亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        玉米種子仿生脫粒機性能試驗與參數(shù)優(yōu)化

        2017-06-05 15:00:27李心平耿令新王升升姬江濤
        農(nóng)業(yè)工程學報 2017年5期
        關鍵詞:脫粒機凈率破碎率

        李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤

        玉米種子仿生脫粒機性能試驗與參數(shù)優(yōu)化

        李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤※

        (河南科技大學農(nóng)業(yè)裝備工程學院,洛陽 471003)

        玉米種子仿生脫粒機是依據(jù)雞喙離散玉米籽粒過程和裸手脫粒玉米籽粒過程的先離散后脫粒原理設計的,其具有低損傷、低破碎率等特點。為了優(yōu)化玉米種子仿生脫粒機脫粒系統(tǒng)的有關參數(shù),進而降低玉米種子在脫粒過程中的損傷,該文采用二次回歸正交旋轉(zhuǎn)組合設計的方法,以籽粒破碎率和脫凈率為主要性能指標,選取差速輥轉(zhuǎn)速、離散輥轉(zhuǎn)速、脫粒輥轉(zhuǎn)速和離散輥間隙、脫粒輥間隙為試驗因素,對玉米種子仿生脫粒機進行了性能試驗。并依據(jù)試驗結(jié)果分別對離散輥轉(zhuǎn)速與脫粒輥轉(zhuǎn)速對破碎率和脫凈率的影響,以及離散輥間隙與脫粒輥間隙對破碎率和脫凈率的影響進行分析。分析結(jié)果表明:當離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時,破碎率取得較小值;當離散輥轉(zhuǎn)速在230~300 r/min,脫粒輥轉(zhuǎn)速在150~200 r/min范圍內(nèi)時,籽粒脫凈率取得最大值100%。當離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時,籽粒破碎率取得最小值。當脫粒輥間隙在0~2.2 mm時脫凈率取得最大值100%。綜合以上結(jié)論,在試驗擬合曲線的基礎上按綜合評價法進行優(yōu)化,得到最優(yōu)參數(shù)組合為差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm。測得此時破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達到國家標準要求。

        農(nóng)業(yè)機械;仿生;種子;玉米;離散;脫粒;破碎率;脫凈率

        0 引 言

        玉米籽粒的破損影響玉米種子儲藏。遭受破損的玉米籽粒發(fā)芽率低,易生霉菌和蟲子、易破碎,而且其市場價值降低。國外玉米脫粒機的研制比較早,整體而言損失率低,脫凈率高,但體積設計較為龐大,且價格昂貴。中國目前玉米種子脫粒采用普通商品玉米脫粒的機型,以靠釘齒或窄板齒高速打擊玉米果穗而脫粒,滾筒轉(zhuǎn)速在700 r/min以上,脫粒獲得的籽粒破損大,嚴重影響種子發(fā)芽率和玉米產(chǎn)量,并且不利于精密播種等精細農(nóng)業(yè)的發(fā)展要求。種子安全是關系農(nóng)業(yè)安全的重大問題,因此降低玉米種子脫粒損傷成為機械脫粒的主要問題[1-8]。

        基于先離散后脫粒原理的玉米種子仿生脫粒機,具有不傷胚芽,破碎率低、未脫凈率低,對各品種玉米適應性強等先進性優(yōu)點,能夠滿足種子玉米脫粒的要求。本文是在玉米種子仿生脫粒機[9-10]上對玉米種子進行多因素試驗,在試驗分析的基礎上確定其最佳的各輥轉(zhuǎn)速和間隙,以獲得最優(yōu)的脫粒效果。

        1 基本構(gòu)造和工作原理

        本機由機架、進料口、差速輥、離散輥、脫粒輥、及籽粒回收區(qū)等構(gòu)成,整機結(jié)構(gòu)如圖1所示。

        圖1 仿生玉米脫粒機結(jié)構(gòu)示意圖Fig.1 Schematic diagram of seed corn bionic thresher

        本機核心部分是差速輥、離散輥和脫粒輥。玉米果穗由進料口隨機喂入,果穗與兩差速輥軸線不平行,在差速輥前端螺旋推進器軸向分力作用下,玉米果穗逐步矯正自己位置沿平行于兩差速輥軸線方向運動,果穗隨之被推入工作空間,玉米果穗首先進入離散輥與差速輥組成的離散空間,在離散輥仿雞喙離散單元作用下,破壞完整玉米果穗籽粒間組砌規(guī)律[11],使部分果穗籽粒離散,離散后的玉米果穗再進入脫粒輥與差速輥組成的脫??臻g,在脫粒輥與差速輥共同作用下完成仿裸手低損傷差速脫粒。被脫籽粒穿過差速輥之間縫隙,通過籽?;厥湛谶M行回收;玉米芯沿差速輥軸向排出機外。由于本機脫粒時玉米果穗沿差速輥軸向順序受力,玉米芯完整無斷裂,可節(jié)省清選系統(tǒng),減少功率消耗。

