亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        虎杖根系脫土滑梳式輥指的設(shè)計(jì)與試驗(yàn)

        2017-06-05 15:00:27陳學(xué)深曾令超李康毓陳林濤
        關(guān)鍵詞:切角凈率虎杖

        陳學(xué)深,馬 旭,※2,武 濤,曾令超,李康毓,陳林濤

        虎杖根系脫土滑梳式輥指的設(shè)計(jì)與試驗(yàn)

        陳學(xué)深1,馬 旭1,※2,武 濤1,曾令超1,李康毓1,陳林濤1

        (1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642)

        根系脫土是中藥虎杖收獲的重要環(huán)節(jié),采用直線梳刷式脫土輥指實(shí)現(xiàn)根土分離極為有效,然而直輥與根系作用時(shí),常出現(xiàn)相互勾連、扯拉等不良狀況,致使脫土功耗顯著增加,為此該文融入滑切方式,設(shè)計(jì)了一種曲線滑梳式脫土輥指。根據(jù)滑切理論,確定了輥指滑梳的臨界條件,利用對(duì)數(shù)螺線方程建立了輥指梳刃的曲線方程,通過輥指的動(dòng)力學(xué)分析,建立了輥指作業(yè)的功耗模型,確定了輥指轉(zhuǎn)速、輥指作業(yè)長(zhǎng)度、輥指滑切角為功耗的主要影響因素,并根據(jù)摩擦角與滑切角關(guān)系,利用Matlab軟件得到摩擦角和滑切角與功耗的偽彩色能量圖,確定功耗最小所對(duì)應(yīng)的輥指滑切角為67°。進(jìn)行功耗及脫凈率試驗(yàn),利用多目標(biāo)優(yōu)化設(shè)計(jì)方法對(duì)試驗(yàn)結(jié)果進(jìn)行綜合評(píng)價(jià)。結(jié)果表明:在輥指轉(zhuǎn)速為350 r/min、輥指作業(yè)長(zhǎng)度為30 mm、輥指滑切角為67°時(shí),脫土輥指的作業(yè)性能較優(yōu),此時(shí)脫凈率為93.03%,功耗為76.73 W。研究結(jié)果可為虎杖根土分離部件的結(jié)構(gòu)改進(jìn)設(shè)計(jì)和作業(yè)參數(shù)優(yōu)化提供依據(jù)。

        農(nóng)業(yè)機(jī)械;藥;收獲;根土分離;滑切;梳刷;虎杖

        0 引 言

        中藥虎杖屬蓼科植物,具有祛風(fēng)利濕、散瘀定痛、止咳化痰功效,近年藥理研究發(fā)現(xiàn),其含有的白藜蘆醇具有抗艾滋病作用,掀起了虎杖研發(fā)熱,也使種植規(guī)模大為提高[1-3]。但相應(yīng)收獲機(jī)具的研發(fā)滯后,特別是收獲脫土環(huán)節(jié),完全依靠效率低、強(qiáng)度大、成本高的人工方式,嚴(yán)重制約了虎杖藥用規(guī)模化、產(chǎn)業(yè)化發(fā)展。因此,亟需解決虎杖根系的機(jī)械化脫土問題。

        根土分離是中藥虎杖收獲、加工的關(guān)鍵環(huán)節(jié),傳統(tǒng)的根莖類藥材根土分離,主要是將根莖與土壤一起收集,然后通過一系列的振動(dòng)、篩分機(jī)構(gòu)實(shí)現(xiàn)根土分離[4-12]。采用這種方法的裝置結(jié)構(gòu)復(fù)雜、效率低、功耗大,且作業(yè)對(duì)象多為根構(gòu)簡(jiǎn)單的根莖類或塊莖類藥材。而虎杖根構(gòu)復(fù)雜,主根、支根與土壤組成錨固固土方式,縱橫交錯(cuò)的細(xì)小須根與土壤形成網(wǎng)絡(luò)加筋固土方式,通過根系與土體間的摩擦、咬合、粘附等作用,使虎杖根系與土壤形成牢固的根土復(fù)合體[13-14],這些根系猶如鋼纖維對(duì)土體起到阻裂、橋聯(lián)作用,從而提高土體的強(qiáng)度、增加土體的塑性和韌性,使傳統(tǒng)的根土分離機(jī)械難以獲得理想的分離效果。本課題組在文獻(xiàn)[15]中采用直線梳刷式脫土輥指實(shí)現(xiàn)虎杖根土分離,雖可獲得較好的根系脫凈率,但因徑直的梳刷輥指與根系的沖擊、勾連、扯拉等負(fù)面影響,相對(duì)于曲線的滑梳輥指,在同等條件下,脫土功耗增加近80%。類似的根土復(fù)合體分離裝置,還有玉米根茬土壤分離裝置,如楊新義[16]采用碾壓碎土滾筒與抖動(dòng)桿條鏈實(shí)現(xiàn)根土分離;徐寶庫(kù)[17]采用碾輥柵板去土機(jī)構(gòu)實(shí)現(xiàn)對(duì)根土復(fù)合體的碾壓、沖擊、揉搓;Quan等[18-22]運(yùn)用碾壓輥與抖動(dòng)升運(yùn)鏈進(jìn)行玉米根茬土壤分離;武濤等[23]采用雙輥碾壓脫土機(jī)構(gòu)和雙組柔性飛錘擊打脫土機(jī)構(gòu)聯(lián)合作用進(jìn)行玉米根茬土壤分離。以上脫土裝置采用多級(jí)脫土模式,雖獲得較高脫凈率,但機(jī)構(gòu)復(fù)雜、作業(yè)功耗較大、損傷率高,限制了此類裝置的應(yīng)用推廣。

