亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        菲并咪唑類有機(jī)電致發(fā)光材料的研究進(jìn)展與應(yīng)用前景

        2017-06-05 15:11:06佟慶笑
        關(guān)鍵詞:咪唑類電致發(fā)光激子

        何 丹,劉 斌,佟慶笑

        (汕頭大學(xué)化學(xué)系及廣東省有序結(jié)構(gòu)材料的制備與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,汕頭515063)

        菲并咪唑類有機(jī)電致發(fā)光材料的研究進(jìn)展與應(yīng)用前景

        何 丹,劉 斌,佟慶笑

        (汕頭大學(xué)化學(xué)系及廣東省有序結(jié)構(gòu)材料的制備與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,汕頭515063)

        菲并咪唑作為一類優(yōu)秀的藍(lán)光材料構(gòu)筑基元,具有熒光量子產(chǎn)率高、熱穩(wěn)定性好,載流子注入與傳輸能力相對(duì)平衡,易修飾好合成等優(yōu)點(diǎn),在目前高效深藍(lán)光熒光材料和磷光主體材料的設(shè)計(jì)上備受關(guān)注.本文綜述了近幾年來(lái)菲并咪唑類有機(jī)電致發(fā)光材料的發(fā)展現(xiàn)狀,系統(tǒng)地介紹了菲并咪唑基團(tuán)的結(jié)構(gòu)特征以及各類衍生物的器件性能,展望了其在未來(lái)全彩顯示和固態(tài)照明領(lǐng)域上的應(yīng)用前景.

        菲并咪唑;有機(jī)電致發(fā)光材料;藍(lán)色熒光材料;磷光主體材料

        有機(jī)電致發(fā)光器件(OLED)具有驅(qū)動(dòng)電壓低、響應(yīng)速度快、視角寬、發(fā)光效率高、重量輕而薄、可柔性折疊等優(yōu)點(diǎn),被譽(yù)為最具前景的“夢(mèng)幻顯示器”[1-3].此外,OLED還可以用作全固態(tài)照明光源.與目前其它照明器件相比,其能效高、易實(shí)現(xiàn)平面白光、抗震能力強(qiáng)、使用溫度范圍廣、光色柔和等優(yōu)點(diǎn),同時(shí)具有高效節(jié)能、環(huán)保友好、安全無(wú)害等優(yōu)勢(shì),是一種非常理想、有前途的照明光源[4-7].發(fā)光材料是OLED技術(shù)的核心,高效且色純度好的藍(lán)光材料在實(shí)現(xiàn)高質(zhì)量的白光照明和全彩顯示中扮演著重要角色.一方面,藍(lán)光材料可以充當(dāng)能量轉(zhuǎn)換器的作用,將能量傳遞給紅光、綠光等低能量的發(fā)光材料,產(chǎn)生不同顏色的光[8-10].另一方面,藍(lán)光材料可以增加色域,降低顯示器件的能耗,尤其是色坐標(biāo)CIEy<0.1的高效深藍(lán)光材料,效果尤其明顯[11-13].

        經(jīng)過(guò)二十年的發(fā)展,紅光和綠光材料的研究已經(jīng)相對(duì)成熟,相比之下,藍(lán)光材料的發(fā)光性能和壽命都遜色很多,這是因?yàn)樗{(lán)光材料本身具有較寬的能隙,電荷注入能壘大,導(dǎo)致器件效率低,啟動(dòng)電壓高等問(wèn)題[14].目前報(bào)道的藍(lán)光材料主要是基于蒽[15-19]、芴[20-22]、芳胺[23-24]、喹啉[25-27]、砜[28-29]等為構(gòu)筑基元的衍生物.近幾年來(lái),菲并咪唑由于其高熒光量子產(chǎn)率,相對(duì)平衡的載流子傳輸性能,高的熱力學(xué)穩(wěn)定性,加上其合成方法簡(jiǎn)單、分離提純?nèi)菀椎忍攸c(diǎn),在高效藍(lán)色熒光材料和磷光主體材料的研究與應(yīng)用上極具潛力[30-32].

        1 菲并咪唑的結(jié)構(gòu)特點(diǎn)

        菲并咪唑在分子結(jié)構(gòu)上主要由咪唑五元氮雜環(huán)、菲共軛單元以及N1位置取代的苯環(huán)組成.如圖1所示,剛性的菲環(huán)平面,能夠有效增加光吸收截面,提高熒光量子效率[33].研究發(fā)現(xiàn)菲并咪唑在四氫呋喃溶液(THF)中強(qiáng)紫光發(fā)射(~370 nm),發(fā)光效率達(dá)到70%,禁帶寬度為3.40 eV,為典型的寬禁帶材料;而咪唑環(huán)的非中心對(duì)稱結(jié)構(gòu)使其具有雙極性.一方面,1號(hào)位氮原子的共軛模式為為富電子態(tài),與吡咯中的氮原子類似;另一方面,3號(hào)位上的氮原子表現(xiàn)出缺電子態(tài),與吡啶中的氮原子類似.這樣特殊的結(jié)構(gòu),方便供電子和吸電子基團(tuán)的修飾[34-36],在材料的設(shè)計(jì)上備受青睞[37-43].至于合成方面,芳香類菲并咪唑表現(xiàn)出很大的優(yōu)勢(shì),它的合成可以通過(guò)“一鍋煮”反應(yīng)方便得到,產(chǎn)率高,可實(shí)現(xiàn)大規(guī)模生產(chǎn)[35,41-42].

        圖1 菲并咪唑的結(jié)構(gòu)

        2 菲并咪唑類有機(jī)電致發(fā)光材料的性質(zhì)與應(yīng)用

        在文獻(xiàn)的調(diào)研和綜述過(guò)程中,我們發(fā)現(xiàn)菲并咪唑類有機(jī)電致發(fā)光材料主要在熒光材料和主體材料上有著廣泛的應(yīng)用.其中,根據(jù)材料的結(jié)構(gòu)設(shè)計(jì)特點(diǎn),我們把菲并咪唑類熒光材料細(xì)分成雙菲并咪唑類和單菲并咪唑類來(lái)逐一介紹.