        2 試驗設備、方法和材料

        如圖1所示,試驗時差速輥、離散輥、脫粒輥分別由3臺電機帶動,每臺電機由YTSP1001L-4-2.2 kW型變頻器控制,以調(diào)節(jié)各輥轉(zhuǎn)速;離散輥間隙、脫粒輥間隙是指離散輥、脫粒輥與差速輥之間的最小間隙,其大小可由固定處軸承座加減墊片來調(diào)節(jié)[12-15]。試驗用玉米果穗選取鄭單958,含水率為12.5%。對試驗材料玉米果穗進行統(tǒng)計,記錄每一個果穗的長度、質(zhì)量、直徑等,挑選差別較小的玉米果穗進行試驗,其平均長度為18.7 cm,平均質(zhì)量為165.8 g,平均直徑為4.83 cm。

        破碎率的計算公式

        式中Y1為樣品中損傷籽粒的百分比;n1為樣品中損傷籽粒的數(shù)量;N1為樣品中全部籽??倲?shù)。

        脫凈率的計算公式

        式中Y2為樣品中脫掉籽粒的百分比;n2為樣品中脫掉籽粒的數(shù)量;N2為樣品中全部籽??倲?shù)。

        3 試驗方案的確定

        玉米果穗的破碎率和脫凈率與間隙和轉(zhuǎn)速有直接關系,因此選取差速輥轉(zhuǎn)速、離散輥轉(zhuǎn)速、脫粒輥轉(zhuǎn)速和離散輥間隙、脫粒輥間隙5個因素[16-20]。參考單因素試驗結(jié)果和正交試驗結(jié)果[21],綜合考慮選取差速輥轉(zhuǎn)速范圍50~150 r/min,離散輥轉(zhuǎn)速150~350 r/min,脫粒輥轉(zhuǎn)速150~350 r/min,離散輥間隙0~9.2 mm,脫粒輥間隙0~9.2 mm。

        試驗采用五元二次回歸正交旋轉(zhuǎn)組合設計選取差速輥轉(zhuǎn)速x1、離散輥轉(zhuǎn)速x2、脫粒輥轉(zhuǎn)速x3和離散輥間隙x4、脫粒輥間隙x5共5個因素為試驗因素。根據(jù)回歸試驗設計方法安排變量設計水平編碼表和二次回歸正交旋轉(zhuǎn)組合設計試驗表如表1、2,據(jù)設計水平編碼表其中五因素時γ = 2[22]。試驗結(jié)果統(tǒng)計發(fā)現(xiàn)玉米籽粒清潔度高,玉米芯無破損,因此以破碎率和脫凈率為主要指標進行分析。

        表1 因素水平編碼Table1 Coding of factor levels

        表2 二次回歸正交旋轉(zhuǎn)組合試驗設計Table2 Regression orthogonal rotation combination test design

        4 試驗因素對試驗指標影響的回歸分析

        4.1 回歸分析

        4.1.1 試驗因素影響破碎率的回歸分析

        破碎率試驗結(jié)果進行逐步回歸統(tǒng)計分析,求得各試驗因素與籽粒破碎率之間關系的回歸方程如式(3)所示,破碎率方程分析見表3所示[23-27]。

        表3 破碎率方差分析Table3 Results of broken rate variance analysis

        式中X1、X2、X3、X4、X5分別為x1、x2、x3、x4、x5的水平值。

        查 F 表,F(xiàn)0.05(15,11)=2.72,F(xiàn)Lf<F0.05(15,11),說明方程擬合得好;進一步用統(tǒng)計量F回對方程進行檢驗,已知F0.05(5,26)=2.59,F(xiàn)回>F0.05(5,26),回歸方程顯著。

        4.1.2 試驗因素影響脫凈率的回歸分析

        對脫凈率試驗結(jié)果進行逐步回歸統(tǒng)計分析,求得各試驗因素與果穗脫凈率之間關系的回歸方程如式(4)所示,破碎率方程分析見表4所示。

        查F表,F(xiàn)0.05(15,11)=2.72,F(xiàn)Lf<F0.05(15,11),說明方程擬合得好;進一步用統(tǒng)計量F回對方程進行檢驗,已知F0.05(5,26)=2.59,F(xiàn)回>F0.05(5,26),回歸方程顯著。

