalregulatorQ9A132mutRLNITIDEFVSAHSKS64,S67daunorubicinresistanceATP-bindingproteinQ490C2;drrAIIMIDKGQEIFDGTVTQLKT240chromosomepartitionproteinQ9A104smcNLLLETINSMDSEVKARFKS1018,S1021,T1015hypotheticalproteinM5005_Spy_0466Q48ZY4M5005_Spy0466HHYIIVRLDGSMEYRFSSVALKS279,S285,S286putativeglutathioneperoxidaseQ9A0U9bsaAEKVVLVVNTATKT32iron-sulfurcluster-bindingproteinQ9A0S6M5005_Spy0529SLRASVEEGRNSGFEHKS50,S54,S61ABCtransporterQ9A0J9sagHVSEGALTAVLEVKKS98,T103putativeABCtransporterQ9A0J8sagISIANSEITEWVKS120ATP-dependenthelicase/deoxyribonucleasesubunitBQ9A0H4.1rexBYVLNLNKTESIHPDSRT769
續(xù)表1:
類型UniProtID基因名稱肽段序列磷酸化位點(diǎn)3-dehydroquinatedehydrataseP63590.1aroDEIIFTLRTVQEGGNITLSSQEYV-DIIKS74,T60,T63putativeglutathionereductase(GR)Q9A0E2gorRTAVVGAGYIAVELAGVLHALG-SKS191,T170thiaminebiosynthesisproteinThiIQ9A0D8;thiISVPLLVTAVQDIMTSLYRS98,T90,T97cellsurfaceproteinQ9A0C0M5005_Spy0651ALLSKSNLRQGEKS723,S725degVfamilyproteinQ9A0A6.1M5005_Spy0672MKLAVITDSTATLPTDLKS9,T1,T12,T15transcriptionregulatorLytRQ9A080cpsXQSRNVTTKSLADM-LTLTSLPQEIKS166hypotheticalproteinM5005_Spy_0717P67332.1M5005_SPy_0915HLEFCKSIGLKGRS32putativeendonucleaseIII(DNArepair)Q9A051nthTHKELESLPGVGRKT109hypotheticalmembraneassociatedproteinQ99ZW9M5005_Spy0762VENLPSGVTATVSPDKS120,T123,T125nisinbiosynthesissensorproteinQ48YZ5srtKFSDSTLKKGDKS389,T390ribose-phosphatepyrophosphokinase2Q99ZR0prs2IAKAAGIPLGKMSSRS37,S38transcriptionalregulator,GntRfamilyQ99ZJ2M5005_Spy0924ALLELKYRHLIYAVPKY53,Y58phosphateimportATP-bindingpro-teinPstB2P63378.1pstB2STYLRSLNRMNDTIDIARS60,T61putativepyruvatekinaseQ99ZD1pykNAQTLLNEYGRLDSSAFPRS375,S376,T365,Y370phageproteinQ48YD6M5005_Spy1018FQENISKLLEMLGVTRKS35,T44ATP-dependentRNAhelicaseQ48Y37deaD2TILEKFKSHQLSLLLATDLVARS276,S280,T285,T269phage-associatedcellwallhydrolaseQ99Z24M5005_Spy1171RWPSLTSEVVGSYKS341,S344,S349,T343DNArepairproteinQ99YX8recNEYQLLTGDDLSSGDLEAELKSLEKS343,S344,T338,Y334phosphoglucomutaseQ48XS2M5005_Spy1235GKLGAGTNRMNTYMVGK;IARIMEDFRQTPIASVAEMALDKS488,T484,T60,T65deoxyribodipyrimidinephotolyaseQ99YX0phrTGYPIVDAAMLQLQKTGWMH-NRLRT310,T325,Y312rhodanese-relatedsulfurtransferaseQ99YV0M5005_Spy1256DKPVLIYENMRPQYRVPAVKY88riboseoperonrepressorQ48XP3M5005_Spy1264YAAELVYTIASQLTVKANRIKS209,T206,T212,Y199,Y205phosphopantetheineadenylyltrans-feraseP63821,P0DA42.1coaDKSYFKLEVRS45putativecarbamatekinaseQ99YT9arcCKVVPSPKPVGIKS165SAM-dependentmethyltransferaseQ99YR0M5005_Spy1302LLTHDVAYEDPKTRY148beta-galactosidaseQ48XK3lacZIDSGVVGLWPSPKS60916SrRNAm(5)C967methyltrans-feraseQ48XH0sunLVTDPLKLEEVAEALDAERT189S-ribosylhomocysteinaseP0C0C8.1P0C0C7.1luxSTKEVIVESFELDHTIVKS9,T2HADsuperfamilyhydrolaseQ99YH5M5005_Spy1393VTLTNDMAGVAQAIRT252,T254LSUribosomalproteinL7AEQ48X97M5005_Spy1410LSSLIGLAQRAGKS8,S93-ketoacyl-(acyl-carrier-pro-tein)reductaseQ48X17M5005_Spy1490INLTGAFNMTQSVLKPMIKS122,T120glutamyl-tRNA(Gln)amidotrans-ferasesubunitCP68890.1gatCHVAKLSKLSFSESETTTFATTLSKS15,S20,S22,S18DNAmismatchrepairproteinQ99Y73.1mutS2AVVTLNEEITQLRT233formateacetyltransferaseQ99Y65pflFPYDTRPTSIADIPAGFIDKS81,T80tRNAN6-adenosinethreonylcar-bamoyltransferaseQ99Y46.1tsaDYILAVESSCDETSVAILKS12,S17,T16PTSsystem,IIBcomponentQ99XZ2M5005_Spy1663IKIVTVCGNGIGSSLLLRS14,S15
2.4 蛋白磷酸化細(xì)胞代謝通路分析
對(duì)57個(gè)磷酸化蛋白進(jìn)行細(xì)胞通路分析,鑒定到較多磷酸化蛋白的細(xì)胞通路:糖酵解途徑、氨基酸代謝、葉酸代謝、嘌呤和嘧啶代謝。其中,糖酵解途徑中的丙酮酸激酶是三羧酸循環(huán)(TCA)的限速酶,預(yù)示著蛋白磷酸化在TCA等重要代謝通路中發(fā)揮重要作用。
蛋白質(zhì)磷酸化在細(xì)菌生命進(jìn)程中發(fā)揮著重要作用。在生物體內(nèi),蛋白磷酸化的位點(diǎn)一般有絲氨酸、蘇氨酸和酪氨酸[17]。由于絲氨酸和蘇氨酸的結(jié)構(gòu)末端的羥基比酪氨酸的活潑,且更易于與磷酸基團(tuán)結(jié)合,所以絲氨酸和蘇氨酸磷酸化比酪氨酸的磷酸化更常見(jiàn)[18]。本課題利用蛋白組學(xué)的方法鑒定了該細(xì)菌的磷酸化蛋白,在本研究中,化膿鏈球菌磷酸化蛋白的磷酸化位點(diǎn)大部分在于絲氨酸殘基,其次是蘇氨酸殘基,最少的是酪氨酸殘基,這個(gè)結(jié)果與在肺炎鏈球菌磷酸化蛋白組學(xué)的研究結(jié)果相似[18],也暗示著細(xì)菌蛋白保守的絲氨酸位點(diǎn)磷酸化的概率更高。
本研究鑒定到糖酵解過(guò)程中的主要限速酶[19]——丙酮酸激酶(pyruvate kinase),其能催化磷酸烯醇丙酮酸和ADP生成丙酮酸和ATP,除了能催動(dòng)糖酵解的繼續(xù)進(jìn)行外,還可為細(xì)胞的生命活動(dòng)提供能量。在本研究中,還鑒定到磷酸化的甲酸四氫葉酸連接酶(formate tetrahydrofolate ligase),它是葉酸甲?;年P(guān)鍵,而葉酸的形成又與細(xì)菌內(nèi)嘧啶、嘌呤核苷酸和S-甲硫氨酸的生物合成密切相關(guān)[20],而氨基酸代謝也與糖酵解存在相互轉(zhuǎn)化的機(jī)制。因此,磷酸化蛋白組將細(xì)菌的各項(xiàng)生理功能緊密地聯(lián)系在一起。