        本文在文獻(xiàn)[15]研究的基礎(chǔ)上,將徑直的梳刷輥指改為曲線的滑梳輥指,使脫土方式融合了滑切、梳刷作用,減少了輥指與細(xì)長(zhǎng)根系的勾連、扯拉,緩和了輥指與粗壯根系的沖擊,有效地提高了虎杖根土分離品質(zhì),降低了功耗。

        1 整體結(jié)構(gòu)與工作原理

        設(shè)計(jì)的虎杖脫土試驗(yàn)裝置,結(jié)構(gòu)如圖1所示。主要由變頻調(diào)速系統(tǒng)1、電動(dòng)機(jī)2、滑梳輥總成3、柵板4、滑梳輥指5、機(jī)架6、翻轉(zhuǎn)輥總成7、扭矩傳感器8和傳動(dòng)系統(tǒng)等組成。工作時(shí),物料放置在滑梳輥與翻轉(zhuǎn)輥之間的柵板上,柵板下方高速旋轉(zhuǎn)的滑梳輥指伸出柵板對(duì)物料底部進(jìn)行沖擊、梳刷實(shí)現(xiàn)根土分離,柵板上方的翻轉(zhuǎn)輥指的旋轉(zhuǎn)運(yùn)動(dòng)對(duì)物料側(cè)面有卷起、抬升作用,因兩輥同向旋轉(zhuǎn),來自底部和側(cè)面的作用力產(chǎn)生翻轉(zhuǎn)力矩,使物料翻轉(zhuǎn)的同時(shí),實(shí)現(xiàn)逐層脫土。因梳指的曲線結(jié)構(gòu),物料從接觸輥指到脫離輥指,會(huì)有一個(gè)明顯向上抬升的過程,此過程產(chǎn)生的慣性作用可以緩和梳指與虎杖粗根的沖擊;同時(shí),減少與細(xì)根的相互勾連、扯拉,使物料的損傷、功耗都得到降低。梳指的結(jié)構(gòu)特點(diǎn),也使輥指在與物料接觸作用時(shí)有一個(gè)明顯向前推進(jìn)的過程,此過程產(chǎn)生的慣性作用可使物料獲得沖擊、梳刷,實(shí)現(xiàn)根土分離;同時(shí),使物料緊靠在翻轉(zhuǎn)輥上,更有利于物料翻轉(zhuǎn)。

        圖1 虎杖根系脫土試驗(yàn)裝置結(jié)構(gòu)圖Fig.1 Structure diagram of roots-soil separating device of Polygonum cuspidatum

        2 滑梳輥指結(jié)構(gòu)參數(shù)設(shè)計(jì)

        2.1 滑梳輥結(jié)構(gòu)

        滑梳輥為脫土核心部件,為保證滑梳效果,減小功耗,輥指軸向間距不易過密。同時(shí),考慮物料個(gè)體大小差異及在機(jī)具上的作業(yè)空間,軸向布置了8排輥指;為保證輥指作業(yè)平穩(wěn),輥指周向布置排數(shù)應(yīng)合理,過少會(huì)增大間歇作業(yè)沖擊,過多也使功耗增加,本文根據(jù)文獻(xiàn)[15]的前期試驗(yàn)基礎(chǔ),輥指周向布置4排,以軸向相鄰2排輥指為一組,軸向相鄰兩組輥指在圓周上錯(cuò)開45°,結(jié)構(gòu)如圖2所示。此類螺旋布置結(jié)構(gòu)可使輥指交替作用在物料上,使根系滑梳脫土更為平穩(wěn),功耗更小。

        圖2 滑梳輥總成結(jié)構(gòu)圖Fig.2 Structure diagram of slide-combing roller

        2.2 滑梳輥指梳刃曲線方程的建立

        為使輥指與物料滑梳平穩(wěn),降低作業(yè)功耗,采用等

        滑切角刃口曲線作為輥指的梳刃?;彷佇D(zhuǎn)中心為極坐標(biāo)原點(diǎn)O,梳刃上的2點(diǎn)M、M'以及M在OM'上的投影E'所組成的三角形(如圖3所示),滿足公式(1)。

        式中τ'為M'的極徑與割線MM'的夾角,(°);Δρ為M'與M的極徑之差,mm。

        當(dāng)M趨于M'時(shí),該兩點(diǎn)的極角差Δθ趨于0,直線ME'趨近于弧ME,因此滑切角τ滿足公式(2)。

        式中ρ為刃口任一點(diǎn)的極徑,mm;θ為梳刃任意兩點(diǎn)間的極徑夾角,(°)。由公式(2),解得梳刃等滑切角曲線的對(duì)數(shù)螺線方程為

        式中ξ為積分常數(shù)。

        圖3 滑梳輥指曲線分析Fig.3 Curve analysis of slide-combing roller finger

        根據(jù)對(duì)數(shù)螺線方程的性質(zhì),隨著輥指長(zhǎng)度(輥指根部到末端的曲線長(zhǎng)度)的增加,曲率半徑逐漸增大,輥指末端越趨于直線。按輥指與物料接觸作用次序,接觸點(diǎn)由輥指曲線部分逐漸向直線部分過渡,此結(jié)構(gòu)緩沖了直線輥指與物料的直接作用,有利于降低功耗、增強(qiáng)作業(yè)穩(wěn)定性。

        2.3 輥指滑梳最小滑切角確定

        物料受到滑梳輥指滑切作用時(shí),更有利于緩沖與根系的直接沖擊,降低功耗,但相對(duì)于直輥指的砍切,曲線輥指的滑切弱化了脫土強(qiáng)度。因此,需合理確定的滑切角范圍,以保證脫土效果。