        表4 脫凈率方差分析Table4 Results of removal rate variance analysis

        4.2 雙因素影響試驗指標的效應分析

        4.2.1 離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對籽粒破碎率的影響效應分析

        令X1、X4、X5取零水平,得到破碎率與X2、X3的關系式(5)。

        圖2a即為脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對破碎率的影響響應曲面。從圖2a可以看出,當脫粒輥轉(zhuǎn)速固定在某一值時,離散輥轉(zhuǎn)速從150 r/min增加到350 r/min時,破碎率先增大后減小。這是因為離散輥轉(zhuǎn)速從150 r/min增加到250 r/min,離散輥對玉米果穗的離散力隨之增大,單位時間內(nèi)的離散單元與玉米果穗接觸的次數(shù)增加,有利于玉米果穗離散;而離散輥轉(zhuǎn)速在250~350 r/min時,隨著轉(zhuǎn)速增加,離散輥離散單元的線速度增大,與玉米果穗接觸時帶動果穗向后運動,使得脫粒時間減少,破損率減小。

        圖2 脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對破碎率和脫凈率的影響Fig.2 Effect of threshing roller speed and discrete roller speed on broken rate and removal rate

        當離散輥轉(zhuǎn)速固定在某一值時,隨著脫粒輥轉(zhuǎn)速的增加,破碎率逐漸下降。這是因為離散后的果穗組砌規(guī)律已經(jīng)被破壞,當轉(zhuǎn)速較低時,玉米籽粒主要由脫粒輥產(chǎn)生的脫粒力而進行脫粒的,破碎率較大;當脫粒輥轉(zhuǎn)速增加時,仿裸手脫粒單元對果穗的沖擊力增大,而由裸手脫粒試驗可知,力越大時對籽粒間組砌規(guī)律破壞越嚴重[28],籽粒之間相互作用力也增大,少部分籽粒受到的作用力傳遞到較大范圍的籽粒,最后蹦散開來。此時由于只有少部分籽粒直接受力,故破碎率比較小。由圖可知當離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時,籽粒破碎率較低。

        4.2.2 離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對脫凈率的影響效應分析

        令X1、X4、X5取零水平,得到脫凈率與X2、X3的關系式(6)。

        圖2b為脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對脫凈率的影響響應曲面。從圖中可以看出,脫粒輥轉(zhuǎn)速固定在某一值,離散輥轉(zhuǎn)速在150~350 r/min轉(zhuǎn)范圍內(nèi)變化時,脫凈率先增大,在250 r/min左右達到最大值,隨后維持一段,然后隨著離散輥轉(zhuǎn)速繼續(xù)增加,脫凈率減小。因為離散輥轉(zhuǎn)速在150~250 r/min時,轉(zhuǎn)速增加,對果穗的離散程度增大,破壞了玉米籽粒的組砌規(guī)律,且單位時間內(nèi)的離散單元與玉米果穗接觸的次數(shù)增加,從而有利于玉米果穗的離散;而當轉(zhuǎn)速在250~350 r/min時,隨著離散輥轉(zhuǎn)速增加,離散輥離散單元的線速度增大,與玉米果穗接觸時帶動果穗向后運動,使得離散時間減少,脫凈率減小。

        而當離散輥轉(zhuǎn)速固定在某一值時,隨著脫粒輥轉(zhuǎn)速增大,脫凈率逐漸減小。因為脫粒輥線速度增大,與玉米果穗接觸后作用力大,果穗未脫粒完成即離開脫粒輥下方,脫粒時間短,脫凈率減小。當離散輥轉(zhuǎn)速在230~330 r/min,脫粒輥轉(zhuǎn)速在150~300 r/min范圍內(nèi)時,籽粒脫凈率較高。

        4.2.3 離散輥間隙和脫粒輥間隙對籽粒破碎率的影響效應分析

        令X1、X2、X3取零水平,得到破碎率與X4、X5的關系式(7)。

        圖3a為脫粒輥間隙和離散輥間隙對破碎率的影響響應曲面。由圖3a可知,當離散輥間隙固定在0~4 mm之間某一值時,隨著脫粒輥間隙的增大,破碎率逐漸減小,間隙超過某一值時破碎率減小到0,隨后保持不變。這是因為脫粒輥間隙由0逐漸增大時,脫粒輥與玉米果穗間的相互作用力減弱,籽粒的損傷因而減小,破碎率持續(xù)降低,直至減小到0。當脫粒輥間隙在4~9.2 mm之間固定在某一值時,隨著脫粒輥間隙的增大,破碎率增大。因離散間隙較大時,離散輥對果穗的離散力減小,不易打破玉米籽粒間由組砌規(guī)律產(chǎn)生的相互作用力,對玉米果穗的離散效果不好,進而后續(xù)玉米果穗不易脫粒,使破碎率迅速增加。