STRING的基本單元是功能的相關(guān)性,即特異的且有意義的兩個(gè)相互作用的蛋白為同一個(gè)過(guò)程做出貢獻(xiàn)[15]。研究中發(fā)現(xiàn)了7個(gè)磷酸化蛋白相互作用網(wǎng)絡(luò),覆蓋了正常細(xì)胞生長(zhǎng)繁殖的全過(guò)程,包括能量合成(Ntp、Gpm、Pgk、Eno、TpiA家族)、轉(zhuǎn)運(yùn)(Opp家族)、細(xì)胞DNA復(fù)制(Fhs家族)、蛋白合成(Rpo和Rps家族)、物質(zhì)轉(zhuǎn)運(yùn)(Pst家族)。
綜上所述,本文采用了TiO2Enrichment kit富集磷酸化蛋白,再利用Finnigan Surveyor HPLC系統(tǒng)串聯(lián)LTQ-Orbitrap技術(shù)對(duì)化膿鏈球菌中磷酸化肽段進(jìn)行組學(xué)研究,成功鑒定到167個(gè)磷酸化肽段,對(duì)應(yīng)57個(gè)磷酸化蛋白,這些蛋白主要參與細(xì)胞生物合成與代謝、信息傳遞等生理過(guò)程,并且這些磷酸化蛋白組數(shù)據(jù)庫(kù)的建立,為深入解析化膿鏈球菌的毒力、耐藥性的發(fā)生發(fā)展機(jī)制提供理論基礎(chǔ),為開(kāi)發(fā)新的抗菌藥物提供新視角。
[1] Cole J N, Barnett T C, Nizet V, et al. Molecular insight into invasive group A streptococcal disease[J]. Nature Reviews Microbiology, 2011, 9(10): 724-736.
[2] Proft T, Fraser J D. Streptococcal superantigens: Biological properties and potential role in disease[M]// Ferretti J J, Stevens D L, Fischetti V A.Streptococcuspyogenes: Basic Biology to Clinical Manifestations, Oklahoma City, 2016.
[3] Mark R, Lynskey N N, Jung C Y, et al. Development of a multicomponent vaccine forStreptococcuspyogenesbased on the antigenic targets ofIVIG[J]. Journal of Infection, 2016, 72(4): 450.
[4] Spellerberg B, Brandt C. Laboratory diagnosis ofStreptococcuspyogenes(group A streptococci)//[M]. Ferretti J J, Stevens D L, Fischetti V A.Streptococcuspyogenes: Basic Biology to Clinical Manifestations, Oklahoma City, 2016.
[5] Golinska E, van der Linden M, Wiecek G, et al. Virulence factors ofStreptococcuspyogenesstrains from women in peri-labor with invasive infections[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2016, 35(5): 747-754.
[6] Kant S, Agarwal S, Pancholi P, et al. TheStreptococcuspyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions[J]. Molecular Microbiology, 2015, 97(3): 515-540.
[7] Sanson M, Makthal N, Gavagan M, et al. Phosphorylation events in the multiple gene regulator of group AStreptococcus(Mga) significantly influences global gene expression and virulence[J]. Infection & Immunity, 2015, 83(6): 2382-2395.
[8] Wang G X, Liszewski M K, Chan A C, et al. Membrane cofactor protein (MCP; CD46): Isoform-specific tyrosine phosphorylation[J]. Journal of Immunology, 2000, 164(4): 1839-1846 .