        2.1 雙菲并咪唑類熒光材料

        基于菲并咪唑本身的高效發(fā)光性質(zhì),Liu課題組[44]和Ma課題組[11]把兩個(gè)菲并咪唑基團(tuán)對(duì)位連接分別得到了結(jié)構(gòu)相似的雙菲并咪唑衍生物PPIP和BPPI.如圖2所示,其中,基于PPIP的器件獲得了最大電流效率(CEmax)7.47 cd A-1,最大外量子效率(EQEmax)6.31%和最大功率效率(PEmax)7.3 lm W-1,開啟電壓(Von)低于3 V,但效率滾降比較嚴(yán)重,色純度有待提高(CIEy=0.14).Ma課題組發(fā)現(xiàn)分子BPPI雖發(fā)光高效,但載流子傳輸性能不夠平衡,通過(guò)在N1位置的苯環(huán)修飾得到了氰基取代的菲并咪唑衍生物CN-BPPI[45],利用分子間的弱作用力,材料的熱穩(wěn)定性和發(fā)光量子產(chǎn)率明顯提高(固態(tài)、液態(tài)都約為1),電子和空穴的注入和傳輸性能更加平衡,光電性能進(jìn)一步得到完善.為了改善分子BPPI的色純度,Wang等人[46]把對(duì)位連接的聯(lián)苯變成間位方式,得到一對(duì)二聚菲并咪唑的同分異構(gòu)體Z-BPPI和L-BPPI.分子均在深藍(lán)區(qū)發(fā)光,CIE色坐標(biāo)分別為(0.16,0.10)和(0.16,0.11).但由于分子的高度扭曲,導(dǎo)致聚集態(tài)結(jié)構(gòu)堆積不緊密,難以形成長(zhǎng)程的載流子傳輸通道,一定程度上降低了器件的性能.

        圖2 雙菲并咪唑衍生物PPIP、TPIP、APIP、BPPI、CN-BPPI、Z-BPPI和L-BPPI

        臺(tái)灣的Cheng課題組[47]在聯(lián)苯之間引入雙鍵獲得了兩種n-型客體發(fā)光材料PPIE和TPIE.如圖3所示,雙鍵的引入使分子扭曲增大,光譜藍(lán)移.其中以PPIE為客體的摻雜器件的CEmax為10.4 cd A-1,EQEmax為7.9%,CIE(0.14,0.15),是目前報(bào)道的菲并咪唑類藍(lán)色熒光材料中最高器件效率.我們課題組[38,48]在聯(lián)苯之間引入苯環(huán)和萘環(huán)分別得到了兩系列深藍(lán)發(fā)光分子BBTPI和XBTPI,NBTPI和2NBTPI.BBTPI采取錯(cuò)位平行的堆積方式促進(jìn)了分子間的載流子交流作用,基于它的非摻雜器件的CEmax和EQEmax分別達(dá)到5.48 cd A-1和5.77%,CIE(0.15,0.10).而XBTPI分子的色飽和度更好,CIE(0.16,0.05),但EQEmax只有4.93%,這可能是聚集態(tài)下XBTPI分子間未能形成有效的載流子交流通道,致使載流子遷移性能下降.而2NBTPI分子由于空間位阻大的萘環(huán)使分子的扭曲程度加重,光譜藍(lán)移到(0.15,0.09),EQEmax達(dá)到了5.95%,而且效率滾降非常小,在1000 cd m-2的亮度下,外量子效率依然保持著5.6%.

        間位連接模型是提高分子色純度的有效策略,我們以苯環(huán)和吡啶環(huán)為橋連分別得到兩個(gè)間位相連的雙菲并咪唑衍生物MBBTPI和2,6-BTPIPy[49-50].間位方式成功地限制了分子的共軛長(zhǎng)度,光譜藍(lán)移到深藍(lán)區(qū),基于MBBTPI的器件的CIE色坐標(biāo)為(0.16,0.05),CEmax達(dá)到了1.99 cd A-1.而2,6-BTPIPy分子不僅深藍(lán)發(fā)光,吡啶環(huán)的拉電子作用使分子具有優(yōu)秀的電子傳輸能力,以它為發(fā)光層和電子傳輸層的非摻雜雙層器件的EQEmax達(dá)到了4.26%,CIE色坐標(biāo)為(0.15,0.10);可以媲美大多數(shù)對(duì)位連接的高效藍(lán)光材料. Wang等人[51]為進(jìn)一步提高分子的色純度,采取雙間位的連接方式合成了分子MM-BPPI 和MM-CNBPPI,分子均在藍(lán)紫光區(qū)發(fā)光,相應(yīng)的CIE色坐標(biāo)分別為(0.158,0.060)和(0.156,0.050),但大幅度的扭曲造成器件性能不夠理想.

