亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同有機(jī)物料對(duì)微域內(nèi)土壤原生動(dòng)物和線蟲的影響*

        2017-06-07 10:30:36蔡冰杰范文卿王慧劉滿強(qiáng)于建光劉婷李輝信陳小云
        土壤學(xué)報(bào) 2017年3期
        關(guān)鍵詞:原生動(dòng)物網(wǎng)袋三葉草

        蔡冰杰范文卿王 慧劉滿強(qiáng)于建光劉 婷李輝信陳小云?

        (1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,南京 210095)

        (2 江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南京 210014)

        不同有機(jī)物料對(duì)微域內(nèi)土壤原生動(dòng)物和線蟲的影響*

        蔡冰杰1范文卿1王 慧1劉滿強(qiáng)1于建光2劉 婷1李輝信1陳小云1?

        (1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,南京 210095)

        (2 江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南京 210014)

        施用有機(jī)物料能夠顯著影響土壤肥力和生物群落結(jié)構(gòu),然而有機(jī)物料在土壤中分布不均會(huì)加劇土壤空間異質(zhì)性,進(jìn)而對(duì)土壤生物群落的結(jié)構(gòu)和功能產(chǎn)生進(jìn)一步的影響。選用水稻秸稈和白三葉草兩類有機(jī)物料,按比例混合后裝于網(wǎng)袋,置于預(yù)先裝好土的培養(yǎng)容器中恒溫培養(yǎng),在培養(yǎng)的第14、35和70天分別對(duì)其中的不同微域(0~1 cm和1~5 cm)土樣進(jìn)行采集,分析其中的土壤原生動(dòng)物和線蟲群落結(jié)構(gòu)的變化。結(jié)果表明,有機(jī)物料種類及培養(yǎng)時(shí)間對(duì)原生動(dòng)物和線蟲數(shù)量的影響更大,采樣微域?qū)Χ叩挠绊懴鄬?duì)較小。水稻秸稈添加下的土壤植食性線蟲、食真菌線蟲和捕雜食線蟲數(shù)量顯著高于白三葉草添加;而白三葉草添加下的土壤變形蟲、鞭毛蟲和線蟲總數(shù)、食細(xì)菌線蟲數(shù)量顯著高于水稻秸稈添加。從整個(gè)培養(yǎng)周期來看,鞭毛蟲數(shù)量隨培養(yǎng)時(shí)間的延長(zhǎng)逐漸減少,而變形蟲和線蟲總數(shù)則隨培養(yǎng)時(shí)間的延長(zhǎng)逐漸增多。在同一有機(jī)物料下不同微域間土壤原生動(dòng)物和線蟲在培養(yǎng)初期會(huì)出現(xiàn)一定的數(shù)量差異,但這種差異隨培養(yǎng)時(shí)間的延長(zhǎng)逐漸消失。

        有機(jī)物料; 微域; 線蟲;原生動(dòng)物

        有機(jī)物料作為提高農(nóng)田土壤有機(jī)質(zhì)水平的主要來源途徑,是改善土壤理化性質(zhì)、優(yōu)化土壤生物群落結(jié)構(gòu)、綜合提高土壤地力和生態(tài)功能的關(guān)鍵調(diào)控因子[1-4]。因此加強(qiáng)有機(jī)物料的綜合利用,是推進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展的必要途徑。在實(shí)際應(yīng)用中,有機(jī)物料施入到土壤后很難以一種充分混勻的理想狀態(tài)分布,而是會(huì)集中分布于某些區(qū)域,從而導(dǎo)致這些區(qū)域附近積累更多的有機(jī)碳等養(yǎng)分成為一個(gè)特殊的微環(huán)境。在這一微域內(nèi),有機(jī)物料分解區(qū)域的營養(yǎng)成分濃度高于整個(gè)土體數(shù)倍甚至十幾倍[5-6]。許多研究將這種在土壤中分布不均、養(yǎng)分有效性高于周圍土體的斑塊稱之為“營養(yǎng)斑(Nutrient patch)”。由于碳氮等養(yǎng)分資源集中,使得微生物和以微生物為食物來源的其他土壤生物大量繁殖,從而導(dǎo)致這一微域的生物活性極高[7-9]。目前,已有大量報(bào)道證實(shí)了高活性微域?qū)ν寥郎鷳B(tài)系統(tǒng)結(jié)構(gòu)和功能的維持具有重要作用[10-12]。