[9] Sun X S, Ge F, Xiao C L, et al. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacteriumStreptococcuspneumoniae[J]. Journal of Proteome Research, 2010, 9(1): 275-282.
[10] Ge R G, Sun X S, Xiao C L, et al. Phosphoproteome analysis of the pathogenic bacteriumHelicobacterpylorireveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins[J]. Proteomics, 2011, 11(8): 1449-1461.
[11] Haas W, Faherty B K, Gerber S A, et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics[J]. Molecular & Cellular Proteomics, 2006, 5(7): 1326-1337.
[12] Villen J, Beausoleil S A, Gygi S P. Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis[J]. Proteomics, 2008, 8(21): 4444-4452.
[13] Ge F, Lu X P, Zeng H L, et al. Proteomic and Functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in Human Multiple Myeloma Cells[J]. Journal of Proteome Research, 2009, 8(6): 3006-3019.
[14] von Mering C, Jensen L J, Kuhn M, et al. STRING 7-recent developments in the integration and prediction of protein interactions[J]. Nucleic Acids Research, 2007, 35(Database issue): 358-362.
[15] Jensen L J, Kuhn M, Stark M, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms[J]. Nucleic Acids Research, 2009, 37(Database issue): D412-D416.
[16] Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored[J]. Nucleic Acids Research, 2011, 39(Databaseissue): D561-D568.
[17] Calder B, Albeldas C, Blackburn J M, et al. Mass spectrometry offers insight into the role of Ser/Thr/Tyr phosphorylation in theMycobacteria[J]. Frontiers in Microbiology, 2016, 7(141): 141.
[18] Wu H Y, Tseng V S, Liao P C. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis[J]. Journal of Proteome Research, 2007, 6(5): 1812-1821.
[19] Noy T, Vergnolle O, Hartman T E, et al. Central role of pyruvate kinase in carbon co-catabolism ofMycobacteriumtuberculosis[J]. Journal of Biological Chemistry, 2016, 291(13): 7060.
[20] Sah S, Aluri S, Rex K, et al. One-Carbon metabolic pathway rewiring inEscherichiacolireveals an evolutionary advantage of 10-formyltetrahydrofolate synthetase (Fhs) in survival under hypoxia[J]. Journal of Bacteriology, 2015, 197(4): 717-726.
(責(zé)任編輯:曾小軍)
Analysis of Phosphoproteome ofStreptococcuspyogenes
ZENG Guan-di, HE Jiao-jiao, SUN Xue-song*
(Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China)
Streptococcuspyogenesis a Gram-positive pathogen, and it seriously threatens the health of human and fowls. The whole cell proteins inS.pyogeneswere digested into peptide fragments by using trypsin solution. The phosphopeptides inS.pyogeneswere enriched through using a TiO2enrichment kit, and the enriched phosphopeptides were analyzed by Finnigan Surveyor HPLC system and LTQ-Orbitrap mass spectrometer. A total of 167 phosphopeptides corresponding to 57 phosphorylated proteins were identified. The bioinformatics analysis revealed that these phosphoproteins mainly took part in the biosynthesis of cells, metabolism of cell organic matter and its derivatives, signal transduction, genetic transcription, biological stress and so on. The interactive networks of these 57 phosphorylated proteins were analyzed by using STRING software, and 7 interactive networks of phosphorylated proteins were found. The phosphoproteome ofS.pyogenescan provide the theoretical foundation for the deep study on the molecular mechanism of bacterial virulence and antibiotic resistance, and the new view for the development of novel anti-bacterial drugs.
Phosphoproteome;Streptococcuspyogenes; LTQ-Orbitrap; STRING
2016-09-01
國(guó)家自然科學(xué)基金(21571082)。
曾觀娣(1988─),女,廣東化州人,碩士研究生,從事細(xì)菌耐藥研究。*通訊作者:孫雪松。
Q51
A
1001-8581(2017)05-0005-07