        圖3 雙菲并咪唑衍生物PPIE和TPIE、BBTPI、XBTPI、NBTPI、2NBTPI、MBBTPI、2,6-BTPIPy、MM-BPPI和MM-CNBPPI

        菲并咪唑的N1和C2號(hào)位置容易修飾,且有著不同的發(fā)光特性,Wang等人[52]結(jié)合實(shí)驗(yàn)和理論計(jì)算對(duì)比BPPI和N-BPPI分子的發(fā)光性質(zhì)(圖4),發(fā)現(xiàn)BPPI相鄰的高能級(jí)激子能壘較大,難以轉(zhuǎn)化成單線態(tài)激子輻射發(fā)光;而N-BPPI雖發(fā)光效率低,但由于較強(qiáng)的軌道耦合作用,激子利用率高.我們課題組巧妙結(jié)合兩個(gè)位置的特點(diǎn),合成了兩個(gè)非對(duì)稱型雙菲并咪唑衍生物4NPI-BP-4PI和3NPI-BP-4P[53].它們的非摻雜器件的EQEmax分別為5.56%和4.95%,CIE色坐標(biāo)為(0.15,0.08)和(0.15,0.06),激子生成率高達(dá)31%,突破了傳統(tǒng)熒光材料單線態(tài)激子生成率25%的理論極限.Ma課題組以砜為受體,菲并咪唑?yàn)楣w得到了一個(gè)局域態(tài)(LE)和電荷轉(zhuǎn)移態(tài)(CT)雜化(HLCT)的藍(lán)光分子PMSO[54],利用CT激子的弱束縛能力,發(fā)生CT激子的返轉(zhuǎn),使得基于它的摻雜器件高效深藍(lán)發(fā)光,CIE色坐標(biāo)為(0.152,0.077)且EQEmax高達(dá)6.8%.

        2.2 單菲并咪唑類熒光材料

        在菲并咪唑基團(tuán)的C2和N1位置引入不同的功能基團(tuán)是構(gòu)筑菲并咪唑衍生物的常用方法.我們課題組合成了一系列以芳胺為給體的菲并咪唑衍生物TPA-BPI、TPA-TPI 和PATPA[30].如圖5所示,在N1位置引入的三苯胺對(duì)分子的能級(jí)幾乎沒(méi)有影響,且器件的啟動(dòng)電壓高,電致發(fā)光效率低劣,而噻吩橋連雖有利于空穴的傳輸,但光譜偏離藍(lán)光區(qū).而在C2位置引入苯胺的TPA-BPI發(fā)光高效,器件性能突出,CEmax、PEmax和EQEmax分別為2.63 cd A-1,2.53 lm W-1和3.08%,CIE色坐標(biāo)為(0.15,0.09).為了抑制分子的堆積作用和整體的共軛性,我們?cè)诜撇⑦溥虻腃2位置引入樹枝狀的Müllen基團(tuán)得到了一系列藍(lán)紫光到天藍(lán)光發(fā)射的分子TTP-TPI、DPT-TPI和DPF-TPI[37].基于它們的器件的啟動(dòng)電壓低(Von≤3V),效率高效、穩(wěn)定.其中基于TTP-TPI的器件的CEmax和EQEmax分別為2.1 cd A-1和5.02%,CIE(0.16,0.05).

        圖4 雙菲并咪唑衍生物NBPPI、4NPI-BP-4PI、3NPI-BP-4P、2,6-BTPIPy和PMSO

        圖5 菲并咪唑衍生物TPA-BPI、TPA-TPI、PATPA、TTP-TPI、DPT-TPI和DPF-TPI

        利用CT態(tài)是構(gòu)建高效發(fā)光材料的有效途徑,Ma課題組對(duì)菲并咪唑-給體基團(tuán)類材料的CT態(tài)性質(zhì)及其對(duì)電致發(fā)光性能的影響進(jìn)行了深入的研究.如圖6所示,結(jié)合理論計(jì)算和實(shí)驗(yàn)設(shè)計(jì)發(fā)現(xiàn)TPA-PPI分子中的高能態(tài)CT激子通過(guò)“熱激子”的過(guò)程,轉(zhuǎn)變成單線態(tài)激子輻射躍遷,從而成功實(shí)現(xiàn)效率的突破,利用該材料作為發(fā)光層的非摻雜器件的EQEmax、和CEmax分別為5.02%和5.66 cd A-1,CIE(015,0.11),材料的激子利用率超過(guò)熒光材料自旋統(tǒng)計(jì)25%的限制[32].隨后,為了改善器件的色純度,他們進(jìn)一步成功得到了扭曲型的HLCT分子TPA-PIM和mTPA-PPI[55-56].材料均在藍(lán)紫區(qū)發(fā)光,器件性能出色.其中TPA-PIM的電致發(fā)光光譜的半峰寬只有35 nm,色坐標(biāo)為(0.161,0.046),EQEmax為3.0%;而mTPA-PPI分子的EQEmax達(dá)到了3.33%,色坐標(biāo)為(0.161,0.049).通過(guò)在N1位置引入強(qiáng)吸電子基團(tuán)氰基后,他們發(fā)現(xiàn)TBPMCN分子是一個(gè)CT和LE雜化準(zhǔn)等價(jià)的黃金HLCT分子,即光致發(fā)光效率和電致發(fā)光效率兼優(yōu),基于它的非摻雜器件的EQEmax高達(dá)7.8%,CEmax為10.5 cd A-1,CIE色坐標(biāo)為(0.16,0.16)[57-58].

        圖6 D-A型菲并咪唑衍生物TPA-PPI、TPA-PIM、mTPA-PPI、TPM、TPMCN和TBPMCN

        華中科技大學(xué)的Wang課題組[59-60]相繼在菲并咪唑的C2和N1位引入芳基蒽得到了一對(duì)同分異構(gòu)體2-NaCPI和2-NaNPI.如圖7所示,研究發(fā)現(xiàn)空間位阻較大的蒽能夠有效打斷分子的共軛,使分子在深藍(lán)區(qū)發(fā)光.Li等人[61]同時(shí)在C2和N1位連接芳基蒽合成了高扭曲結(jié)構(gòu)的分子DPA-PPI,分子的HOMO和LUMO軌道完全分離,具有雙極性,以它為發(fā)光層的摻雜器件的色坐標(biāo)藍(lán)移為(0.15,0.06),EQEmax為5.0%.最近,吉林大學(xué)的Wang課題組[62]將芳胺基、蒽基和菲并咪唑的優(yōu)點(diǎn)結(jié)合在一起合成了兩個(gè)高固體發(fā)光量子產(chǎn)率的綠光材料DPPA-PPI和tBuDPPA-PPI.叔丁基有效地抑制了分子的堆積效,tBuDPPA-PPI分子的發(fā)光位置藍(lán)移,而基于DPPA-PPI的非摻雜綠光器件性能突出,最大發(fā)光亮度高達(dá)100 290 cd m-2,CEmax、PEmax和EQEmax分別為14.3 cd A-1、13.9 lm W-1和5.02%.

