亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Generalization on Inequalities of Hermite-Hadamard’s Integration

        2017-06-05 15:01:17LIANTieyanTANGWei
        關(guān)鍵詞:氮氧化合物氮化合物中氮

        LIAN Tie-yan,TANG Wei

        (1.College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;2.College of Electrical and Information Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China)

        The Generalization on Inequalities of Hermite-Hadamard’s Integration

        LIAN Tie-yan1,TANG Wei2

        (1.College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;2.College of Electrical and Information Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China)

        Some new inequalities of Hermite-Hadamard’s integration are established.As for as inequalities about the righthand side of the classical Hermite-Hadamard’s integral inequality refined by S Qaisar in[3],a new upper bound is given.Under special conditions, the bound is smaller than that in[3].

        Hermite-Hadamard’s integral inequality;convex function;the H¨older’s integral inequality;third derivative

        §1.Introduction

        It is common knowledge in mathematical analysis that a function f:I?R→R is said to be convex on an interval I if the inequality

        is valid for all x,y∈I and λ∈[0,1].

        Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamard’s integral inequality,due to its rich geometrical significance and applications,which is stated as follow[1].

        If f:I?R→R is a convex function on I and a,b∈I with a<b,then the double inequalities

        hold.

        A function f:[a,b]?R→R is called a quasi-convex on[a,b],if f(λx+(1-λ)y)≤sup{f(x),f(y)}for all x,y∈[a,b]and λ∈[0,1].

        Since its discovery in 1893,Hermite-Hadamard’s integral inequality has been considered the most useful inequality in mathematical analysis.In[2],D A Ion discussed inequalities of the right-hand side of the Hermite-Hadamard’s integral inequality for functions whose derivatives in absolute values are quasi-convex functions.

        Theorem 1.1[2,Theorems1and2]Assume that a,b∈R with a<b,f is differentiable function on(a,b)and f′∈L[a,b].

        (1)If|f′|is quasi-convex on[a,b],then

        In[3],S Qaisar refined the above inequalities for functions whose third derivatives in absolute values at certain power are quasi-convex functions.

        Theorem 1.2[3,Theorems2.2,2.3and2.4]Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.

        (1)If|f′′′|is a quasi-convex function on[a,b]and p>1,then

        For more results on Hermite-Hadamard’s integral inequality providing new proofs,noteworthy extensions,generalizations and numerous applications,see[1-11]and the references therein.

        In this paper,we will create some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex.

        §2.Proof Different from the Literature[2]

        For establishing some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex,we need an integral identity below.

        Lemma 2.1[3]Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b,then

        Since|f′′′|qis convex on[a,b],we have

        Then by using the facts

        The proof is completed.

        Theorem 2.2Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|qis a quasi-convex function on[a,b]and q>1,then

        Since|f′′′|qis quasi-convex on[a,b],we have

        Then by using the fact

        we get

        The proof is completed.

        (3)燃料型氮氧化合物。此種氮氧化合物由燃料中的氮化合物在燃燒中氧化而成,由于燃料中氮的熱分解溫度低于粉煤燃燒的溫度,600~800 ℃時(shí)就會(huì)生成燃料型氮氧化合物,其在煤粉燃燒中NOx產(chǎn)物中占60%~80%。在生成燃料型NOx過(guò)程中,首先是含有氮的有機(jī)化合物熱裂解產(chǎn)生N、CN、HCN等中間產(chǎn)物基團(tuán)。然后再氧化成為NOx。由于煤在燃燒過(guò)程中包含揮發(fā)分和焦炭燃燒兩個(gè)部分,故燃料型的氮氧化合物形成也由氣相氮的氧化(揮發(fā)分)形成和焦炭燃燒形成兩個(gè)部分組成(圖1)。

        Remark 2.1It’s clear that inequality(2.2)is equivalent to inequality(1.6).

        §3.Some New Hermite-Hadamard Type’s Integral Inequalities

        Theorem 3.1Let f:I?R→R be differentiable on I such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|qis a convex function on[a,b]and q≥1,then

        ProofFirst of all,we can prove that the two integral identities(3.2)and(3.3)hold.

        If q=1,by using Lemma 2.1,|f′′|’s convexity on[a,b]and identity(3.3),we have

        Since|f′′′|qis convex on[a,b],then

        Utilizing the inequalities(3.2)~(3.3),(3.5)~(3.6),we get(3.1).

        Corollary 3.1Suppose all the conditions of Theorem 3.1 are satisfied.Then

        Theorem 3.2Let f:I?R→R be differentiable on I,such that f′′′∈L[a,b],where a,b∈I with a<b.If|f′′′|is a convex function on[a,b],then for n∈N,the following inequality holds:

        ProofBy using Lemma 2.1 and well known the H¨older’s integral inequality,we have

        Since|f′′|is a convex function on[a,b],it is easy to prove that|f′′|2nis also a convex function on[a,b].Then we have

        Then by using the fact Z1

        we get

        The proof is completed.

        In the case that a quasi-convex function is also a convex function,we can do the following comparison.

        Remark 3.1The bound of inequality(3.4)is smaller than that’s of inequality(1.5),the bound of inequality(3.1)is smaller than that’s of inequality(1.6)and(1.7),so the results in [3]are generalized.