        土壤微生物在有機(jī)物料分解和養(yǎng)分轉(zhuǎn)化過程中起著決定性作用。作為土壤微生物的主要取食者,原生動(dòng)物和線蟲兩類微型土壤動(dòng)物對(duì)有機(jī)物料的響應(yīng)較其他土壤動(dòng)物更為敏感[13-14]。在施入有機(jī)物料的土壤中,原生動(dòng)物和自由生活線蟲(主要為食細(xì)菌線蟲和食真菌線蟲)能夠有效地調(diào)控土壤微生物群落的數(shù)量和結(jié)構(gòu),促進(jìn)碳氮的轉(zhuǎn)化過程[15]。Briar等[16]研究土壤團(tuán)聚體中的土壤生物群落,發(fā)現(xiàn)小尺度上(200~1 000 μm)土壤微生物和線蟲群落均受制于資源有效性,線蟲對(duì)生境空間的依賴性更明顯。此外,原生動(dòng)物和線蟲對(duì)碳氮礦化的貢獻(xiàn)還依賴于有機(jī)物料的質(zhì)量,例如,一般低質(zhì)量或高碳氮比(C∶N大于30)的有機(jī)物能引起土壤生物對(duì)氮素的生物固定[17]。

        為進(jìn)一步了解土壤活性微域內(nèi)的生物群落結(jié)構(gòu)與功能,本研究選用水稻秸稈和白三葉草兩類常見有機(jī)物料,動(dòng)態(tài)監(jiān)測(cè)兩類有機(jī)物料分解過程中離有機(jī)物料較近微域(0~1 cm)及較遠(yuǎn)微域(1~5 cm)的微型土壤動(dòng)物(原生動(dòng)物和線蟲)的數(shù)量變化,旨在為了解土壤碳氮轉(zhuǎn)化過程的生物貢獻(xiàn)機(jī)制提供理論基礎(chǔ)。

        1 材料與方法

        1.1 供試材料

        供試土壤采自江蘇南通長(zhǎng)江沖積物形成的潮土,土屬為高沙土(Orthic aquisols),種植制度為稻麥輪作。土壤取樣深度為0~20 cm,土樣過2 mm篩并剔除大中型土壤動(dòng)物及根茬等,室溫黑暗預(yù)培養(yǎng)15 d。預(yù)培養(yǎng)后土壤的理化性質(zhì)為總有機(jī)碳16.6 g kg-1,全氮0.8 g kg-1,堿解氮67.4 mg kg-1,有效磷42.8 mg kg-1,速效鉀77.2 mg kg-1,pH 6.78,并將土壤含水量控制在田間持水量的65%。

        試驗(yàn)選用水稻秸稈和白三葉草2種常見的有機(jī)物料,烘干后粉碎過0.25 mm篩備用。兩種物料的基本性質(zhì)如下:水稻秸稈有機(jī)碳 435.1 g kg-1,全氮 8.8 g kg-1,C/N 51,全磷 1.7 g kg-1,全鉀14.3 g kg-1;白三葉草秸稈有機(jī)碳 312.5 g kg-1,全氮36.4 g kg-1,C/N 9,全磷 3.2 g kg-1,全鉀 23.9 g kg-1。

        1.2 試驗(yàn)設(shè)計(jì)

        室內(nèi)培養(yǎng)試驗(yàn)所用培養(yǎng)容器為高7 cm、長(zhǎng)13 cm、寬10 cm的蠟盒(圖1),將石蠟和凡士林按2∶1比例在水浴中熔化混勻后倒入模具澆鑄而成[18]。在蠟盒內(nèi)側(cè)的底部和四周放置相應(yīng)尺寸的PVC膜以隔絕蠟盒與土壤的接觸。在蠟盒中間放置一擋板,將擋板左側(cè)均勻裝土564 g。按1%的比例分別添加水稻和白三葉草秸稈于網(wǎng)袋(11 cm× 7 cm,孔徑1.5 mm)內(nèi),將網(wǎng)袋置于蠟盒中間替換擋板,再向網(wǎng)袋右側(cè)裝土564 g。最后將蠟盒用保鮮膜封口,以防水分散失。共設(shè)4組重復(fù),黑暗恒溫室內(nèi)(25±1)℃培養(yǎng),并在培養(yǎng)過程中第14、35、70天分別進(jìn)行破壞性取樣。

        圖1 有機(jī)物影響微域的培養(yǎng)裝置示意圖Fig.1 Schematic diagram of the experimental system

        微域采樣方法:容器邊緣均去除1 cm寬的保護(hù)條帶,用小刀將距離網(wǎng)袋1 cm的兩側(cè)土壤小心的割離下來,作為距離斑塊近的微域A(0~1 cm);然后依次將距離網(wǎng)袋較遠(yuǎn)的土壤割離下來,作為距離斑塊較遠(yuǎn)的微域D(1~5 cm)。將采集好的土壤混勻后置于4℃冰箱進(jìn)行保存。