        Lu課題組[63]利用芳基硅的四面體結(jié)構(gòu)來(lái)限制了分子的共軛和ICT作用合成了一個(gè)高效的藍(lán)紫光分子SiPIM.基于它的蒸鍍薄膜器件的色坐標(biāo)為(0.163,0.040),CEmax和EQEmax分別為1.94 cd A-1和6.29%,是目前報(bào)道的效率最高的藍(lán)紫光器件;同時(shí),SiPIM具有良好的溶解性和成膜性,基于它的溶液加工型器件的色坐標(biāo)依然保持在(0.157,0.041).后來(lái),他們以芳基硅為橋連合成了光學(xué)和電學(xué)能隙相分離的寬帶隙發(fā)光材料DCzSiPI[64].研究發(fā)現(xiàn),材料具有優(yōu)秀的載流子傳輸能力,基于它的非摻雜器件的EQEmax為3.5%,激子利用效率高達(dá)61%.

        圖7 菲并咪唑衍生物SiPIM、DCzSiPI、1-NaCPI、BTPE-PI、DPA-PPI、DPPA-PPI、BuDPPA-PPI、Ph-BPA-BPI和PyBPA-BPI

        聚集誘導(dǎo)熒光猝滅現(xiàn)象(ACQ)是造成材料光譜紅移和發(fā)光效率低的重要原因.Tang課題組[14]把具有聚集誘導(dǎo)熒光增強(qiáng)(AIE)的作用三苯基乙烯基團(tuán)同時(shí)引入到菲并咪唑的N1和C2位置,成功得到了AIE活化的深藍(lán)光材料BTPE-PI,以其為發(fā)光層的非摻雜器件的效率分別為4.9 cd A-1,4.4 lm W-1和4.0%,色坐標(biāo)為(0.15,0.12);作為摻雜器件的發(fā)光層也實(shí)現(xiàn)了正白光發(fā)射,CEmax和EQEmax分別為10.7 cd A-1和6.4%,色坐標(biāo)為(0.33,0.33).最近,我們課題組首次在菲并咪唑的6號(hào)和9號(hào)位引入剛性的菲和芘基團(tuán),分別得到了深藍(lán)光發(fā)射的Ph-BPA-BPI分子和天藍(lán)光發(fā)射的Py-BPA-BPI分子[65].分子表現(xiàn)出HLCT特性,基于它們的非摻雜藍(lán)光器件的激子利用率分別為36.2%和39.2%.其中,基于Py-BPA-BPI的非摻雜器件的CEmax、PEmax和EQEmax分別為10.9 cd A-1、10.5 lm W-1和5.64%,CIE色坐標(biāo)為(0.17,0.29).

        2.3 菲并咪唑類磷光主體材料

        菲并咪唑是典型的寬帶隙材料(~3.4eV),有著較高的三線態(tài)能級(jí)(ET),因此在主體材料的設(shè)計(jì)上引起了廣泛的關(guān)注.Yang等人將高ET的咔唑基團(tuán)與菲并咪唑相連,改變它們的連接方式合成了一系列雙極性主體材料pPhBICP、mPhBICP、pPhBINCP和mPhBINCP[41].如圖8所示,材料具有較高的ET(>2.5 eV).其中,以mPhBINCP為主體材料的綠光器件的CEmax為77.6 cd A-1,PEmax為80.3 lm W-1,EQEmax高達(dá)21.0%.隨后,他們課題組在N1和C2位置同時(shí)引入咔唑并改變它們之間的連接方式,得到了一系列熱穩(wěn)性和成膜性能更好的雙極性綠光主體材料PhBIDpCP、PhBIDpmCP、PhBIDmpCP 和PhBIDmCP[42].其中PhBIDmpCP分子的載流子平衡,以它為主體的綠光器件效率也達(dá)到了74.3 cd A-1和74.4 lm W-1.

        圖8 基于菲并咪唑的主體材料pPhBICP、mPhBICP、pPhBINCP、mPhBINCP、PhBIDpCP、PhBIDpmCP、PhBIDmpCP和PhBIDmCP.

        吉林大學(xué)的Wang等人利用咪唑環(huán)氮原子的配位作用合成了兩個(gè)新穎的雙功能菲并咪唑金屬衍生物Be(PPI)2和Zn(PPI)2[66].如圖9所示,兩個(gè)金屬配合物具有剛性的扭曲結(jié)構(gòu),材料高效深藍(lán)發(fā)光且具有較高的ET.以Zn(PPI)2為發(fā)光層的非摻雜器件的CEmax為2.52 cd A-1,EQEmax為2.82%,色坐標(biāo)為(0.15,0.09);作為主體材料的綠光器件的CEmax和PEmax也達(dá)到了58.0 cd A-1和67.5 lm W-1.后來(lái),他們把膦氧基團(tuán)和高扭曲的芳基硅引入菲并咪唑當(dāng)中,分別得到了一系列的雙功能材料DPO-PPI、DPO-2PPI和Si (PPI)2[40,67].膦氧基團(tuán)的極化作用可以降低載流子的注入勢(shì)壘,促進(jìn)載流子的注入和傳輸,基于DPO-2PPI的紅、綠光器件的PEmax分別達(dá)到了21.3 lmW-1和73.3 lmW-1;而四面體結(jié)構(gòu)的芳基硅有效地抑制了分子的ICT作用和分子的整體共軛,材料具有雙極性和較高的ET,基于Si(PPI)2的綠光器件的PEmax為51.1 lmW-1,EQEmax為19.2%.