        同理,當脫粒輥間隙固定在0~5 mm之間的某一值時,隨著離散輥間隙的增大,破碎率先減小,后逐漸增大。這是因為離散輥間隙增大時,離散輥對玉米果穗的作用力減小,玉米籽粒的損傷減少,碎率先減??;而當間隙持續(xù)增加,離散輥的離散效果逐漸變差,籽粒間由組砌規(guī)律產(chǎn)生的相互作用力仍大量存在,脫粒輥脫粒時需要很大離散力才能進行脫粒,于是加劇了籽粒的破碎,破碎率逐漸增大。當脫粒輥間隙固定在5~9.2 mm之間的某個值時,隨著離散輥間隙的增大,破碎率先保持0不變,隨后迅速增大。這是因為離散輥間隙較小時能夠充分破壞籽粒間的組砌規(guī)律,較好的進行離散,而此時的脫粒輥間隙相對較大,即能以較小的脫粒力將剩余果穗脫粒,又不會造成籽粒破碎,因而破碎率維持在0不變;而隨著離散輥間隙繼續(xù)增加,對果穗作用力減小,不能充分破壞籽粒的組砌規(guī)律,離散效果減弱,后續(xù)脫粒輥脫粒時困難加大,需要較大的作用力進行脫粒,籽粒破碎率增加。

        圖3 脫粒輥間隙和離散輥間隙對破碎率和脫凈率的影響Fig.3 Effect of the threshing roller gap and discrete roller gap on the broken rate and removal rate

        當離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時,籽粒破碎率取得最小值。

        4.2.4 離散輥間隙和脫粒輥間隙對籽粒脫凈率的影響效應分析

        令X1、X2、X3取零水平,得到破碎率與X4、X5的關系式(8)。

        如圖3b所示為離散輥間隙和脫粒輥間隙對籽粒脫凈率的影響效果響應曲面,當離散輥間隙固定在某一值不變,脫粒輥間隙9.2 mm減到0時,脫凈率持續(xù)增大,達到100%時保持不變。因為間隙減小,脫粒輥對玉米果穗的脫粒力增大,能夠破壞籽粒間組砌規(guī)律,脫粒效果好;當脫粒輥間隙降到某一臨界值時,脫凈率達到100%,而后保持不變。當脫粒輥間隙降到某一臨界值時,改變離散輥間隙,對脫凈率幾乎沒有明顯影響,說明離散輥間隙對脫凈率影響不明顯。這是因為離散輥在前,脫粒輥在后,脫粒輥對脫凈率起決定性作用。

        由圖3b中易知,脫粒輥間隙介于0~2.2 mm時,籽粒脫凈率取得最大值。

        5 參數(shù)優(yōu)化

        5.1 優(yōu)化分析

        將4.1.1節(jié)和4.1.2節(jié)中的破碎率和脫凈率的回歸方程進程按綜合評價法進行擬合[29-32]。為便于分析運算,引入未脫凈率Y3(即Y3=100-Y2)。破碎率與未脫凈率均以權(quán)重0.5:0.5的比例進行相加,計算評價值W1擬合的公式如下

        5.1.1 選取離散輥最佳轉(zhuǎn)速和脫粒輥最佳轉(zhuǎn)速

        令X1、X4、X5取零水平,得到評價值W1關于X2、X3的關系式:

        評價值W1為最小值時,即破碎率和未脫凈率的值均較小。有圖4可知,評價值W1在某一小范圍內(nèi)達到最小值,此時取離散輥轉(zhuǎn)速為350 r/min,脫粒輥轉(zhuǎn)速為350 r/min作為最佳參數(shù)組合。

        圖4 評價值W1的響應曲面Fig.4 Response surface of evaluation value W1

        5.1.2 選取離散輥最佳間隙和脫粒輥最佳間隙

        利用5.1.1節(jié)中已知最佳組合X2為350 r/min,X3為350 r/min,差速輥轉(zhuǎn)速X1取0水平,代入公式(9)得到僅含有X4、X5的評價值,此時該評價值記為W2:

        同理,評價值W2越小,說明破碎率越低,未脫凈率越低,二者綜合值越小。由圖5可知,評價值W2為最小值0時,離散輥間隙為4.6 mm,脫粒輥間隙為4.6 mm。

        圖5 評價值W2的響應曲面Fig.5 Response surface of evaluation value W2

        5.1.3 選取差速輥最佳轉(zhuǎn)速

        將已得到的最優(yōu)參數(shù)組合X2=350 r/min,X3=350 r/min,X4=4.6 mm,X5=4.6 mm帶入4.1.1節(jié)和4.1.2節(jié)中Y1和Y2的表達式,

        而Y1大于等于0,因而在最佳轉(zhuǎn)速與間隙條件下破碎率Y1始終是0;考慮未脫凈率Y3,以及此時僅余未知量X1的綜合評價值,記為W3:

        由圖6可知,當差速輥在50 r/min~90 r/min范圍內(nèi),評價值W3變化緩慢,說明差速輥轉(zhuǎn)速對脫凈率和破碎率綜合影響效果不大,而考慮到差速輥轉(zhuǎn)速決定了單位時間內(nèi)玉米果穗輸送量,為在較低的破碎率和較高脫凈率情況下提高生產(chǎn)率,取轉(zhuǎn)速90 r/min。

        圖6 評價值W3的響應曲面Fig.6 Response surface of evaluation value W3

        5.2 優(yōu)化結(jié)果驗證試驗

        在最佳條件差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm條件下進行驗證試驗,測得此時破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達到破碎率小于1%、未脫凈率小于1%的國家標準要求[33]。

        6 結(jié) 論

        1)對基于先離散后脫粒原理的玉米種子仿生脫粒機進行試驗。分析離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對破碎率和脫凈率的影響,當離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時,籽粒破碎率達到最小值;當離散輥轉(zhuǎn)速在230~300 r/min,脫粒輥轉(zhuǎn)速在150~200 r/min范圍內(nèi)時,籽粒脫凈率達到最大值。

        2)分析試驗結(jié)果中離散間隙和脫粒間隙對破碎率和脫凈率的影響效果,當離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時,籽粒破碎率取得最小值;脫粒間隙對脫凈率影響效果較明顯,脫粒輥間隙介于0~2.2mm時,籽粒脫凈率取得最大值。

        3)運用綜合評價法對結(jié)果進行優(yōu)化,得到整機性能參數(shù)的最優(yōu)參數(shù)組合為差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm。以最優(yōu)參數(shù)組合進行驗證試驗,破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達到低損傷脫粒的目的,為進一步降低玉米種子脫粒過程中的機械損傷提供參考。

        [1] Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, (99): 532-539.

        [2] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機械化水平促進農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學報,2016,32(1):1-11.

        Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)

        [3] 羅錫文,臧英,周志艷.精細農(nóng)業(yè)中農(nóng)情信息采集技術的研究進展[J]. 農(nóng)業(yè)工程學報,2006,22(1):167-173.

        Luo Xiwen, Zang Ying, Zhou Zhiyan. Research progress in farming information acquisition technique for precision agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 167-173. (in Chinese with English abstract)

        [4] 朱明,陳海軍,李永磊. 中國種業(yè)機械化現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學報,2015,31(14):1-7.

        Zhu Ming, Chen Haijun, Li Yonglei. Investigation and development analysis of seed industry mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 1-7. (in Chinese with English abstract)

        [5] Folarin A, Kosemani A, Babajide S. Development of a guinea corn thresher[C]//American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2011, 2: 1281-1288.

        [6] Tastra I K. Designing and testing an improved maize sheller [J]. Ama Agricultural Mechanization in Asia, Africa and Latin America, 2009, 40(1):12-17.

        [7] 徐立章,李耀明,王顯仁. 谷物脫粒損傷的研究進展分析[J]. 農(nóng)業(yè)工程學報,2009,25(1):303-307.

        Xu Lizhang, Li Yaoming, Wang Xianren. Research development of grain damage during threshing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 303-307. (in Chinese with English abstract)

        [8] 李心平,李玉柱,高吭,等. 種子玉米籽粒仿生脫粒機理分析[J]. 農(nóng)業(yè)機械學報,2011,42(2):99-103.

        Li Xinping, Li Yuzhu, Gao Hang, et al Bionic threshing process analysis of seed corn kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 99–103. (in Chinese with English abstract)

        [9] 李心平,馬義東,金鑫,等. 玉米種子仿生脫粒機設計與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(7):97-101.