        1.3 測(cè)定方法

        對(duì)采集的土壤樣品分別測(cè)定土壤可溶性有機(jī)碳(DOC)、可溶性有機(jī)氮(DON)、硝態(tài)氮NO3--N、基礎(chǔ)呼吸、微生物生物量碳(M B C)和氮(MBN)、原生動(dòng)物(鞭毛蟲和變形蟲)和線蟲群落結(jié)構(gòu)。

        稱取相當(dāng)于10 g干土(105 ℃下24 h)的土壤,超純水浸提(土液比1∶5)振蕩1 h后在8 000 r min-1離心機(jī)中離心10 min,上清液過孔徑0.45 μm的醋酸纖維素濾膜后利用TOC Multi N/C 3100儀測(cè)定DOC。另取上清液利用連續(xù)流動(dòng)分析儀(Skalar Breda,荷蘭)測(cè)定DON。土壤無機(jī)氮經(jīng)2 mol L-1KCl溶液振蕩30 min提取后過濾,利用流動(dòng)分析儀測(cè)定濾液中的銨態(tài)氮和硝態(tài)氮含量。由于NH4+-N含量極低,處理之間無差異,因此未在結(jié)果內(nèi)列出。土壤微生物生物量采用氯仿熏蒸-硫酸鉀溶液浸提法,土壤微生物生物量碳氮的轉(zhuǎn)換系數(shù)分別為KC=0.38、KN=0.54,分布計(jì)算MBC和MBN的含量。土壤有機(jī)碳礦化采用氣相色譜(AGILENT,7890A,美國)在24 h內(nèi)測(cè)定每次采集的氣體樣品。

        土壤線蟲采用淺盤法分離,稱取50 g鮮土置于淺盤上的線蟲濾紙上,加水至浸沒土壤,在22 ℃下靜置48 h后用500目篩分離線蟲。在光學(xué)顯微鏡下計(jì)數(shù)(Motic,SMZ-168),在生物顯微鏡下(Motic,BA310)鑒定到屬,并將線蟲劃分為不同c-p值和四大營養(yǎng)類群(植食性線蟲、食細(xì)菌線蟲、食真菌線蟲和捕雜食線蟲)。線蟲生態(tài)指數(shù)的計(jì)算為[19]:(1)線蟲通道指數(shù)(Nematode channel ratio,NCR):食細(xì)菌線蟲和食微(食細(xì)菌+食真菌)線蟲之比;(2)香農(nóng)-威爾(Shannon-Wiener)多樣性指數(shù)(H′):=-∑PilnPi,其中Pi為第i個(gè)分類單元中個(gè)體占線蟲總數(shù)的比例;(3)成熟度指數(shù)(Maturity Index,MI):∑MI2-5 = Σvi×fi,其中vi為根據(jù)自由生活線蟲不同生活史分別賦予的c-p值,fi為某一屬(i)在自由生活線蟲中所占的比例;(4)結(jié)構(gòu)指數(shù)(Structure Index,SI):SI = 100×(s/(b + s)),b主要指食細(xì)菌和食真菌線蟲中c-p值為2的類群,s為食細(xì)菌、食真菌和雜食性線蟲中c-p值為3~5的類群以及捕食性線蟲中c-p值為2~5的類群。

        原生動(dòng)物采用最大或然數(shù)法測(cè)定[20]。稱取3 g鮮土加入到30 ml阿米巴緩沖液振蕩20 min,吸取50 μl土壤懸液在加入100 μl 0.1% TSB 的96孔板中依次稀釋,培養(yǎng)定期在倒置顯微鏡下記錄原生動(dòng)物的出現(xiàn)頻率。

        1.4 數(shù)據(jù)處理

        采用重復(fù)測(cè)量方差分析有機(jī)物料、取樣位置及采樣時(shí)間三者的交互影響。文中的數(shù)據(jù)分析和作圖分別采用SPSS 13.0和Origin軟件;不同處理間的差異顯著性采用Duncan法檢驗(yàn),如不特別注明,顯著水平均指p<0.05,極顯著差異指p<0.01。

        2 結(jié) 果

        2.1 有機(jī)物料對(duì)不同微域內(nèi)土壤原生動(dòng)物的影響

        有機(jī)物料質(zhì)量、采樣位置及培養(yǎng)時(shí)間對(duì)原生動(dòng)物的數(shù)量產(chǎn)生了一定的影響(表1)。隨著培養(yǎng)時(shí)間的延長(zhǎng),施加不同有機(jī)物料的土壤中不同微域內(nèi)變形蟲的數(shù)量整體均呈現(xiàn)出上升趨勢(shì),但是并未形成微域間的顯著差異(圖2)。白三葉草對(duì)變形蟲數(shù)量的增加效果較水稻秸稈明顯,且在白三葉草作用下,離物料近的微域內(nèi)變形蟲數(shù)量較遠(yuǎn)距離微域內(nèi)數(shù)量更多;而在施加水稻秸稈的土壤中,不同的微域之間未形成顯著差異。鞭毛蟲的變化趨勢(shì)則與變形蟲明顯不同,施用兩種有機(jī)物料施加均降低其數(shù)量,且離物料近的微域內(nèi)鞭毛蟲數(shù)量更多,但是這部分差異會(huì)隨培養(yǎng)時(shí)間的延長(zhǎng)逐漸變小。