        回轉(zhuǎn)中心O與輥指曲線上任意點(diǎn)D及該點(diǎn)處的曲率中心OD組成的三角形,如圖4所示。根據(jù)三角形正弦定理,滿足如下關(guān)系化簡(jiǎn)得到

        式中τ為D點(diǎn)的滑切角(梳刃上某點(diǎn)的速度矢量和梳刃曲線法平面之間的夾角[24]),(°);r1為滑梳輥指曲線上任意點(diǎn)D的曲率半徑,mm;α為回轉(zhuǎn)中心與輥指曲線任意點(diǎn)D及該點(diǎn)處曲率中心OD所成的直線夾角,(°);l為D點(diǎn)曲率中心與O點(diǎn)的距離,mm。

        由式(5)得到最小滑切角公式為

        圖4 滑梳輥指梳刃曲線Fig.4 Combing blade curve of slide-combing roller finger

        將上述任意滑切角代入公式(6),得到l和r1的確定關(guān)系,遞增l值,可得到對(duì)應(yīng)的r1值,l和r1又重新組建一個(gè)三角形,以此類推,通過對(duì)2組值組成的三角形簇進(jìn)行旋轉(zhuǎn)描點(diǎn)擬合,可確定輥指的曲線形狀,如圖5所示。

        圖5 滑梳輥指形狀曲線生成示意圖Fig.5 Spanning graph of curve of slide-combing roller finger

        根據(jù)滑切理論,最小滑切角等于物料間的摩擦角,但虎杖根系為根土復(fù)合材料,具有各向異性特點(diǎn),理論摩擦角應(yīng)介于20°~36°[25-26](木與鋼、土與鋼摩擦角),為了深入探討滑切角對(duì)滑梳性能的影響,本機(jī)分別取摩擦角20°、25°、30°、35°采用圖5的方法設(shè)計(jì)出具有不同滑切角的4種滑梳輥指。在物料含水率、輥指回轉(zhuǎn)長(zhǎng)度及轉(zhuǎn)速相同的情況下進(jìn)行脫土試驗(yàn),借助高速攝像慢速回放功能量化輥指與根系勾連、扯拉發(fā)生的概率,發(fā)現(xiàn)滑切角超過30°時(shí),物料在柵板上的脫土作業(yè)已相對(duì)平穩(wěn)。因此,針對(duì)中藥虎杖這種特殊的根土復(fù)合材料,選擇最小滑切角為30°即可實(shí)現(xiàn)鋼質(zhì)輥指的滑梳脫土。

        2.4 輥指滑梳最大滑切角確定

        根據(jù)文獻(xiàn)論述的結(jié)論,隨滑切角遞增,功耗呈先小后大變化趨勢(shì)[27]。因此,需建立輥指滑梳功耗模型,尋找功耗轉(zhuǎn)換點(diǎn),約束滑切角的遞增界限,進(jìn)而確定輥指與物料作用的最大滑切角。

        物料與滑梳輥指相互作用的受力如圖6所示。

        圖6 滑梳輥指受力分析Fig.6 Force analysis of slide-combing roller finger

        式中m為物料的質(zhì)量,kg;g為重力加速度,m/s2;s為輥指長(zhǎng)度,mm;φ是物料和輥指之間的摩擦角,(°);L為輥指根部到末端的曲線段。

        輥指與物料作用時(shí),對(duì)滑梳輥指回轉(zhuǎn)中心O,產(chǎn)生的總阻力矩Mr(N·m)為

        式中dρ為輥指的有效擊打半徑,mm;r為輥的半徑,mm。聯(lián)立式(7)、(8)得到

        單位時(shí)間產(chǎn)生的阻力功耗P滿足

        由式(9)、(10),得到功耗P與摩擦角φ、滑切角τ以及轉(zhuǎn)速ω的函數(shù)關(guān)系

        然而,通過常規(guī)代數(shù)方法,難以確定功耗與3個(gè)變量的關(guān)系,因此,采用數(shù)值解析方法,在轉(zhuǎn)速ω一定的情況下,依次求解各摩擦角和滑切角組合下的功耗,并通過Matlab軟件繪制出偽彩色能量圖,通過顏色差別反映功耗大小,其中功耗數(shù)值以扭矩Mr的具體數(shù)值與該轉(zhuǎn)速ω的乘積表達(dá)。如圖7所示,隨滑切角的逐漸增大,功耗呈現(xiàn)先減小后增大的變化趨勢(shì),此趨勢(shì)與文獻(xiàn)[27]的結(jié)論一致。根據(jù)滑梳的臨界條件,當(dāng)輥指與物料摩擦角為30°時(shí),功耗最小所對(duì)應(yīng)的滑切角為67°~77°,超過此范圍梳刷阻力雖可減小,但在滑梳過程中物料相對(duì)于梳刃滑過的路徑也相應(yīng)增加,從而導(dǎo)致功耗有所上升;同時(shí),相對(duì)而言較大的滑切角也弱化了輥指梳刃與物料的作用力,降低了脫土作業(yè)的效果。因此,滑切角取67o更有利于裝置作業(yè)性能。

        圖7 功耗的偽彩色能量圖Fig.7 Pseudo-color energy figure about relationship among energy consumption, friction angle and slide-cutting angle

        通過以上分析,根據(jù)最小滑切條件及功耗最小所對(duì)應(yīng)的滑切角,可確定滑切角最小值為30°,最大值為67°,最優(yōu)滑切角設(shè)計(jì)應(yīng)在此范圍內(nèi),即可獲得較好的脫凈率,又不至功率消耗過大。