        最近,他們?cè)贜1位置引入菲并咪唑基團(tuán),在C2位置引入芳胺基團(tuán)合成了兩個(gè)較小的單、三線態(tài)能級(jí)差的雙功能材料PPI-PPITPA和PPI-PPIPCZ[68],分子的前沿軌道分離,形成雙載流子通道且具有較高的ET.基于PPI-PPITPA分子的非摻雜器件的CEmax、PEmax和EQEmax分別為5.6 cd A-1,5.5 lmW-1和7.7%,CIE色坐標(biāo)為(0.15,0.08);而PPI-PPIPCZ分子的器件性能更出色,EQEmax達(dá)到了8.1%,CIE(0.15,0.07),是目前非摻雜深藍(lán)光器件中表現(xiàn)最突出的.作為主體材料,器件的性能同樣突出.其中,最好的黃光器件的CEmax、PEmax和EQEmax分別為61.8 cd A-1,65.5 lm W-1和19.1%,紅光和綠光器件的EQEmax分別為18.0%和17.8%;充分展現(xiàn)了材料的多功能性和實(shí)用性.

        圖9 基于菲并咪唑的主體材料Be(PPI)2、Zn(PPI)2、Si(PPI)2、DPO-2PPI、PPI-PPITPA、PPI-PPIPCZ和PhBPI.

        Su課題組報(bào)道了兩個(gè)硫雜化三苯胺基團(tuán)為供體的菲并咪唑衍生物PPI-TPA-SO2-1和PPI-TPA-SO2-2[69].如圖10所示,與分子PPI-TPA相比,它們擁有更高的ET(>2.45 eV).其中,基于PPI-TPA-SO2-2分子的F/P型白光器件的CEmax、PEmax和EQEmax分別為47.6 cd A-1、53.4 lm W-1和15.6%.隨后,他們?cè)赥PA-PPI的橋連上引入苯環(huán)得到同樣具有HLCT特性和高ET的PhBPI分子[70].研究發(fā)現(xiàn):高能級(jí)的三線態(tài)激子可以通過(guò)激子逆轉(zhuǎn)的過(guò)程一方面增加材料的單線態(tài)激子生成率,另一方面巧妙地解決了三線態(tài)激子湮滅的難題,基于分子的單發(fā)光層F/P型白光器件的CEmax為51 cd A-1,PEmax為56.6 lm W-1,EQEmax為21.9%,是目前報(bào)道的最好的單發(fā)光層F/P型白光器件.最近,我們課題組利用芴基9號(hào)位的sp3雜化碳原子的間隔作用,成功合成了載流子傳輸性能平衡和ET較高的雙極性分子PPI-F-TPA[71].以它為發(fā)光層的非摻雜藍(lán)光器的CIE色坐標(biāo)為(0.16,0.05),EQEmax高達(dá)3.11%.同時(shí)作為橘紅光的主體材料的器件效率分別為27 cd A-1,28.3 lm W-1和12.5%,而且在高亮度10 000 cd m-2下,器件的效率衰減率僅為13.6%,是目前報(bào)道的橘紅光或紅光器件中衰減率最小之一.

        圖10 基于菲并咪唑的主體材料PPI-TPA-SO2-1、PPI-TPA-SO2-2、PhBPI和PPI-F-TPA

        3 結(jié)語(yǔ)

        綜上可知,發(fā)展高效的有機(jī)電致發(fā)光材料具有重要的理論意義和實(shí)用價(jià)值,菲并咪唑因其獨(dú)有的特點(diǎn)在目前高效深藍(lán)光熒光材料和磷光主體材料的設(shè)計(jì)上具有明顯的優(yōu)勢(shì).隨著OLED技術(shù)的進(jìn)步和材料的發(fā)展,相信菲并咪唑類材料在未來(lái)的全彩顯示和白光照明領(lǐng)域上有著更大的發(fā)展?jié)摿蛻?yīng)用前景.

        [1]黃劍,曹鏞.有機(jī)電致發(fā)光材料研究進(jìn)展[J].化工新型材料,2001,29(9):10-15.

        [2]陳金鑫,黃孝文.OLED夢(mèng)幻顯示器——材料與器件[J].北京:人民郵電出版社,2011:201.

        [3]黃春輝,李富友,黃維.有機(jī)電致發(fā)光材料與器件導(dǎo)論[M].上海:復(fù)旦大學(xué)出版社,2005.

        [4]MA S,F(xiàn)U Y,NI D,et al.Spiro-fluorene based 3D donor towards efficient organic photovoltaics[J]. Chemical Communications,2012,48(97):11847-11849.

        [5]WANG N,YU J,ZHENG Y,et al.Organic photovoltaic cells based on a medium-bandgap phosphorescent material and C60[J].The Journal of Physical Chemistry C,2012,116(9):5887-5891.

        [6]MURAWSKI C,LEO K,GATHER M C.Efficiency roll-off in organic light-emitting diodes[J]. Advanced Materials,2013,25(47):6801-6827.

        [7]FLEETHAM T,ECTON J,WANG Z,et al.Single-doped white organic light-emitting device with an external quantum efficiency over 20%[J].Advanced Materials,2013,25(18):2573-2576.

        [8]BARTELS L.Tailoring molecular layers at metal surfaces[J].Nature Chemistry,2010,2(2):87-95.

        [9]YOKOYAMA T,YOKOYAMA S,KAMIKADO T,et al.Selective assembly on a surface of supramolecular aggregates with controlled size and shape[J].Nature,2001,413(6856):619-621.

        [10]PAWIN G,WONG K L,KWON K Y,et al.A homomolecular porous network at a Cu(Ⅲ)surface [J].Science,2006,313(5789):961-962.

        [11]WANG Z,LU P,CHEN S,et al.Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials[J].Journal of Materials Chemistry,2011,21(14):5451-5456.

