亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Mean Values of the Hardy Sum

        2017-06-05 15:01:17WANGXiaoyingYUEXiaxia

        WANG Xiao-ying,YUE Xia-xia

        (School of Mathematics,Northwest University,Xi’an 710127,China)

        Mean Values of the Hardy Sum

        WANG Xiao-ying,YUE Xia-xia

        (School of Mathematics,Northwest University,Xi’an 710127,China)

        Let p≥5 be a prime.For any integer h,the Hardy sum is defined by

        which is related to the classical Dedekind sum.The mean values of the Hardy sum in short intervals are studied by using the mean value theorems of Dirichlet L-functions.

        Dedekind sum;Hardy sum;mean value;Dirichlet L-function

        §1.Introduction

        For integers h and k>0,the classical Dedekind sum is defined by

        The sum S(h,k)plays an important role in the transformation theory of the Dedekind η function(see[1]and Chapter 3 of[2]for details).

        In[3]Berndt studied the following Hardy sum

        which is related to the classical Dedekind sum and obtained some arithmetic properties(see[4]). Sitaramachandrarao[5]and Pettet[6]expressed the Hardy sum in terms of the Dedekind sum as follows

        For k=p being an odd prime,Zhang and Yi[7]studied the 2m-th power mean of H(h,p) and proved the following formula

        where m is a positive integer and ζ(s)is the Riemann zeta function.

        Xu and Zhang[8],studied the mean values of the Hardy sums in short intervals and showed some asymptotic formula.

        Proposition 1.1Let p≥5 be a prime and let b denote the multiplicative inverse of b modulo p.We have

        where ε is any fixed positive number.

        By using the ideas of[8],Liu[9]also studied the mean values of the Hardy sums in short intervals.

        Proposition 1.2Let p≥5 be a prime.Then

        We continue the study on the mean values of the Hardy sums and give some formulae.Our main results are the following

        Theorem 1.1Let p≥5 be a prime.We have

        §2.Identities Involving Certain Dirichlet Series

        Then we have

        ProofNoting that r(n)is a multiplicative function,we get

        It is easy to show that

        From Euler product formula,we can get

        Therefore

        This proves(2.1).

        Similarly we have

        This proves(2.2).

        By the Euler product formula we also get

        This completes the proof of(2.3).

        It is not hard to show that

        Therefore

        This proves(2.4).

        Similarly we have

        It is not hard to show that

        This completes the proof of(2.5).

        §3.Mean Values of the Dirichlet L-functions

        In this section,we shall prove some mean values of the Dirichlet L-functions,which will be used to prove Theorem 1.1.

        Theorem 3.1 Let p≥5 be a prime and let k and l be fixed non-negative integers.Then we have

        all odd Dirichlet characters modulo p.

        Proof Let N be an integer with p≤N<p4.By Abel’s identity we have

        From the P′olya-Vinogradov inequality we get

        So we haveNow from(3.1)~(3.4)and the orthogonality relations for characters we get

        First we consider M11.We have

        It is not hard to show that

        Then from(3.6)~(3.10)we have

        Similarly we can get

        Now taking N=p3and combining(3.5),(3.11)~(3.12),we have

        Note that r(2kn)=r(n).Thus from Theorem 2.1 we immediately get

        Similarly we have

        Theorem 3.2Let p≥5 be a prime and let k and l be fixed non-negative integers. Suppose that χ3is the non-principal character modulo 3 and χ4is the non-principal character modulo 4.Then we have

        Proof Note that

        Thus from Theorem 2.1 and the methods of Theorem 3.1,we have

        Theorem 3.3Let p≥5 be a prime and let k>0 be fixed integer.Then we have

        ProofNote that

        Thus from Theorem 2.1 and the methods of Theorem 3.1,we have

        §4.Mean Values of the Homogeneous Dedekind Sums

        Let q>3 be an integer and let χ be a Dirichlet character modulo q.The generalized Bernoulli numbers Bn,χare defined by

        Let r be a positive integer prime to q and let k≥0 be an integer.By(6)of[10]and(2.12) of[11],we have

        By using the above formula Liu[12]showed the following Lemma.

        Lemma 4.1Let χ be a primitive character modulo q>3.Then

        On the other hand,let p be a prime and a be a positive integer with(a,p)=1.By[13]we know that

        From Lemma 4.1 we have XX

        Similarly we get

        This proves Theorem 1.1.