        圖2 不同培養(yǎng)時(shí)間下有機(jī)物料質(zhì)量和取樣位置對(duì)土壤變形蟲和鞭毛蟲數(shù)量的影響Fig. 2 Influence of organic residue and sampling site on number of amoebae and flagellate relative to duration of incubation

        2.2 有機(jī)物料對(duì)不同微域內(nèi)土壤線蟲的影響

        線蟲數(shù)量的變化趨勢(shì)相比原生動(dòng)物更為復(fù)雜。隨培養(yǎng)時(shí)間的延長(zhǎng),距水稻秸稈網(wǎng)袋的不同微域內(nèi)的線蟲數(shù)量呈上升趨勢(shì),而不同微域間線蟲數(shù)量沒有顯著性差異(圖3)。白三葉草對(duì)不同微域的影響則與水稻秸稈有很大的不同,培養(yǎng)14 d時(shí),白三葉草網(wǎng)袋0~1 cm微域的線蟲數(shù)量顯著高于1~5 cm微域線蟲數(shù)量;隨著培養(yǎng)時(shí)間的延長(zhǎng),白三葉草網(wǎng)袋0~1 cm微域線蟲數(shù)量逐漸減少,并顯著低于1~5 cm微域。不同處理下,線蟲多樣性指數(shù)H′和成熟度指數(shù)∑MI2-5受有機(jī)物料質(zhì)量和培養(yǎng)時(shí)間的影響更為顯著(表1,p<0.05,圖3)。白三葉草對(duì)線蟲總量的促進(jìn)作用明顯高于稻草秸稈,且不同微域內(nèi)食細(xì)菌線蟲比例顯著高于水稻秸稈,但是食真菌、植食、捕雜食線蟲百分比、多樣性指數(shù)H′、成熟度指數(shù)和結(jié)構(gòu)指數(shù)均低于水稻秸稈處理。

        圖3 不同培養(yǎng)時(shí)間下有機(jī)物料質(zhì)量和采樣位置對(duì)土壤線蟲的影響Fig. 3 Influences of organic residue and sampling site on soil nematodes relative to duration of incubation

        2.3 土壤原生動(dòng)物、線蟲與土壤性質(zhì)的相關(guān)性

        圖4 土壤微動(dòng)物、基本性質(zhì)、微生物性質(zhì)三者交互作用的RDA分析Fig. 4 Redundancy analysis of the interaction between soil microfauna,basic properties,microbial properties

        土壤DOC、DON、NO3--N以及微生物性質(zhì)均受到有機(jī)物料質(zhì)量、取樣位置、培養(yǎng)時(shí)間以及三者之間交互作用的顯著影響,并進(jìn)一步對(duì)土壤原生動(dòng)物和線蟲產(chǎn)生影響(圖4)。培養(yǎng)的第14天,土壤DOC、DON、NO3--N以及MBC、MBN與離網(wǎng)袋0~1 cm的微域均呈正相關(guān),有利于原生動(dòng)物及線蟲的繁殖。在培養(yǎng)后期,NO3--N與各微域間的正相關(guān)性加強(qiáng)最為明顯,并進(jìn)而促使變形蟲和線蟲整體數(shù)量的增加。而MBC、MBN則隨著培養(yǎng)時(shí)間的延長(zhǎng),與各微域的相關(guān)性減弱,并在一定程度上促使鞭毛蟲數(shù)量的減少。