        [12]LAMPERT M A,MARK P.Current injection in solids[M].New York:Academic Press,1970.

        [13]CHU T Y,SONG O K.Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine investigated by using space-charge-limited currents[J].Applied Physics Letters,2007,90(20):203512-203512.

        [14]QIN W,YANG Z,JIANG Y,et al.Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes[J].Chemistry of Materials,2015,27(11):3892-3901.

        [15]SHIH P I,CHUANG C Y,CHIEN C H,et al.Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups[J].Advanced Functional Materials,2007,17(16):3141-3146.

        [16]CHIEN C H,CHEN C K,HSU F M,et al.Multifunctional deep-blue emitter comprising an anthracene core and terminal triphenylphosphine oxide groups[J].Advanced Functional Materials,2009,19(4):560-566.

        [17]HU J Y,PU Y J,SATOH F,et al.Bisanthracene-based donor-acceptor-type light-emitting dopants:highly efficient deep-blue emission in organic light-emitting devices[J].Advanced Functional Materials,2014,24(14):2064-2071.

        [18]KIM R,LEE S,KIM K H,et al.Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit[J].Chemical Communications,2013,49(41):4664-4666.

        [19]ZHANG T,LIU D,WANG Q,et al.Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps[J].Journal of Materials Chemistry,2011,21(34):12969-12976.

        [20]WONG K T,CHIEN Y Y,CHEN R T,et al.Ter(9,9-diarylfluorene)s:highly efficient blue emitter with promising electrochemical and thermal stability[J].Journal of the American Chemical Society,2002,124(39):11576-11577.

        [21]TAO S L,PENG Z K,ZHANG X H,et al.Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability[J].Advanced Functional Materials,2005,15(10):1716-1721.

        [22]ZOUY,ZOUJ,YET,et al.Unexpected propeller-like hexakis(fluoren-2-yl)benzene cores forsix-arm star-shaped oligofluorenes:highly efficient deep-blue fluorescent emitters and good hole-transporting materials[J].Advanced Functional Materials,2013,23(14):1781-1788.

        [23]TONG Q X,LAI S L,CHAN M Y,et al.Highly efficient blue organic light-emitting device based on a nondoped electroluminescent material[J].Chemistry of Materials,2008,20(20):6310-6312.

        [24]LIN S L,CHAN L H,LEE R H,et al.Highly efficient carbazole- -dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes[J].Advanced Materials,2008,20(20):3947-3952.

        [25]HANCOCK J M,GIFFORD A P,TONZOLA C J,et al.High-efficiency electroluminescence from new blue-emitting oligoquinolines bearing pyrenyl or triphenyl endgroups[J].The Journal of Physical Chemistry C,2007,111(18):6875-6882.

        [26]TONZOLACJ,KULKARNIAP,GIFFORDAP,etal.Blue-light-emitting oligoquinolines:synthesis,properties and high-efficiency blue-light-emitting diodes[J].Advanced Functional Materials,2007,17 (6):863-874.

        [27]LEE S J,PARK J S,YOON K J,et al.High-efficiency deep-blue light-emitting diodes based on phenylquinoline/carbazole-based compounds[J].Advanced Functional Materials,2008,18(24):3922-3930.

        [28]ZHANG Q,LI J,SHIZU K,et al.Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes[J].Journal of the American Chemical Society,2012,134(36):14706-14709.

        [29]HIRATA S,SAKAI Y,MASUI K,et al.Highly efficient blue electroluminescence based on thermally activated delayed fluorescence[J].Nature Materials,2015,14(3):330-336.

        [30]ZHANG Y,LAI S L,TONG Q X,et al.High efficiency nondoped deep-blue organic light emitting devices based on imidazole--triphenylamine derivatives[J].Chemistry of Materials,2011,24(1):61-70.

        [31]ZHANG Y,LAI S L,TONG Q X,et al.Synthesis and characterization of phenanthroimidazole derivatives for applications in organic electroluminescent devices[J].Journal of Materials Chemistry,2011,21(22):8206-8214.

        [32]LI W,LIU D,SHEN F,et al.A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient,deep-blue electroluminescence[J].Advanced Functional Materials,2012,22(13):2797-2803.

        [33]RICHAUD A,BARBA-BEHRENSN,MéNDEZF.Chemical reactivity of the imidazole:a semblance of pyridine and pyrrole?[J].Organic Letters,2011,13(5):972-975.

        [34]張瑩.菲并咪唑衍生物的設(shè)計(jì),合成,表征及其在有機(jī)電致發(fā)光器件中的應(yīng)用[D].汕頭:汕頭大學(xué),2011.

        [35]袁熠.菲并咪唑衍生物的設(shè)計(jì)、合成、表征及其在非摻雜有機(jī)電致發(fā)光器件中的應(yīng)用[D].汕頭:汕頭大學(xué),2013.

        [36]陳文鋮.基于雙菲并咪唑衍生物的高效深藍(lán)有機(jī)電致發(fā)光材料的設(shè)計(jì)、合成及其應(yīng)用[D].汕頭:汕頭大學(xué),2014.

        [37]YUAN Y,CHEN J X,LU F,et al.Bipolar phenanthroimidazole derivatives containing bulky polyaromatic hydrocarbons for nondoped blue electroluminescence devices with high efficiency and lowefficiency roll-off[J].Chemistry of Materials,2013,25(24):4957-4965.

        [38]CHEN W C,YUAN Y,WU G F,et al.Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility[J].Advanced OpticalMaterials,2014,2(7):626-631.

        [39]YUAN Y,LI D,ZHANG X,et al.Phenanthroimidazole-derivative semiconductors as functional layer in high performance OLEDs[J].New Journal of Chemistry,2011,35(7):1534-1540.

        [40]WANG K,WANG S,WEI J,et al.New multifunctional phenanthroimidazole-phosphine oxide hybrids for high-performance red,green and blue electroluminescent devices[J].Journal of Materials Chemistry C,2014,2(33):6817-6826.