        3 試驗(yàn)設(shè)計(jì)及結(jié)果分析

        3.1 試驗(yàn)條件

        試驗(yàn)地點(diǎn)為華南農(nóng)業(yè)大學(xué)工程試驗(yàn)中心,試驗(yàn)材料取自廣東省肇慶市懷集縣冷坑鎮(zhèn)虎杖種植基地。為適應(yīng)脫土裝置和作業(yè)要求,試驗(yàn)前去掉虎杖的莖葉,并將根塊分割成適當(dāng)大小;為控制損傷率,參考文獻(xiàn)[15]的試驗(yàn)方法,將滑梳輥轉(zhuǎn)速設(shè)定在580 r/min以下;同時(shí),通過自然風(fēng)嗮,使虎杖根系裹夾土壤的含水率在15%~20%之間,使之更有利于土壤松碎,實(shí)現(xiàn)根土分離[28]。

        試驗(yàn)設(shè)備為自行研制的虎杖根土分離試驗(yàn)裝置,試驗(yàn)樣機(jī)如圖8所示。脫土作業(yè)中承土盤放在輸土鏈桿上用于計(jì)收根系脫落土壤的質(zhì)量,輥指的轉(zhuǎn)速由變頻調(diào)速系統(tǒng)控制,扭矩由安裝于試驗(yàn)臺(tái)驅(qū)動(dòng)軸上的扭矩傳感器測(cè)量(型號(hào):ZRN503,量程:±0~200 N·m,電源:±15 VDC,輸出:10±5 kHz,北京中瑞能儀表技術(shù)有限公司)。

        3.2 試驗(yàn)方法與指標(biāo)選取

        3.2.1 試驗(yàn)方法

        根據(jù)滑梳輥指與物料作用分析,在翻轉(zhuǎn)輥轉(zhuǎn)速為200 r/min、作業(yè)時(shí)間為15 s的情況下,選取輥指轉(zhuǎn)速、輥指滑切角、輥指作業(yè)長(zhǎng)度(滑梳輥指伸出柵板的最大長(zhǎng)度)為試驗(yàn)因素,并考慮各因素間的交互影響,采用有交互作用的正交試驗(yàn)方法設(shè)計(jì)試驗(yàn),試驗(yàn)因素與水平如表1所示。試驗(yàn)中每60根虎杖為1組,數(shù)據(jù)取平均值,分別計(jì)算脫凈率Y1、功耗Y2。試驗(yàn)時(shí)人工投放物料,通過變頻器調(diào)節(jié)電動(dòng)機(jī)轉(zhuǎn)速,通過更換不同滑切角的輥指改變滑梳角度,通過調(diào)整柵板高度控制輥指作業(yè)長(zhǎng)度。

        表1 試驗(yàn)因素及水平Table1 Experimental factors and levels

        3.2.2 試驗(yàn)指標(biāo)選取

        脫凈率為裝置脫去的土壤與投入裝置前根系所包裹土壤的質(zhì)量百分比,計(jì)算方法為

        式中Y1為根系脫凈率,%;W1為投入裝置的根土復(fù)合體總質(zhì)量,kg;W2為經(jīng)裝置脫土后含殘余土壤的根系總質(zhì)量,kg;W3為不含土壤的根系質(zhì)量,kg。

        為減小空轉(zhuǎn)轉(zhuǎn)速差異引起的功耗誤差,實(shí)測(cè)功耗為在一定轉(zhuǎn)速下整機(jī)作業(yè)功耗與該轉(zhuǎn)速整機(jī)空轉(zhuǎn)功耗的差值。根據(jù)材料力學(xué)可知,功耗Y2(W)、扭矩M(N·m)和轉(zhuǎn)速nw(r/min)之間的關(guān)系為

        3.3 結(jié)果與分析

        試驗(yàn)結(jié)果如表2所示,方差分析如表3所示。

        表2 正交試驗(yàn)結(jié)果Table2 Results of orthogonal experiment

        表3 性能指標(biāo)方差分析Table3 Variance analysis of performance indexes

        方差分析表明:對(duì)于脫凈率指標(biāo),在95%的置信度下,輥指轉(zhuǎn)速和輥指作業(yè)長(zhǎng)度影響極顯著,輥指滑切角度影響顯著,3個(gè)因素的交互項(xiàng)對(duì)脫凈率影響均不顯著。各因素對(duì)脫凈率影響由大到小依次是:輥指轉(zhuǎn)速>輥指作業(yè)長(zhǎng)度>輥指滑切角>輥指轉(zhuǎn)速×輥指滑切角度>輥指轉(zhuǎn)速×輥指作業(yè)長(zhǎng)度>輥指作業(yè)長(zhǎng)度×輥指滑切角度。對(duì)于功耗指標(biāo),在95%的置信度下,輥指轉(zhuǎn)速、輥指滑切角度、輥指作業(yè)長(zhǎng)度影響均極顯著,3個(gè)因素的交互項(xiàng)對(duì)功耗影響均不顯著。各因素對(duì)功耗影響由大到小依次是:輥指作業(yè)長(zhǎng)度>輥指轉(zhuǎn)速>輥指滑切角>輥指轉(zhuǎn)速×輥指滑切角度>輥指轉(zhuǎn)速×輥指作業(yè)長(zhǎng)度>輥指滑切角度×輥指作業(yè)長(zhǎng)度。

        3.3.2 多目標(biāo)分析

        為選取較優(yōu)的因素水平組合,需兼顧脫凈率以及功耗2個(gè)指標(biāo),因此采用模糊數(shù)學(xué)中的加權(quán)評(píng)分方法對(duì)2個(gè)指標(biāo)進(jìn)行綜合評(píng)價(jià)[29-30]。考慮到脫凈率和功耗2個(gè)指標(biāo)的量綱不同,需對(duì)二者進(jìn)行無量綱化處理,轉(zhuǎn)換為指標(biāo)隸屬度值。

        對(duì)于脫凈率指標(biāo),采用升半正態(tài)分布映射

        式中μ1(y1i)是脫凈率的映射評(píng)分函數(shù),值域?yàn)閇0,1],y1i是第i次試驗(yàn)脫凈率的值,%;y1max是試驗(yàn)結(jié)果中脫凈率的最大值,%,y1min是試驗(yàn)結(jié)果中脫凈率的最小值,%,脫凈率越大,評(píng)分越高。

        對(duì)于功耗指標(biāo),采用降半正態(tài)分布映射

        式中μ2(y2i)是功耗的映射評(píng)分函數(shù),值域?yàn)閇0,1],y2i是第i次試驗(yàn)功耗的值,W;y2max是試驗(yàn)結(jié)果中功耗的最大值,W,y2min試驗(yàn)結(jié)果中功耗的最小值,W,功耗越低,評(píng)分越高。

        2016年第39屆國(guó)際標(biāo)準(zhǔn)化組織大會(huì),國(guó)家主席習(xí)近平以“標(biāo)準(zhǔn)是人類文明進(jìn)步的成果”為題向大會(huì)的召開發(fā)表賀信。賀信說道“標(biāo)準(zhǔn)是人類文明進(jìn)步的成果。從中國(guó)古代的‘車同軌、書同文’,到現(xiàn)代工業(yè)規(guī)?;a(chǎn),都是標(biāo)準(zhǔn)化的生動(dòng)實(shí)踐。伴隨著經(jīng)濟(jì)全球化深入發(fā)展,標(biāo)準(zhǔn)化在便利經(jīng)貿(mào)往來、支撐產(chǎn)業(yè)發(fā)展、促進(jìn)科技進(jìn)步、規(guī)范社會(huì)治理中的作用日益凸顯。標(biāo)準(zhǔn)已成為世界‘通用語言’。世界需要標(biāo)準(zhǔn)協(xié)同發(fā)展,標(biāo)準(zhǔn)促進(jìn)世界互聯(lián)互通?!盵7]對(duì)于標(biāo)準(zhǔn)是人類文明進(jìn)步的成果的新內(nèi)涵論述,給出了標(biāo)準(zhǔn)及標(biāo)準(zhǔn)化概念內(nèi)涵的新延伸,需要我們深入解讀兩種成果的關(guān)系。

        根據(jù)式(14)和式(15)得到的隸屬度值,可構(gòu)成模糊關(guān)系矩陣Rr

        本試驗(yàn)以脫凈率大,功耗小為目標(biāo),由性能指標(biāo)重要性,確定權(quán)重分配集W =[w1w2]T=[0.6 0.4]T,每組試驗(yàn)的綜合加權(quán)評(píng)分矩陣Z表示為

        綜合評(píng)分結(jié)果為

        將綜合評(píng)分結(jié)果進(jìn)行方差和極差分析,結(jié)果如表4和表5所示。

        表4 綜合評(píng)分方差分析Table4 Variance analysis of comprehensive evalualtion

        表5 綜合評(píng)分極差分析Table5 Range analysis of comprehensive evalualtion

        方差分析表明,在95%的置信度下,輥指轉(zhuǎn)速對(duì)綜合指標(biāo)影響具有極顯著性,輥指作業(yè)長(zhǎng)度、輥指滑切角度×輥指作業(yè)長(zhǎng)度對(duì)綜合指標(biāo)影響具有顯著性。極差分析表明,各因素對(duì)綜合指標(biāo)影響由大到小依次是:輥指轉(zhuǎn)速>輥指作業(yè)長(zhǎng)度>輥指滑切角度×輥指作業(yè)長(zhǎng)度>輥指轉(zhuǎn)速×輥指作業(yè)長(zhǎng)度>輥指轉(zhuǎn)速×輥指滑切角度>輥指滑切角度。通過比較3個(gè)因素各水平指標(biāo)的大小,得到最優(yōu)參數(shù)組合為A3B3C1,即輥指轉(zhuǎn)速為350 r/min,滑切角為67°,作業(yè)長(zhǎng)度為30 mm,此時(shí)脫凈率為93.03%,功耗為76.73 W。

        4 結(jié) 論

        1)設(shè)計(jì)了一種具有滑梳功能的輥指,有效緩和了輥指對(duì)物料的沖擊、糾纏,使虎杖根系根土分離作業(yè)更加平穩(wěn)、功耗更小。

        2)根據(jù)滑切理論和試驗(yàn)分析,確立了輥指與物料滑梳的臨界條件為滑切角大于30°,利用對(duì)數(shù)螺線方程建立輥指梳刃的曲線方程,通過動(dòng)力學(xué)分析,建立了輥指作業(yè)的功耗模型,確定了影響作業(yè)功耗的主要因素為輥指轉(zhuǎn)速、輥指長(zhǎng)度、輥指滑切角,并根據(jù)輥指滑梳的功耗模型,得到功耗最小所對(duì)應(yīng)的滑切角為67°。

        3)影響綜合指標(biāo)的主次因素順序?yàn)椋狠佒皋D(zhuǎn)速>輥指作業(yè)長(zhǎng)度>輥指滑切角。最優(yōu)組合參數(shù)為:輥指轉(zhuǎn)速為350 r/min,滑切角為67°,輥指作業(yè)長(zhǎng)度為30 mm。此時(shí)脫凈率為93.03%,功耗為76.73 W。

        [1] 孔曉華,周玲芝. 中藥虎杖的研究進(jìn)展[J]. 中醫(yī)藥導(dǎo)報(bào), 2009,15(5):107-110.