        3 討 論

        3.1 不同有機(jī)物料對(duì)土壤原生動(dòng)物和線蟲的影響

        本研究結(jié)果可以看出,不同質(zhì)量的有機(jī)物料對(duì)土壤活性碳氮和微生物性質(zhì)的影響會(huì)延伸至土壤食物網(wǎng)內(nèi)更高營養(yǎng)級(jí)微型動(dòng)物上。然而兩種原生動(dòng)物(鞭毛蟲和變形蟲)對(duì)不同有機(jī)物料的添加響應(yīng)并不強(qiáng)烈,其原因可能是在資源與空間有限的情況下,線蟲對(duì)真菌和細(xì)菌的取食強(qiáng)度大于原生動(dòng)物,從而抑制了原生動(dòng)物的發(fā)展,這也與添加白三葉草的培養(yǎng)土中原生動(dòng)物最終減少的結(jié)果相符。線蟲對(duì)有機(jī)物料的響應(yīng)趨勢(shì)與原生動(dòng)物不同,添加兩類有機(jī)物料均能增加土壤線蟲數(shù)量這與許多研究結(jié)果一致[21]。本試驗(yàn)中在白三葉草作用下,線蟲快速繁殖,雖然不同微域和采樣時(shí)間對(duì)其有一定影響,但整體上添加白三葉草的線蟲總數(shù)顯著高于水稻秸稈。而水稻秸稈擁有較高C/N,更有益于土壤環(huán)境的穩(wěn)定性,因此對(duì)線蟲中的食真菌者、植食者、捕雜食者和群落多樣性和結(jié)構(gòu)復(fù)雜性的指數(shù)(H′、∑MI 2-5和SI)有著更大的促進(jìn)作用。這之間的差異可能與不同有機(jī)物料在土壤中的分解速度及產(chǎn)生的活性物質(zhì)有關(guān)。低C/N的白三葉草能夠更快分解進(jìn)入土壤,活性有機(jī)物料能夠迅速被附近的微生物同化,使得食細(xì)菌線蟲對(duì)其迅速作出響應(yīng),成為新環(huán)境下的優(yōu)勢(shì)種群,繼而導(dǎo)致了其他微生物種群相對(duì)數(shù)量的減少,造成培養(yǎng)初期微生物的結(jié)構(gòu)及多樣性更單一[22];而高C/N的有機(jī)物料的分解及輸出則相對(duì)顯得平緩,土壤微生物的響應(yīng)也并不迅速劇烈,因此沒有出現(xiàn)某一微生物種群的急劇增長(zhǎng),土壤中微食物網(wǎng)相對(duì)較平衡。需要注意的是,本試驗(yàn)中水稻秸稈的添加顯著促進(jìn)了植食線蟲的數(shù)量和比例,這一結(jié)果與已有的一些研究相符[23];也有一些研究認(rèn)為有機(jī)物料施入土壤可以抑制食植物線蟲[14,24]。造成這些結(jié)論不同的原因可能是由于有機(jī)物料的差異,例如,有發(fā)現(xiàn)表明豬糞堆肥的添加會(huì)顯著增加植食性線蟲的數(shù)量,而秸稈的添加卻會(huì)抑制植食性線蟲的繁殖[21]。水稻秸稈的分解產(chǎn)物可能恰好能夠在不破壞土壤微食物網(wǎng)的前提下被食植物線蟲所利用,使得食植物線蟲在培養(yǎng)期間獲得了一定的增長(zhǎng)。

        3.2 不同微域?qū)ν寥涝鷦?dòng)物和線蟲的影響

        雖然隨培養(yǎng)時(shí)間的延長(zhǎng),不同微域間的差異會(huì)逐漸減小,但是在培養(yǎng)初期,不同的微域?qū)ν寥纼?nèi)的原生動(dòng)物和線蟲仍有顯著的影響。其中,不同有機(jī)物料作用下的原生動(dòng)物數(shù)量相對(duì)受微域距離遠(yuǎn)近的影響較小,這可能是由于原生動(dòng)物主要攝取可溶性碳等溶解態(tài)營養(yǎng)物質(zhì)[25],而培養(yǎng)箱內(nèi)土壤中溶解態(tài)營養(yǎng)物質(zhì)能夠較快混合均勻;而白三葉草作用下0~1 cm微域內(nèi)的線蟲則明顯多于1~5 cm微域內(nèi)的線蟲數(shù)量,這可能是因?yàn)榈虲/N的有機(jī)物料更易向土壤提供DOC和DON并且促進(jìn)有機(jī)N的礦化,進(jìn)而使得活性有機(jī)物料迅速被距其近的微域內(nèi)的微生物快速同化,促進(jìn)了線蟲的繁殖。當(dāng)該微域內(nèi)線蟲大量繁殖后,則會(huì)導(dǎo)致資源消耗過盛,為了獲得更多的資源和空間進(jìn)行更好地繁殖,線蟲則需要向距網(wǎng)袋較遠(yuǎn)的微域進(jìn)行遷移,使得較遠(yuǎn)的微域內(nèi)線蟲數(shù)量高于離有機(jī)物料近的微域。