        [41]HUANG H,WANG Y,ZHUANG S,et al.Simple phenanthroimidazole/carbazole hybrid bipolar hostmaterialsforhighlyefficient green and yellow phosphorescent organic light-emitting diodes[J].The Journal of Physical Chemistry C,2012,116(36):19458-19466.

        [42]HUANG H,WANG Y,WANG B,et al.Controllably tunable phenanthroimidazole-carbazole hybrid bipolar host materials for efficient green electrophosphorescent devices[J].Journal of Materials Chemistry C,2013,1(37):5899-5908.

        [43]WANG K,WANG S,WEI J,et al.Novel diarylborane-phenanthroimidazole hybrid bipolar host materialsforhigh-performancered,yellow and green electrophosphorescent devices[J].Organic Electronics,2014,15(11):3211-3220.

        [44]KUO C J,LI T Y,LIEN C C,et al.Bis(phenanthroimidazolyl)biphenyl derivatives as saturated blue emitters for electroluminescent devices[J].Journal of Materials Chemistry,2009,19(13):1865-1871.

        [45]WANG Z M,SONG X H,GAO Z,et al.Tuning of the electronic and optical properties of 4,4′-bis (1-phenyl-phenanthro[9,10-d]imidazol-2-yl)biphenylvia cyano substitution in un-conjugated phenyl[J]. RSC Advances,2012,2(25):9635-9642.

        [46]WANG Z,F(xiàn)ENG Y,LI H,et al.Dimeric phenanthroimidazole for blue electroluminescent materials:the effect of substituted position attached to biphenyl center[J].Physical Chemistry Chemical Physics,2014,16(22):10837-10843.

        [47]CHOU H H,CHEN Y H,HSU H P,et al.Synthesis of diimidazolylstilbenes as n-type blue fluorophores:alternative dopant materials for highly efficient electroluminescent devices[J].Advanced Materials,2012,24(43):5867-5871.

        [48]CHEN W C,YUAN Y,WU G F,et al.Molecular modification on bisphenanthroimidazole derivative for deep-blue organic electroluminescent material with ambipolar property and high performance[J].Organic Electronics,2015,17:159-166.

        [49]CHEN W C,WU G F,YUAN Y,et al.A meta-molecular tailoring strategy towards an efficient violet-blue organic electroluminescent material[J].RSC Advances,2015,5(23):18067-18074.

        [50]ZHU Z L,CHEN W,ZHANG L D,et al.Pyridine based meta-linking deep-blue emitter with high conjugation extent and electroluminescent efficiencies[J].Journal of Materials Chemistry C,2016,4,6249-6255.

        [51]WANG Z,LI X,XUE K,et al.Towards stable deep-blue emission and low efficiency roll-off in OLEDs based on phenanthroimidazole dimers[J].Journal of Materials Chemistry C,2016,4(9):1886-1894.

        [52]WANG Z,F(xiàn)ENG Y,ZHANG S,et al.Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole:remarkable substitution effectson the excited state properties and deviceperformance[J].Physical Chemistry Chemical Physics,2014,16(38):20772-20779.

        [53]CHEN M,YUAN Y,ZHENG J,et al.Novel bipolar phenanthroimidazole derivative design for a nondoped deep-blue emitter with high singlet exciton yields[J].Advanced Optical Materials,2015,3 (9):1215-1219.

        [54]TANG X,BAI Q,PENG Q,et al.Efficient deep blue electroluminescence with an external quantum efficiencyof6.8%and cie y<0.08 based on a phenanthroimidazole sulfone hybrid donor acceptor molecule [J].Chemistry of Materials,2015,27(20):7050-7057.

        [55]LI W,YAO L,LIU H,et al.Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of35nmandaycoordinate<0.05 based on a fully twisting donor acceptor molecule[J].Journal of Materials Chemistry C,2014,2(24):4733-4736.

        [56]LIU H,BAI Q,YAO L,et al.Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor-acceptor molecule[J].Chemical Science,2015,6(7):3797-3804.

        [57]ZHANG S,LI W,YAO L,et al.Enhanced proportion of radiative excitons in non-doped electrofluorescencegeneratedfromanimidazolederivative with an orthogonal donor acceptor structure[J].Chemical Communications,2013,49(96):11302-11304.

        [58]ZHANG S,YAO L,PENG Q,et al.Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED:A quasi-equivalent hybridized excited state[J].Advanced Functional Materials,2015,25(11):1755-1762.

        [59]ZHUANG S,SHANGGUAN R,JIN J,et al.Efficient nondoped blue organic light-emitting diodes based on phenanthroimidazole-substituted anthracene derivatives[J].Organic Electronics,2012,13 (12):3050-3059.

        [60]ZHUANG S,SHANGGUAN R,HUANG H,et al.Synthesis,characterization,physical properties,and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety[J].Dyes and Pigments,2014,101:93-102.

        [61]HE C,GUO H,PENG Q,et al.Asymmetrically twisted anthracene derivatives as highly efficient deep-blue emitters for organic light-emitting diodes[J].Journal of Materials Chemistry C,2015,3 (38):9942-9947.

        [62]GAO Z,CHENG G,SHEN F,et al.Highly efficient deep blue light emitting devices based on triphenylsilane modified phenanthro[9,10-d]imidazole[J].Laser&Photonics Reviews,2014,8(1):L6-L10.

        [63]LIU H,CHEN P,HU D,et al.Separation of electrical and optical energy gaps:selectively adjusting the electrical and optical properties for a highly efficient blue emitter[J].Chemistry-A European Journal,2014,20(8):2149-2153.

        [64]LI C,WEI J,SONG X,et al.Non-doped luminescent material based organic light-emitting devices displaying high brightness under very low driving voltage[J].Journal of Materials Chemistry C,2016,4 (29):7013-7019.