        [1]RADEMACHER H,GROSSWALD E.Dedekind Sums[M].Washington:Carus Mathematical Monographs, 1972.

        [2]APOSTOL T M.Modular Functions and Dirichlet Series in Number Theory[M].New York:Springer-Verlag, 1976.

        [3]BERNDT B C.Analytic Eisenstein series,theta-functions,and series relations in the spirit of Ramanujan[J]. Journal F¨ur Die Reine Und Angewandte Mathematik,1978,303/304:332-365.

        [4]BERNDT B C,GOLDBERG L A.Analytic properties of arithmetic sums arising in the theory of the classical theta-functions[J].SIAM Journal on Mathematical Analysis,1984,15(1):143-150.

        [5]SITARAMACHANDRARAO R.Dedekind and Hardy sums[J].Acta Arithmetica,1987,48(4):325-340.

        [6]PETTET M R,SITARAMACHANDRARAO R.Three-Term relations for Hardy sums[J].Journal of Number Theory,1987,25(3):328-339.

        [7]ZHANG Wen-peng,YI Yuan.On the 2m-th power mean of certain Hardy sums[J].Soochow Journal of Mathematics,2000,26(1):73-84.

        [8]XU Zhe-feng,ZHANG Wen-peng.The mean value of Hardy sums over short intervals[J].Proceedings of the Royal Society of Edinburgh:Section a Mathematics,2007,137(4):885-894.

        [9]LIU Wei-xia.Mean value of Hardy sums over short intervals[J].Acta Mathematica Academiae Paedagogicae Ny′?regyh′aziensis New Series,2012,28(1):1-11.

        [10]SZMIDT J,URBANOWICZ J,ZAGIER D.Congruences among generalized Bernoulli numbers[J].Acta Arithmetica,1995,71(3):273-278.

        [11]KANEMITSU S,LI Hai-long,WANG Nian-liang.Weighted short-interval character sums[J].Proceedings of the American Mathematical Society,2011,139(5):1521-1532.

        [12]LIU Hua-ning.On the mean values of Dirichlet L-functions[J].Journal of Number Theory,2015,147: 172-183.

        [13]SCHINZEL A,URBANOWICZ J,VAN WAMELEN P.Class numbers and short sums of Kronecker symbols[J].Journal of Number Theory,1999,78(1):62-84.

        tion:11F20

        :A

        1002–0462(2017)01–0016–18

        date:2015-11-06

        Supported by the National Natural Science Foundation of China(11571277);Supported by the Science and Technology Program of Shaanxi Province(2016GY-077)

        Biography:WANG Xiao-ying(1964-),female,native of Changwu,Shaanxi,a professor of Northwest University,Ph.D.,engages in analytic number theory.

        CLC number:O156.4

        熟女少妇精品一区二区| 久久精品亚洲熟女九色| 四季极品偷拍一区二区三区视频| 99999久久久久久亚洲| 2019最新国产不卡a| 国产成人一区二区三区视频免费蜜 | 国产xxx69麻豆国语对白| 亚洲精品自产拍在线观看| 久久99老妇伦国产熟女高清| 91国产自拍精品视频| 国产综合精品一区二区三区| 丰满人妻无奈张开双腿av | 亚洲天堂一二三四区在线| 国产欧美va欧美va香蕉在线| 好屌草这里只有精品 | 青青草伊人视频在线观看| 99精品国产一区二区三区| wwww亚洲熟妇久久久久| 好吊妞人成免费视频观看| 日韩精品av在线一区二区| 日韩少妇人妻中文字幕| 成人精品一区二区三区中文字幕 | 精品露脸熟女区一粉嫩av| 亚洲中文字幕无码中文字在线| 一本一本久久a久久精品| 久久久精品国产亚洲av网| 精品一区二区三区芒果| 男女啪啪永久免费观看网站| 久久亚洲国产欧洲精品一| 亚洲女同免费在线观看| 成人免费xxxxx在线观看| 中国一级免费毛片| 久久本道久久综合一人| 8x国产精品视频| 欧美xxxx黑人又粗又长精品| 精品黄色av一区二区三区| 在线观看国产视频你懂得| 伊人久久精品久久亚洲一区 | a级国产精品片在线观看| 中文字幕一区二区三区日日骚 | 欧美日韩不卡视频合集|