        4 結(jié) 論

        有機(jī)物料施入到土壤造成微環(huán)境的高度異質(zhì)性對(duì)土壤活性碳氮、微生物學(xué)性質(zhì)以及微型動(dòng)物的影響深刻。與高碳氮比的水稻相比,距網(wǎng)袋近的微域可溶性碳氮、NO3--N和微生物生物量更易受到低碳氮比的白三葉草的促進(jìn)作用,從而進(jìn)一步影響到微域內(nèi)土壤微動(dòng)物的變化。然而,原生動(dòng)物可能由于其移動(dòng)性有限,在不同微域間未出現(xiàn)顯著性差異。不同微域內(nèi)線蟲在培養(yǎng)的初始階段對(duì)不同質(zhì)量的有機(jī)物料的響應(yīng)不同。在培養(yǎng)初期,得到白三葉草釋放的大量養(yǎng)分的距網(wǎng)袋近的微域內(nèi),微生物的增殖促進(jìn)了線蟲的發(fā)展,而隨著資源的消耗和空間的有限性,線蟲群落逐漸向外擴(kuò)增,致使距網(wǎng)袋遠(yuǎn)的微域內(nèi)的線蟲得到進(jìn)一步發(fā)展。

        [1] 袁嫚嫚,劉勤,張少磊,等. 太湖地區(qū)稻田綠肥固氮量及綠肥還田對(duì)水稻產(chǎn)量和稻田土壤氮素特征的影響. 土壤學(xué)報(bào),2011,48(4):797—803

        Yuan M M,Liu Q,Zhang S L,et al. Effects of biological nitrogen fixation and plow-down of green manure crop on rice yield and soil nitrogen in paddy field(In Chinese). Acta Pedologica Sinica,2011,48 (4):797—803

        [2] 馬超,周靜,劉滿強(qiáng),等. 秸稈促腐還田對(duì)土壤養(yǎng)分及活性有機(jī)碳的影響. 土壤學(xué)報(bào),2013,50(5):915—921

        Ma C,Zhou J,Liu M Q,et al. Effects of incorporation of pre-treated straws into field on soil nutrients and labile organic carbon in Shajiang black soil(In Chinese). Acta Pedologica Sinica,2013,50(5):915—921

        [3] Turmel M S,Speratti A,Baudron F,et al. Crop residue management and soil health:A systems analysis. Agricultural Systems,2015,134:6—16

        [4] 張紅,呂家瓏,曹瑩菲,等. 不同植物秸稈腐解特性與土壤微生物功能多樣性研究. 土壤學(xué)報(bào),2014,51 (4):743—752

        Zhang H,Lü J L,Cao Y F,et al. Decomposition characteristics of different plant straws and soil microbial functional diversity(In Chinese). Acta Pedologica Sinica,2014,51(4):743—752

        [5] 魯如坤. 微域土壤學(xué)——一個(gè)可能的土壤學(xué)的新分支.土壤學(xué)報(bào),1999,36(2):287—288

        Lu R K. Microzone soil science—A possible new branch of soil science(In Chinese). Acta Pedologica Sinica,1999,36(2):287—288

        [6] Nicolardot B,Bouziri L,Bastian F,et al. A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biology & Biochemistry,2007,39(7):1631—1644

        [7] Blaud A,Lerch T Z,Chevallier T,et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of13C-labelled rice straw. Applied Soil Ecology,2012,53(1):1—9

        [8] Peralta A L,Matthews J W,F(xiàn)lanagan D N,et al. Environmental factors at dissimilar spatial scales influence plant and microbial communities in restored wetlands. Wetlands,2012,32(6):1125—1134

        [9] Gaillard V,Chenu C,Recous S. Carbon mineralisation in soil adjacent to plant residues of contrasting biochemical quality. Soil Biology & Biochemistry,2003,35(1):93—99

        [10] 花莉,金素素,洛晶晶. 生物質(zhì)炭輸入對(duì)土壤微域特征及土壤腐殖質(zhì)的作用效應(yīng)研究. 生態(tài)環(huán)境學(xué)報(bào),2012,21(11):1795—1799

        Hua L,Jin S S,Luo J J. Effect of bio-char on the micro-environment characteristics and humus in soil (In Chinese). Ecology and Environmental Sciences,2012,21(11):1795—1799

        [11] Xia S W,Chen J,Schaefer D,et al. Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest. Plant and Soil,2016,404(1):385—398

        [12] Koranda M,Schnecker J,Kaiser C,et al. Microbial processes and community composition in the rhizosphere of European beech —The influence of plant C exudates. Soil Biology & Biochemistry,2011,43(3):551—558

        [13] 王芳,張金水,高鵬程,等. 不同有機(jī)物料培肥對(duì)渭北旱塬土壤微生物學(xué)特性及土壤肥力的影響. 植物營養(yǎng)與肥料學(xué)報(bào),2011,17(3):702—709