        Li Xinping, Ma Yidong, Jin Xin, et al. Design and test of seed corn bionic thresher[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 97-101. (in Chinese with English abstract)

        [10] Li Xinping, Wu Kang, Ma Yidong. Quantitative analysis of geometric structures and experimental evaluation of rooster beak[J]. Bio Automation, 2016, 20(2): 205-214

        [11] 李心平,劉贏,馬義東,等. 玉米果穗籽粒間縫隙走向?qū)ζ溲h(huán)力衰敗的影響[J]. 農(nóng)機化研究,2015,37(1):183-187.

        Li Xinping, Liu Ying, Ma Yidong, et al. Effect of gap direction among corn ear kernels on the circulating dint decline[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 183-187. (in Chinese with English abstract)

        [12] 羅錫文,劉濤,蔣恩臣,等. 水稻精量穴直播排種輪的設計與試驗[J]. 農(nóng)業(yè)工程學報,2007,23(3):108-112.

        Luo Xiwen, Liu Tao, Jiang Enchen, et al. Design and experiment of hill sowing wheel of precision rice directseeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 108-112. (in Chinese with English abstract)

        [13] 趙武云,王廣萬,劉國春,等. 低破碎玉米種子脫粒機的研制[J]. 機械研究與應用,2010,23(1):132-134.

        Zhao Wuyun, Wang Guangwan, Liu Guochun, et al. Research and design on low damage corn seed sheller[J]. Machine research and Application, 2010, 23(1): 132-134. (in Chinese with English abstract)

        [14] 賈洪雷,趙佳樂,姜鑫銘,等. 行間免耕播種機防堵裝置設計與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(18):16-25.

        Jia Honglei, Zhao Jiale, Jiang Xinming, et al. Design and experiment of anti-blocking mechanism for inter-row notillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 16-25. (in Chinese with English abstract)

        [15] 何樹國,車剛,萬霖.5TY-10A型玉米種子脫粒機的研制與試驗研究[J].黑龍江八一農(nóng)墾大學學報,2006,18(3):55-58.

        He Shuguo, Che Gang, Wan Lin. Manufacture and study on 5TY-10A type corn seed thresher[J]. Journal of Heilongjiang August First Land Reclamation University, 2006, 18(3): 55-58. (in Chinese with English abstract)

        [16] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設計與試驗[J]. 農(nóng)業(yè)工程學報,2014,30(5):10–18.

        Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)

        [17] 韓長杰,楊宛章,張學軍,等. 穴盤苗移栽機自動取喂系統(tǒng)的設計與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(8):51-61.

        Han Changjie, Yang Wanzhang, Zhang Xuejun, et al. Design and test of automatic feed system for tray seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 51-61. (in Chinese with English abstract)

        [18] 吳良軍,楊 洲,洪添勝,等. 荔枝樹枝力學特性的試驗研究[J]. 農(nóng)業(yè)工程學報,2012,28(16):68-73.

        Wu Liangjun, Yang Zhou, Hong Tiansheng, et al. Experimental study on mechanical properties of litchi branches[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 68-73. (in Chinese with English abstract)

        [19] 張國忠,臧英,羅錫文,等. 水稻氣力式排種器導向型攪種裝置的設計與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(12):1-8.

        Zhang Guozhong, Zang Ying, Luo Xiwen, et al. Design and experiment of oriented seed churning device on pneumatic seed metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 1-8. (in Chinese with English abstract)

        [20] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學報,2014,30(8):30-39. Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)

        [21] Li Xinping, Wu Kang. Design and experiment of bionic discrete devices based on corn threshing system[J]. Chemical Engineering Transactions, 2016, 51(5), 127-132.

        [22] 李云雁,胡傳榮.試驗設計與數(shù)據(jù)處理[M]. 北京:化學工業(yè)出版社,2004.

        [23] 李心平,高連興. 差速式玉米種子脫粒機的性能試驗[J].農(nóng)業(yè)工程學報,2009,25(12):102-106.

        Li Xinping, Gao Lianxing. Performance test on corn thresher with different-speed threshing parts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 102-106. (in Chinese with English abstract)

        [24] 王晶,聶影,宮元娟,等. 玉米對生種子脫粒機試驗[J],農(nóng)業(yè)機械學報,2011,42(2):104-108.

        Wang Jing, Nie Ying, Gong Yuanjuan, et al. Experiment on thresher of maize pair seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 104-108. (in Chinese with English abstract)

        [25] 白曉虎,林靜,呂長義,等. 免耕播種機圓盤破茬刀工作性能分析與試驗[J]. 農(nóng)業(yè)工程學報,2014,30(15):1-9.