        [65]HUANG S,QI X,LIU T,et al.Towards safer rocket fuels:hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives[J].Chemistry-A European Journal,2016,22 (29):10187-10193.

        [66]WANG K,ZHAO F,WANG C,et al.High-performance red,green,and blue electroluminescent devices based on blue emitters with small singlet-triplet splitting and ambipolar transport property[J]. Advanced Functional Materials,2013,23(21):2672-2680.

        [67]LIU D,DU M,CHEN D,et al.A novel tetraphenylsilane-phenanthroimidazole hybrid host material for highly efficient blue fluorescent,green and red phosphorescent OLEDs[J].Journal of Materials Chemistry C,2015,3(17):4394-4401.

        [68]LI C,WANG S,CHEN W,et al.High performance full color OLEDs based on a class of molecules with dual carrier transport channels and small singlet-triplet splitting[J].Chemical Communications,2015,51(53):10632-10635.

        [69]LI Y,LI X L,CAI X,et al.Deep blue fluorophores incorporating sulfone-locked triphenylamine:the key for highly efficient fluorescence-phosphorescence hybrid white OLEDs with simplified structure [J].Journal of Materials Chemistry C,2015,3(27):6986-6996.

        [70]OUYANG X,LI X L,AI L,et al.Novel“hot exciton”blue fluorophores for high performance fluorescent/phosphorescent hybrid white organic light-emitting diodes with superhigh phosphorescent dopant concentration and improved efficiency roll-off[J].ACS Applied Materials&Interfaces,2015,7 (15):7869-7877.

        [71]LIU B,ZHAO J,LUO C,et al.A novel bipolar phenanthroimidazole derivative host material for highlyefficientgreenandorange-redphosphorescentOLEDswithlowefficiencyroll-offathighbrightness[J]. Journal of Materials Chemistry C,2016,4(10):2003-2010.

        Development and Application Perspective of Organic Lightemitting Materials Based on Phenanthroimidazole Derivatives

        HE Dan,LIU Bin,TONG Qingxiao
        (Department of Chemistryand KeyLaboratoryfor Preparation and Application of Ordered Structural Materials of GuangdongProvince,Shantou University,Shantou 515063,Guangdong,China)

        As a kind of excellent blue material building block,Phenanthro[9,10-d]dimidazole (PI)has attracted extensive attention on the design of efficient deep blue fluorescent and phosphor host materials,due to theirs high photoluminescence(PL)efficiency,good thermal stability,relatively balanced carrier injection and transport capacity,easy modification and facile synthesis.In this paper,research and development of organic electroluminescent materials based on PI are reviewed.The structure characteristics of PI group and the device performances of all kinds of derivatives systematically are introduced.The applications of PI derivatives in the full-color display and solid-state lighting in the future are prospected.

        phenanthroimidazole derivatives;organic light-emitting materials;blue fluorescence materials;phosphorescent host materials

        O622.6

        A

        2016-09-05

        佟慶笑(1974—),男(漢),山東梁山人,教授,博士生導(dǎo)師.研究方向:有機(jī)光功能材料,有機(jī)及超分子光化學(xué),精細(xì)化學(xué)品.E-mail:qxtong@stu.edu.cn.

        國(guó)家自然科學(xué)基金面上項(xiàng)目(51673113),國(guó)家基礎(chǔ)研究計(jì)劃973項(xiàng)目(2013CB834803)

        1001-4217(2017)02-0026-15

        猜你喜歡
        咪唑類電致發(fā)光激子
        全噴涂逐層組裝實(shí)現(xiàn)可穿戴電子織物高亮電致發(fā)光
        溴代咪唑類離子液體的合成
        咪唑類離子液體在儲(chǔ)能和換熱應(yīng)用中的研究進(jìn)展
        CdSeS合金結(jié)構(gòu)量子點(diǎn)的多激子俄歇復(fù)合過(guò)程*
        找到你了,激子素
        ZnO納米晶摻雜的有機(jī)電致發(fā)光特性
        氣相色譜-質(zhì)譜法測(cè)定祛痘化妝品中4種硝基咪唑類化合物
        長(zhǎng)程電子關(guān)聯(lián)對(duì)聚合物中激子極化率的影響
        密度泛函理論研究咪唑類硝基衍生物的性能
        有機(jī)發(fā)光二極管中三重態(tài)激子的單重態(tài)轉(zhuǎn)換
        太大太粗太爽免费视频| 亚洲色欲综合一区二区三区| 狠狠久久亚洲欧美专区| 色偷偷亚洲第一综合网| 久久国产精品免费专区| 99精品国产成人一区二区| 国产成人综合亚洲精品| 亚洲成在人线电影天堂色| 搞黄色很刺激的网站二区| 欧美拍拍视频免费大全| 欧美bbw极品另类| 加勒比无码专区中文字幕| 好看的国内自拍三级网站| 国产综合精品久久99之一| 亚洲精品国偷拍自产在线麻豆| 99视频全部免费精品全部四虎| 亚洲色图视频在线观看,| 亚洲一区二区在线观看网址| 最近免费mv在线观看动漫| 综合色久七七综合尤物| 国产丝袜在线福利观看| 爽爽影院免费观看| 国产高清在线精品一区| 亚洲国产精品久久久性色av| 日本久久久精品免费免费理论| 亚洲av永久无码精品古装片| 236宅宅理论片免费| 国产精品女丝袜白丝袜| 日本美女在线一区二区| 亚洲精品无码永久在线观看你懂的 | 亚洲av无码xxx麻豆艾秋| 亚洲偷自拍另类图片二区| 翘臀诱惑中文字幕人妻| 成人免费a级毛片无码片2022| 亚洲av有码在线天堂| 蜜臀av中文人妻系列| 日本区一区二区三视频| 青草视频在线播放| 精品无码成人片一区二区| 午夜视频一区二区三区播放| 国产高潮视频在线观看|