        §4.Application to Some Special Means

        Now,we consider the applications of our Theorems to the special means.

        Using the result of Theorem 3.1,we have the following theorem.

        Theorem 4.1For positive number a,b such that a<b with α≥1 and q≥1,we have

        AcknowledgementsThe author is grateful to the anonymous referees for their helpful comments and suggestions.

        [2]ION D A.Some estimates on the Hermite-Hadamard inequality through quasi-convex functions[J].Ann Univ Craiova Math Comp Sci Ser,2007,(34):82-87.

        [3]QAISAR S,HUSSAIN S,HE C J.On new inequalities of Hermite-Hadamard type for functions whose third derivative absolute values are quai-convex with applications[J].Journal of the Egyptian Mathematical Societly,2014,22(1):19-22.

        [4]DRAGMOMIR S S,FITZPATRICK S.The Hadamard inequality for s-convex functions in the second sense[J].Demonstratio Math,1999,32(4):687-696.

        [5]DRAGMOMIR S S,AGARWAL R P.Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula[J].Appl Math Lett,1998,11(5):91-95.

        [6]KIRMACI U S,KLARICIC B K,DEMIR M E,et al.Hadamard-type inequalities for s-convex functions[J]. Appl Math Comput,2007,193(1):26-35.

        [7]KIRMACI U S,DEMIR M E.On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J].Appl Math Comput,2004,153(1):361-368.

        [8]KIRMACI U S.Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J].Appl Math Comp,2004,147(1):137-146.

        [9]LATIF M A,DRAGOMIR S S.New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications[J].Acta Universitatis Matthiae Belii Series Mathematics, 2013,145(1):24-39.

        [10]QAISAR S,HUSSAIN S,HE C J.On new inequalities of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex with applications[J].Journal of the Egyptian Mathematical Societly,2014,22(1):19-22.

        [11]HUANG Li-ping.The improvement of Fischer’s inequality and Hadamard’s inequality[J].Chin Quart J of Math,1994,9(3):13-18.

        tion:47A63

        :A

        1002–0462(2017)01–0034–08

        date:2015-09-24

        Supported by the Key Scientific and Technological Innovation Team Project in Shaanxi Province(2014KCT-15)

        Biography:LIAN Tie-yan(1978-),female,native of Weinan,Shaanxi,a lecturer of Shaanxi University of Science and Technology,M.S.D.,engages in operator theory.

        CLC number:O177.1

        猜你喜歡
        氮氧化合物氮化合物中氮
        思維模型在含氮化合物相關(guān)計(jì)算中的應(yīng)用
        淺析低氮燃燒技術(shù)在火電廠的應(yīng)用
        澳斯麥特爐氮氧化合物產(chǎn)生的原因分析
        焚燒爐尾氣中氮氧化合物的處理
        化工管理(2017年2期)2017-03-18 01:25:08
        氮氧化物廢氣的生化處理技術(shù)應(yīng)用研究
        化工管理(2017年5期)2017-03-05 08:28:57
        清水江水體和沉積物中氮、磷的分布及變化趨勢(shì)
        蒸餾滴定法測(cè)定高溫合金中氮的含量
        西藏濕地生態(tài)系統(tǒng)中氮循環(huán)微生物數(shù)量和多樣性研究
        西藏科技(2015年4期)2015-09-26 12:12:59
        煤焦油和石油基柴油餾分中含氮化合物的分離鑒定
        疊氮化合物B6H6-n(N3)n2-(n=1-6)生成熱的理論研究
        河南科技(2014年16期)2014-02-27 14:13:14
        日韩精品一区二区亚洲av性色| 欧美成人片一区二区三区| 熟妇人妻中文字幕无码老熟妇| 国产亚洲精品国看不卡| 国产丝袜美腿一区二区三区| 亚洲av中文无码字幕色本草| 国产精品久久毛片av大全日韩| 美女污污网站| av免费在线播放一区二区| 欧洲美熟女乱又伦av影片| 欧美jizzhd精品欧美| 国产av专区一区二区三区| 一本色道加勒比精品一区二区| 国产激情视频在线观看的 | 国产内射视频在线播放| 沐浴偷拍一区二区视频| 国产xxx69麻豆国语对白| 无码国产精品一区二区免费16| 亚洲国产一区久久yourpan| 成人影院在线观看视频免费| 性xxxx18免费观看视频| 亚洲伊人久久大香线蕉综合图片 | 色视频不卡一区二区三区| 日本爽快片100色毛片| 4444亚洲人成无码网在线观看| 无码AV大香线蕉伊人久久| 在教室轮流澡到高潮h免费视 | 亚洲国产精品sss在线观看av| 亚洲伦理一区二区三区| 成人做爰黄片视频蘑菇视频| 吃奶呻吟打开双腿做受视频| 久久亚洲黄色| 热热久久超碰精品中文字幕| 久久精品国产亚洲av超清| 搡老熟女中国老太| 甲状腺囊实性结节三级| 日韩在线不卡一区三区av| 亚洲小说图区综合在线| 欧美在线观看一区二区| 最新中文字幕乱码在线| 把女人弄爽特黄a大片|