        Bai Xiaohu, Lin Jing, Lü Changyi, et al. Analysis and experiment on working performance of disc coulter for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 1-9. (in Chinese with English abstract)

        [26] 曹玉華,李長友,張增學,等. 蓖麻蒴果剝殼裝置關鍵部件改進設計與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(18):16-22.

        Cao Yuhua, Li Changyou, Zhang Zengxue, et al. Improvement design and test to key components of castor capsule hulling device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 16-22. (in Chinese with English abstract)

        [27] 楊有剛,劉迎春. 仿生式開溝機設計理論的研究[J]. 農(nóng)業(yè)機械學報,2004,35(1):65-68.

        Yang Yougang, Liu Yingchun. Design of a bionic ditch digger[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(1): 65-68. (in Chinese with English abstract).

        [28] Li Xinping, Du Zhe, Ma Yidong, et al. Bare hand threshing experiment on corn ear kernel[J]. International Agricultural Engineering Journal, 2014, 23(3): 74-80.

        [29] 李耀明,周偉,徐立章,等. 單切雙橫流脫粒分離裝置參數(shù)試驗與優(yōu)化[J]. 農(nóng)業(yè)機械學報,2015,46(5):62–67,92.

        Li Yaoming, Zhou Wei, Xu Lizhang, et al. Parameter test and optimization of tangential-horizontal-horizontal threshing and separating device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 62-67, 92. (in Chinese with English abstract)

        [30] 李耀明,喬明光,徐立章,等. 縱軸流復脫分離裝置設計與試[J].農(nóng)業(yè)機械學報,2009,40(11):50-54.

        Li Yaoming, Qiao Mingguang, Xu Lizhang, et al. Development and performance experiments on axia-l rethreshing with axial feeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 50-54. (in Chinese with English abstract)

        [31] 楚杰,路海東,薛吉全,等. 玉米寬窄行深旋免耕精量播種機田間試驗及效果[J]. 農(nóng)業(yè)工程學報,2014,30(14):34-41.

        Chu Jie, Lu Haidong, Xue Jiquan, et al. Field experiment and effect of precise mechanical sowing of maize based on wide-narrow row deep rotation and no-tillage technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 34-41. (in Chinese with English abstract)

        [32] 李汝莘,耿愛軍,趙何,等. 碎玉米秸稈卷壓過程的流變行為試驗[J]. 農(nóng)業(yè)工程學報,2012,28(18):30-35.

        Li Ruxin, Geng Aijun, Zhao He, et al. Rheologic behavior of chopped corn stalks during rotary compression[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 30-35. (in Chinese with English abstract)

        [33] JB/T 10749-2007: 玉米脫粒機[S]. 北京: 機械工業(yè)出版社, 2008.

        Performance test and parameter optimization of corn seed bionic thresher

        Li Xinping, Ma Lei, Geng Lingxin, Wang Shengsheng, Pang Jing, Ji Jiangtao※
        (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China)

        Corn seed bionic thresher was designed based on the principle of first discretizing and then threshing, which imitated the process of chicken beak discretizing corn grain and bare hand threshing, and had the advantages of low damage, low broken rate, and so on. In order to optimize the parameter of corn seed bionic threshing system, and then reduce the damage in the course of threshing of corn seed, this paper adopted the method of the quadratic regression orthogonal rotation combination design. Grain broken rate and removal rate were taken as the main performance indicators, differential roller speed, discrete roller speed, threshing roller speed, discrete roller gap, and threshing roller gap were selected as experimental factors, and the performance test of the corn seed bionic thresher was carried out. According to the test results, the influence of discrete roller speed and threshing roller speed on the broken rate and removal rate was respectively analyzed, as well as the influence of discrete roller gap and threshing roller gap on the broken rate and removal rate. Analysis results showed that when the threshing roller speed was fixed at a certain level, and the discrete roller speed increased from 150 to 350 r/min, the broken rate first increased and then decreased; when the discrete roller speed was fixed at a certain level, with the increasing of the threshing roller speed from 150 to 350 r/min, the broken rate decreased gradually; when the discrete roller speed was in 150-180 and 310-350 r/min, and the threshing roller speed was in 270-350 r/min, the broken rate was 0, which reached the lowest. The threshing roller speed was fixed at a certain level, and the discrete roller speed changed in the range of 150-350 r/min, the removal rate first increased and then decreased; when the discrete roller speed was fixed at a certain level, with the increase of threshing roller speed, the removal rate decreased gradually; when the discrete roller speed was in 230-330 r/min, and the threshing roller speed was in 150-300 r/min, the removal rate reached 100%, which was the highest. When the discrete roller gap was in 0-4 mm, and the threshing roller gap was in 5-9.2 mm, the broken rate was 0, reaching the lowest. When the discrete roll gap was fixed at a certain level, and the threshing roller gap reduced from 9.2 to 0 mm, the removal rate continued to increase; when the threshing roller gap was in 0-2.2 mm, the removal rate was 100%, which was the highest. On the basis of the experimental curve, through the optimization with the comprehensive evaluation method, the optimal combination of parameters was obtained: the differential roller speed of 90 r/min, the discrete roller speed of 350 r/min, the threshing roller speed of 350 r/min, the discrete roller gap of 4.6 mm, and the threshing roller gap of 4.6 mm. The verification test was carried out on the basis of these optimal conditions. It was found that the breaking rate was 0.226%, the net removal rate was 99.317%, and the corncob integrity was 100%. All the results meet the requirements of the national standard.