        Kong Xiaohua, Zhou Lingzhi. Study progress of giant Polygonum cuspidatum rhizome[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2009,15(5): 107-110 (in Chinese with English abstract)

        [2] 伍曉春,陸豫. 虎杖的藥理作用及臨床應(yīng)用研究進(jìn)展[J].中醫(yī)藥信息, 2005,22(2):22-25.

        Wu Xiaochun, Lu Yu. Research progress of pharmacological action and clinical application of Polygonum cuspidatum [J]. Information on Traditional Chinese Medicine, 2005, 22(2): 22-25. (in Chinese with English abstract)

        [3] 潘標(biāo)志,王邦富. 虎杖規(guī)范化種植操作規(guī)程[J].江西林業(yè)科技,2008,36(6):33-38.

        Pan Biaozhi, Wang Bangfu. Standardized cultivation practices of Polygonum cuspidatum[J]. Jiangxi Forestry Science and Technology, 2008, 36(6): 33-38. (in Chinese with English abstract)

        [4] 魏宏安,王蒂,連文香,等. 4UFD-1400型馬鈴薯聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):11-17.

        Wei Hongan, Wang Di, Lian Wenxiang, et al. Development of 4UFD-1400 type potato combine harvester [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 11-17. (in Chinese with English abstract)

        [5] 邵世祿,萬芳新,魏宏安,等. 我國(guó)馬鈴薯收獲機(jī)械研制與發(fā)展的研究[J]. 中國(guó)農(nóng)機(jī)化,2010(3):34-39.

        Shao Shilu, Wang Fangxin, Wei Hongan, et al. Study on development of potato harvest machinery in China[J]. Chinese Agricultural Mechanization, 2010(3): 34-39. (in Chinese with English abstract)

        [6] 胡志超,彭寶良,尹文慶,等. 多功能根莖類作物聯(lián)合收獲機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(8):58-61.

        Hu Zhichao, Peng Baoliang, Yin Wenqing, et al. Design and experiment on multifunctional root-tuber crops combine[J]. Transactions of Chinese Society for Agricultural Machinery, 2008, 39(8): 58-61. (in Chinese with English abstract)

        [7] 王俊發(fā),馬旭,馬瀏軒,等. 根莖類中藥材收獲裝備現(xiàn)狀及其收獲工藝[J]. 農(nóng)機(jī)化研究,2009,32(12):242-243.

        Wang Junfa, Ma Xu, Ma Liuxuan, et al. The current states and technology study of harvesting equipments of rhizome traditional chinese medicinal materials[J]. Journal of Agricultural Mechanization Research, 2009, 32(12): 242-243. (in Chinese with English abstract)

        [8] 孫葉強(qiáng),王俊發(fā),鄒愛華. 長(zhǎng)根莖類中草藥收獲機(jī)的試驗(yàn)研究[J]. 佳木斯大學(xué)學(xué)報(bào):自然科學(xué)版,2010,28(3):380-383.

        Sun Yeqiang, Wang Junfa, Zou Aihua. Research on the combine for long rhizomatic traditional chinese medicine[J]. Journal of Jiamusi University:Natural Science Edition, 2010, 28(3): 380-383. (in Chinese with English abstract)

        [9] 宋江,邱勝藍(lán),王新忠. 4B-1200 型平貝母藥材收獲機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):34-41.

        Song Jiang, Qiu Shenglan, Wang Xinzhong. Design and test on 4B-1200 type bulbus fritillariae ussuriensis medicinal material harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 34-41. (in Chinese with English abstract)

        [10] 胡志超, 陳有慶, 王海鷗, 等. 振動(dòng)篩式花生收獲機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):114-117.

        Hu Zhichao, Chen Youqing, Wang Hai’ou, et al. Design andexperimental research on vibrating type peanut harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 114-117. (in Chinese with English abstract)

        [11] 尚書旗,李國(guó)瑩,楊然兵,等. 4HQL-2型全喂入花生聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6) :125-130.

        Shang Shuqi, Li Guoying, Yang Ranbing, et al. Development of 4HQL-2 type whole-feed peanut combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 125-130. (in Chinese with English abstract)

        [12] 楊傳華,葛宜元,魏天路,等. 深根莖中藥材雙重振動(dòng)挖掘機(jī)構(gòu)的研究[J]. 農(nóng)機(jī)化研究,2011,33(8):110-114.

        Yang Chuanhua, Ge Yiyuan, Wei Tianlu, et al. Study on dual-vibration mechanism used in digging of deep-root chinese herbal medicine[J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 110-114. (in Chinese with English abstract)

        [13] 周云艷,徐琨,陳建平,等. 基于CT掃描與細(xì)觀力學(xué)的植物側(cè)根固土機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):1-9.

        Zhou Yunyan, Xu Kun, Chen Jianping, et al. Mechanism of plant lateral root reinforcing soil based on CT scan and mesomechanics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 1-9. (in Chinese with English abstract)

        [14] 蓋小剛. 林木根系固土力學(xué)特性研究[D]. 北京:北京林業(yè)大學(xué),2013.

        Gai Xiaogang. Study of Mechanical Properties of Tree Root Reinforcing Soil [D]. Beijing: Beijing Forestry University, 2013. (in Chinese with English abstract)

        [15] 陳學(xué)深,馬旭,武濤,等. 虎杖根土分離裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):59-65.

        Chen Xueshen, Ma Xu, Wu Tao, et al. Design and experiment on a roots-soil separating device of Polygonum cuspidatum[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 59-65. (in Chinese with English abstract)

        [16] 楊新義. 玉米根茬根土分離裝置的設(shè)計(jì)與研究[D]. 長(zhǎng)春:吉林大學(xué),2011.

        Yang Xinyi. Design and Study on The Roots and Soil Separation Device of Maize Stubble[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract)

        [17] 徐寶庫(kù). 玉米根茬收獲機(jī)整機(jī)的結(jié)構(gòu)設(shè)計(jì)與優(yōu)化[D]. 長(zhǎng)春:吉林大學(xué),2012.