        Wang F,Zhang J S,Gao P C,et al. Effects of application of different organic materials on soil microbiological properties and soil fertility in Weibei rainfed highland(In Chinese). Plant Nutrition and Fertilizer Science,2011,17(3):702—709

        [14] Tabarant P,Villenave C,Risede J M,et al. Effects of four organic amendments on banana parasitic nematodes and soil nematode communities. Applied Soil Ecology,2011,49:59—67

        [15] Scharroba A,Dibbern D,Hünninghaus M,et al. Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology & Biochemistry,2012,50:1—11

        [16] Briar S S,F(xiàn)onte S J,Park I S. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biology & Biochemistry,2011,43(5):905—914

        [17] Rousk J,Baath E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology,2007,62(3):258—267

        [18] Khasawneh F E,Soileau J M. Soil preparation and sampling for studying ion movement. Soil Science Society of America Journal,1969,33(3):476—477

        [19] 劉貝貝,葉成龍,虞麗,等. 不同植被類型的灘涂濕地土壤線蟲群落特征. 應(yīng)用生態(tài)學(xué)報(bào),2012,23 (11):3057—3064

        Liu B B,Ye C L,Yu L,et al. Characteristics of soil nematode communities in coastal wetlands with different vegetation types(In Chinese). Chinese Journal of Applied Ecology,2012,23(11):3057—3064

        [20] 趙峰,徐奎棟. 土壤原生動(dòng)物研究方法. 生態(tài)學(xué)雜志,2010,29(5):1028—1034

        Zhao F,Xu K D. Methodological advances in soil protozoa research(In Chinese). Chinese Journal of Ecology,2010,29(5):1028—1034

        [21] 劉婷,葉成龍,陳小云,等. 不同有機(jī)肥源及其與化肥配施對(duì)稻田土壤線蟲群落結(jié)構(gòu)的影響. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(12):3508—3516

        Liu T,Ye C L,Chen X Y,et al. Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China(In Chinese). Chinese Journal of Applied Ecology,2013,24 (12):3508—3516

        [22] 孔維棟,劉可星,廖宗文,等. 不同腐熟程度有機(jī)物料對(duì)土壤微生物群落功能多樣性的影響. 生態(tài)學(xué)報(bào),2005,25(9):2291—2296

        Kong W D,Liu K X,Liao Z W,et al. Effects of organic matters on metabolic functional diversity of soil microbial community under pot incubation conditions (In Chinese). Acta Ecologica Sinica,2005,25 (9):2291—2296

        [23] Liu T,Whalen J K,Shen Q R,et al. Increase in soil nematode abundance due to fertilization was consistent across moisture regimes in a paddy rice-upland wheat system. European Journal of Soil Biology,2016,72:21—26

        [24] Hu C,Qi Y C. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. European Journal of Soil Biology,2010,46:230—236

        [25] 陳小云,劉滿強(qiáng),胡鋒,等. 根際微型土壤動(dòng)物——原生動(dòng)物和線蟲的生態(tài)功能. 生態(tài)學(xué)報(bào),2007,27 (8):3132—3143

        Chen X Y,Liu M Q,Hu F,et al. Contributions of soil micro-fauna(protozoa and nematodes)to rhizosphere ecological functions(In Chinese). Acta Ecologica Sinica,2007,27(8):3132—3143

        Effects of Organic Materials on Soil Protozoa and Nematodes in Microzones

        CAI Bingjie1FAN Wenqing1WANG Hui1LIU Manqiang1YU Jianguang2LIU Ting1LI Huixin1CHEN Xiaoyun1?
        (1 College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China)
        (2 Institute of Agriculture Resources and Environment,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China)