        agricultural machinery; bionics; seeds; corn; discrete; threshing; broken rate; removal rate

        10.11975/j.issn.1002-6819.2017.05.009

        S226.1

        A

        1002-6819(2017)-05-0062-08

        李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤. 玉米種子仿生脫粒機性能試驗與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2017,33(5):62-69.

        10.11975/j.issn.1002-6819.2017.05.009 http://www.tcsae.org

        Li Xinping, Ma Lei, Geng Lingxin, Wang Shengsheng, Pang Jing, Ji Jiangtao. Performance test and parameter optimization of corn seed bionic thresher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 62-69. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.009 http://www.tcsae.org

        2016-05-25

        2017-01-05

        國家自然科學基金與河南人才培養(yǎng)聯(lián)合基金資助項目(U1204514)

        李心平,男,博士,副教授,主要研究方向為農(nóng)產(chǎn)品收獲與加工機械研究。洛陽 河南科技大學農(nóng)業(yè)裝備工程學院, 417003。

        Email:aaalxp@126.com

        ※通信作者:姬江濤,男,河南偃師人,博士,教授,博士生導師,研究方向為智能化農(nóng)業(yè)裝備。洛陽 河南科技大學農(nóng)業(yè)裝備工程學院,417003。

        Email:jjt0907@163.com

        猜你喜歡
        脫粒機凈率破碎率
        花生濕法脫紅衣工藝參數(shù)優(yōu)化
        采煤機截齒截割角度不同對煤巖破碎率的影響分析
        水力壓裂用支撐劑破碎率的影響因素分析
        脫粒機的常見故障及維修方法
        玉米機械脫粒籽粒含水量與破碎率的相關研究
        小型家用油菜脫粒機的設計
        雌蛾冷藏和雄蛾二交兩種方法對兩廣二號原種繁育的影響
        旱地全膜雙壟溝殘膜回收機關鍵作業(yè)參數(shù)試驗分析
        不同種植密度對機采棉采凈率及產(chǎn)量的影響
        循環(huán)應力加載條件下支撐劑破碎率實驗研究
        99久久国产精品网站| 国内露脸少妇精品视频| 久久九九国产精品怡红院| 久久久久亚洲av无码尤物| 91精品在线免费| 国产精品成年人毛片毛片| 美女视频一区二区三区在线| 丰满少妇作爱视频免费观看| 女人下面毛多水多视频| 国产精品自产拍在线观看免费| 亚洲夫妻性生活视频网站| 亚洲av资源网站手机在线| 国产一区二区三区三区四区精品| 日本大骚b视频在线| 18禁高潮出水呻吟娇喘蜜芽 | 漂亮人妻出轨中文字幕| 乱子轮熟睡1区| 亚洲国产精品福利片在线观看 | 亚洲一区二区高清精品| 国产精品亚洲在钱视频| 青青草视频在线观看色| 久久久久99精品成人片直播| 久久精品国产自清天天线| 亚洲AV秘 无套一区二区三区| 国产精品中文字幕日韩精品| 国产亚洲成性色av人片在线观 | 国产精品毛片极品久久| 人人妻人人澡人人爽超污| 欧洲成人午夜精品无码区久久| 亚洲综合日韩中文字幕| 亚洲高清精品一区二区| 亚洲精品在线国产精品| 无码国模国产在线观看| 美女污污网站| 国产精品黄色av网站| 亚洲tv精品一区二区三区| 亚洲色爱免费观看视频| 午夜a福利| 日本高清无卡一区二区三区| 亚洲中文字幕人妻av在线| 成人毛片一区二区 |