        Xu Baoku. Structural Design and Structure Optimization of Corn Stubble Harvester[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract)

        [18] Quan Longzhe, Tong Jin. Design and experiment on corn stubble screening conveyor device[C]//New Technology of Agricultural Engineering (ICAE), Zibo, 2011.

        [19] Tong J, Quan L, Zeng B. Design and experiment on stubble harvester[J]. International Agricultural Engineering Journal, 2011, 20(2): 8-13.

        [20] 權(quán)龍哲. 玉米根茬收獲模式及采收機(jī)理[D]. 長(zhǎng)春:吉林大學(xué),2012.

        Quan Longzhe. Corn Stubble Harvest Mode and Mechanisms[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract)

        [21] 權(quán)龍哲,佟金,曾百功,等. 玉米根茬收獲系統(tǒng)的有限元模態(tài)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):15-20.

        Quan Longzhe, Tong Jin, Zeng Baigong, et al. Finite element mode analysis and experiment of corn stubble harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 15-20. (in Chinese with English abstract)

        [22] 權(quán)龍哲,張丹,曾百功,等. 玉米根茬抖動(dòng)升運(yùn)機(jī)構(gòu)建模與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):23-29.

        Quan Longzhe, Zhang Dan, Zeng Baigong, et al. Modeling and optimizing dither mechanism for conveying corn stubble[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 23-29. (in Chinese with English abstract)

        [23] 武濤,馬旭,齊龍,等. 玉米根茬根土分離裝置[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):133-139.

        Wu Tao, Ma Xu, Qi Long, et al. Roots-soil separating device of corn stubble[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(6): 133-139. (in Chinese with English abstract)

        [24] 羅承宇,鄒湘軍,葉敏,等.荔枝采摘機(jī)器人非線性運(yùn)動(dòng)刀具設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):247-252.

        Luo Chengyu, Zhou Xiangjun, Ye Min, et al. Design of nonlinear motion cutter for litchi harvesting robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 247-252. (in Chinese with English abstract)

        [25] 陳誠(chéng). 往復(fù)切割器式灌木平茬機(jī)切割力的研究[D]. 北京:北京林業(yè)大學(xué),2011.

        Chen Cheng. Research of Cutting Force for Reciprocating Knife Bush Harvester[D].Beijing: Beijng Forestry University, 2011. (in Chinese with English abstract)

        [26] 呂金慶,田忠恩,楊 穎,等. 4U2A 型雙行馬鈴薯挖掘機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(6):17-24.

        Lü Jinqing, Tian Zhongen, Yang Ying, et al. Design and experimental analysis of 4U2A type double-row potato digger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 17-24. (in Chinese with English abstract)

        [27] 權(quán)龍哲,佟 金,曾百功,等. 玉米根茬鏟切刀具的滑切刃曲線優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):13-17.

        Quan Longzhe, Tong Jin, Zeng Baigong, et al. Optimization design of sliding cutting edge curve of corn rootstalk cutting tool[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 13-17. (in Chinese with English abstract)

        [28] 曾百功. 玉米根茬收集裝置研制及關(guān)鍵機(jī)構(gòu)機(jī)理分析[D].長(zhǎng)春:吉林大學(xué),2013.

        Zeng Baigong. Development of Maize Stubble Harvesting Machine and Mechanism Analysis of its Key Components [D]. Changchun: Jilin University, 2013. (in Chinese with English abstract)

        [29] 辛有華,陳舉華,王壽佑. 多目標(biāo)模糊優(yōu)化設(shè)計(jì)[J]. 模糊系統(tǒng)與數(shù)學(xué),1996,10(2):76-80.

        Xin Youhua, Chen Juhua, Wang Shouyou. The fuzzy optimal design of the multi-objective function[J]. Fuzzy Systems and Mathematics, 1996, 10(2): 76-80. (in Chinese with English abstract)

        [30] 賀仲雄. 模糊數(shù)學(xué)及其應(yīng)用[M]. 天津:天津科學(xué)技術(shù)出版社,1983:67-72.

        Design and experiment of slide-combing roller finger for Polygonum cuspidatum root-soil separation

        Chen Xueshen1, Ma Xu1,2※, Wu Tao1, Zeng Lingchao1, Li Kangyu1, Chen Lintao1
        (1. College of Engineering, South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment(South China Agricultural University), Ministry of Education, Guangzhou 510642, China)