        【Objective】Application of organic manure or material may affect soil fertility and soil microbial community structure. However,uneven distribution of the organic materials applied in the soil may aggravate spatial heterogeneity of the soil,and hence affect structure and functions of the soil biota therein. To determine how much organic materials will affect spatial heterogeneity of the soil,an in-lab soil incubation experiment was conducted for observation of how soil protozoa and nematode community structure responded toorganic materials(rice straw and white clover)in different microzones(0~1 cm,1~5 cm).【Method】Rice straw or white clover was proportionally mixed up with soil and put into net bags separately. Then the bags were put into the vessels of the tested soil,separately,for incubation under a constant temperature (25±1℃)for 70 days. Soil samples were collected from microzones adjacent to(0~1 cm)and far apart (1~5 cm)from the net bags,on D14,D35 and D70 for analysis of abundance,Shannon-Wiener index (H′),structure index(SI)and maturity index(∑MI2-5)of nematodes,and soil dissolved organic carbon(DOC),dissolved organic nitrogen(DON),nitrate nitrogen(NO3--N),microbial biomass carbon(MBC)and nitrogen(MBN),as well,which may be related to changes in the microfauna in the soils amended with rice straw or clove.【Result】In this experiment,it was found that on the whole kind of the organic material and duration of incubation were the two major factors affecting the numbers of protozoa and nematodes,however,it does not mean that location of the microzone for sampling had no impact on soil microbes therein. Within the initial period of incubation(0~14 days),in microzones of the soil amended with the same organic material,the numbers of soil microbes in the adjacent microzones(0~1 cm)were higher than those in the far-apart microzones(1~5 cm),which is more obvious in the soil added with white clover. With the incubation going on(14~70 days),relative abundances of plant-feeding and fungi-feeding nematodes were higher in the soil added with rice straw than those in the soil added with white clover,whereas relative abundances of soil amoeba,flagellates,total nematodes and bacteria-feeding nematodes went reversely. Different kind of organic material also triggered different changes in Shannon-Wiener indices,structure indices and maturity index of nematodes. Shannon-Wiener index and structure index in adjacent microzones were found higher than those in far-apart microzones in the soil added with white clover,however the disparity was not found in the soil added with rice straw. The number of flagellates decreased,while the numbers of amoeba and nematodes increased with the incubation going on.【Conclusion】Therefore,it is quite obvious that during the initial period of incubation,distance of microzones from the net bag of soil does have some influences on both the numbers of protozoa and nematodes,especially nematodes,and dthe influence fades with the incubation going on,while,the difference in type of organic material is the factor eventually affecting abundance and community structures of the nematodes.

        Organic materials;Microzone;Nematode;Protozoan

        S154.1

        A

        (責(zé)任編輯:盧 萍)

        * 國家自然科學(xué)基金項(xiàng)目(41371263)、土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室開放課題(0812201218)資助 Supported by the National Natural Science Foundation of China(No. 41371263)and the Open Project of State Key Laboratory of Soil and Sustainably Agriculture(No. 0812201218)

        ? 通訊作者 Corresponding author,E-mail:xychen@njau.edu.cn

        蔡冰杰(1992—),男,江蘇人,碩士研究生,主要研究干擾對(duì)土壤生物和功能的影響。E-mail:2013103019@ njau.edu.cn

        2016-10-17;

        2017-01-06;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-02-17

        10.11766/trxb201610170411

        猜你喜歡
        原生動(dòng)物網(wǎng)袋三葉草
        我家的三葉草
        網(wǎng)袋埋藏和自然環(huán)境下測(cè)定森林凋落物早期分解過程的比較
        我國兩棲動(dòng)物寄生原蟲及其對(duì)宿主的影響研究
        DNA條形碼在原生動(dòng)物系統(tǒng)分類學(xué)中的應(yīng)用
        動(dòng)物學(xué)實(shí)驗(yàn)教學(xué)中“原生動(dòng)物的結(jié)構(gòu)觀察”伸縮泡觀察方法的優(yōu)化
        骨填充網(wǎng)袋在治療kummell病中的應(yīng)用
        三葉草和喇叭花
        幸福的三葉草
        國內(nèi)數(shù)據(jù)庫各學(xué)科高被引論文TOP5
        假如三葉草擁有了真愛
        海外英語(2013年9期)2013-12-11 09:03:36
        一个人看的视频www免费| 久久一日本道色综合久久大香| 国产精品成人午夜久久| yy111111少妇影院| 麻豆视频av在线观看| 人妻少妇进入猛烈时中文字幕| 一本久久a久久精品vr综合| 国产精品国语对白露脸在线播放| 91超碰在线观看免费| 天堂精品人妻一卡二卡| 日本丰满老妇bbw| 亚洲h在线播放在线观看h| 欧洲-级毛片内射| 国产精品爽爽va在线观看网站| 中文字幕精品乱码一二三区| 玖玖色玖玖草玖玖爱在线精品视频| 成人在线免费电影| 国产成人精品三级麻豆| 亚洲免费一区二区三区视频| 日产一区一区三区区别| 国产精品一区二区三区在线蜜桃 | 国产精品美女白浆喷水| 一区二区三区精品婷婷| 精品国产yw在线观看| 欧美人与禽zozzo性伦交| 亚洲xxxx做受欧美| 欧美日韩国产乱了伦| 久久精品亚洲熟女av麻豆| 亚洲人成网站在线播放2019| 国产福利酱国产一区二区| 亚洲欧洲国产日产国码无码| 人妻少妇精品系列一区二区| 白白色最新福利视频二| 国产老熟女网站| 国产亚洲亚洲精品777| 一本久久伊人热热精品中文| 久久久久人妻精品一区二区三区| 免费a级毛片出奶水| 麻豆久久久国内精品| 日本一二三区免费在线| 国产精品国产三级国av在线观看|