        Root-soil separation is a critical link in Polygonum cuspidatum harvesting. It has been shown that combing machines are very useful for separating soil from root. However, it is a common occurrence during this process for Polygonum cuspidatum to be entangled by the machine, which leads to excessive energy consumption. In order to overcome the imperfections and defects of this kind of machine, a new roller finger for root-soil separation was designed. By applying the slide-cutting theory, the critical slide-cutting angle of the roller finger was calculated. Considering the friction coefficient between between Polygonum cuspidatum and roller finger, the slide-cutting angle was found to be more than 30°. By solving the differential equation and the logarithmic spiral equation, the curve equation of the roller finger was established in polar coordinates. With a mechanical model between Polygonum cuspidatum and roller finger set up, a function involving energy consumption, rotational speed of roller, length of roller finger and slide-cutting angle of the roller finger was obtained. It was found that the optimal slide-cutting angle varied in energy consumption with the difference of the coefficient of friction between Polygonum cuspidatum and roller finger. A pseudo-color energy figure about the relationship among consumption, angle of friction and angle of slide-cutting was shown with the MATLAB (Matrix Laboratory) software by the function derivation of the slide-cutting angle. It turned out that the optimal slide-cutting angle increased slowly as the coefficient of friction grew. Utilizing the curve, the maximal slide-cutting angle was obtained. The rotational speed of roller (Factor A), the slide-cutting angle (Factor B) and the length of roller finger (factor C) were selected as 3 factors of the orthogonal simulation experiment in order to explore their impact on the rate of soil-detachment and energy consumption. The priority order of the factors for the rate of soil-detachment was A > C > B > A×B > A×C > B×C, and that for the energy consumption was C > A >B > A×B > A×C > B×C. The rotational speed of roller and the length of roller finger had an extremely profound effect on the rate of soil-detachment while the slide-cutting angle had a profound effect on it. Meanwhile, those 3 factors also had an extremely profound effect on the energy consumption. Although the 3 factors performed differently on the rate of soil-detachment and energy consumption, by utilizing a fuzzy comprehensive evaluation method, a comprehensive evaluation on the results of the rate of soil-detachment and energy consumption was carried out by the multi-objective optimization design method. Results reflected the important differences between the rate of soil-detachment and energy consumption, and a weight matrix was set for fuzzy calculation. According to the comprehensive evaluation, the sequence of the influence of the factors on the comprehensive result was A > C > B×C > A×C > A×B > B, and the rotational speed of roller had an extremely profound effect on the comprehensive result while both the length of roller finger and the slide-cutting angle × length of roller finger had a profound effect on it. The results of fuzzy calculation showed that the optimal parameters were as follows: the rotational speed of roller of 350 r/min, the slide-cutting angle of 67°, and the length of roller finger of 30 mm, and under these conditions the rate of soil-detachment was 93.03% and the energy consumption was 76.73 W.

        agricultural machinery; medicine; harvesting; root-soil separation; slide-cutting; combing; Polygonum cuspidatum

        10.11975/j.issn.1002-6819.2017.05.007

        S225

        A

        1002-6819(2017)-05-0048-08

        陳學(xué)深,馬 旭,武 濤,曾令超,李康毓,陳林濤. 虎杖根系脫土滑梳式輥指的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):48-55.

        10.11975/j.issn.1002-6819.2017.05.007 http://www.tcsae.org

        Chen Xueshen, Ma Xu, Wu Tao, Zeng Lingchao, Li Kangyu, Chen Lintao. Design and experiment of slide-combing roller finger for Polygonum cuspidatum root-soil separation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 48-55. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.007 http://www.tcsae.org

        2016-05-23

        2016-12-20

        國(guó)家自然科學(xué)基金資助項(xiàng)目(51175188)

        陳學(xué)深,男,漢族,吉林省遼源人,博士,副教授,主要從事現(xiàn)代農(nóng)業(yè)技術(shù)裝備研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。

        Email:chenxs@scau.edu.cn.

        ※通信作者:馬 旭,男,漢族,黑龍江哈爾濱人,教授,博士生導(dǎo)師,主要從事現(xiàn)代農(nóng)業(yè)技術(shù)裝備方面的研究。廣州 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,510642。Email:maxu1959@scau.edu.cn中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:馬 旭(E041200004S)

        猜你喜歡
        切角凈率虎杖
        花生濕法脫紅衣工藝參數(shù)優(yōu)化
        上游切角對(duì)串列雙方柱氣動(dòng)性能影響研究
        基于仿真計(jì)算下墩系梁增設(shè)切角對(duì)泵站進(jìn)水塔結(jié)構(gòu)抗震特性影響分析研究
        虎杖多糖的分離純化及結(jié)構(gòu)研究
        中成藥(2018年3期)2018-05-07 13:34:47
        虎杖對(duì)大鼠酒精性脂肪肝的作用及機(jī)制
        中成藥(2018年1期)2018-02-02 07:20:15
        拱壩加切角措施對(duì)壩肩拉應(yīng)力的影響研究
        雌蛾冷藏和雄蛾二交兩種方法對(duì)兩廣二號(hào)原種繁育的影響
        虎杖煎劑對(duì)急性肺損傷大鼠TNF-a,IL-1β表達(dá)的影響
        全瓷貼面修復(fù)前牙切緣切角缺損的治療效果
        旱地全膜雙壟溝殘膜回收機(jī)關(guān)鍵作業(yè)參數(shù)試驗(yàn)分析
        爽爽午夜影视窝窝看片| 中文字幕一区二区三区四区| 久久精品国产成人午夜福利| 欧美日韩视频在线第一区| 国产一品道av在线一二三区| 无码国产日韩精品一区二区| 国产免费一区二区三区在线视频| 久久伊人这里都是精品| 免费a级作爱片免费观看美国| 国产精品视频牛仔裤一区| 国产AV无码无遮挡毛片| 视频国产自拍在线观看| 后入到高潮免费观看| 日韩精品无码一区二区三区视频| 啊v在线视频| 精品人妻码一区二区三区红楼视频 | 亚洲乱码中文字幕三四区| 少妇久久久久久人妻无码| 精品国产乱码久久久软件下载| 国产精品欧美韩国日本久久| 久久开心婷婷综合中文 | 亚洲av无码一区二区三区不卡| 欧美性久久| 国产一级黄片久久免费看| 国产av激情舒服刺激| 一本色道久久99一综合| 国产成人av在线影院无毒| 亚洲中文字幕精品久久久| 亚洲av成人无码一区二区三区在线观看 | 香蕉国产人午夜视频在线观看| 亚洲一区域二区域三区域四| 一本大道熟女人妻中文字幕在线| av无码免费永久在线观看| AV在线中出| 日本一区二区国产精品| 丰满少妇三级全黄| 亚洲av美女在线播放啊| 日本一区二区三区一级片| 深夜福利啪啪片| 国产最新网站| 亚洲美女av二区在线观看|