李慶亮 趙海鵬 薛明
摘要從煙粉虱[Bemisia tabaci (Gennadius)]成蟲(chóng)誘導(dǎo)開(kāi)啟JA信號(hào)途徑、煙粉虱若蟲(chóng)誘導(dǎo)開(kāi)啟SA信號(hào)途徑、煙粉虱誘導(dǎo)的SA信號(hào)途徑具有系統(tǒng)傳導(dǎo)性、煙粉虱誘導(dǎo)了寄主植物新的防御途徑4個(gè)方面綜述了煙粉虱取食誘導(dǎo)寄主防御信號(hào)途徑方面的研究進(jìn)展,并展望了煙粉虱今后的研究方向。
關(guān)鍵詞煙粉虱;誘導(dǎo)防御;分子機(jī)制;信號(hào)途徑
中圖分類號(hào)S433文獻(xiàn)標(biāo)識(shí)碼
A文章編號(hào)0517-6611(2017)16-0141-03
Research Progress on Defense Signal Pathway of Host Plant Induced by Bemisia tabaci(Gennadius) Feeding
LI Qingliang1,ZHAO Haipeng2,XUE Ming2*(1.Fruit Tree Research Inistitute,Shanxi Academy of Agricultural Sciences,Jinzhong,Shanxi 030815; 2.College of Plant Protection,Shandong Agricultural University,Tai′an,Shandong 271018)
AbstractWe summarized the defense signal pathway of host plant induced by Bemisia tabaci(Gennadius) feeding as followed:B.tabaci adult induced and opened JA signal pathway; B.tabaci nymphal induced and opened SA signal pathway; the SA signal pathway induced by B.tabaci had system conductivity;B.tabaci induced new defense signal pathway of host plant.Furthermore,the research direction of B.tabaci was put forward.
Key wordsBemisia tabaci;Induced defense;Molecular mechanisms;Signal pathway
基金項(xiàng)目國(guó)家自然科學(xué)基金項(xiàng)目(30971906,31301674)。
作者簡(jiǎn)介李慶亮(1985—),男,山東臨清人,助理研究員,博士,從事植物與昆蟲(chóng)關(guān)系研究。*通訊作者,教授,從事農(nóng)業(yè)昆蟲(chóng)與害蟲(chóng)綜合防治研究。
收稿日期2017-04-19
煙粉虱[Bemisia tabaci(Gennadius)],具有30多種生物型,是一種世界性害蟲(chóng),給全球農(nóng)業(yè)生產(chǎn)造成了嚴(yán)重的經(jīng)濟(jì)損失。煙粉虱為害寄主后可能會(huì)影響寄主的生化、生理、解剖學(xué)以及發(fā)育特征,它們會(huì)消耗寄主的貯藏物質(zhì)、初級(jí)產(chǎn)物,并可能導(dǎo)致直接的植物毒素影響,同時(shí)它們可能會(huì)造成一些次級(jí)傷害,特別是通過(guò)分泌蜜露形成煤煙菌,阻擋光照,減少植物合成作用[1-4]。煙粉虱取食能夠誘導(dǎo)寄主的生理和解剖學(xué)的改變[5-6],在番茄上一定密度的煙粉虱能夠誘導(dǎo)果實(shí)的不均勻成熟[7],
是因?yàn)樗鼈兏淖兞酥参锛に氐暮铣?、平衡和功能[8-10]。B型煙粉虱和‘Ms煙粉虱取食西葫蘆能夠誘導(dǎo)銀葉反應(yīng)[11-12]。煙粉虱能夠改變植物的基礎(chǔ)的生理過(guò)程,例如煙粉虱能夠誘導(dǎo)氣孔導(dǎo)度的改變(改變氣體交換)降低蒸發(fā)和植物合成頻率,同時(shí)降低番茄葉片中葉綠素的含量[13]。在棉花上,粉虱取食后植物合成率降低,導(dǎo)致被害葉片可溶性糖含量降低,說(shuō)明粉虱取食干涉了植物的碳固定和代謝[14-15]。
植食性昆蟲(chóng)取食危害能夠誘導(dǎo)植物生理反應(yīng),更多的是生化防御反應(yīng)[16]。植物的防御反應(yīng)多以信號(hào)物質(zhì)來(lái)傳遞表達(dá),目前研究最多的信號(hào)物質(zhì)是茉莉酸(JA)及其衍生物、水楊酸(SA)及其衍生物和乙烯(ET)[17]。咀嚼式口器昆蟲(chóng)取食主要誘導(dǎo)了茉莉酸、乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑[18]。
與其他取食類型的昆蟲(chóng)相比,韌皮部取食昆蟲(chóng)導(dǎo)致較小的物理傷害,但是煙粉虱能誘導(dǎo)和病原物誘導(dǎo)類似的信號(hào)途徑SA和JA/ETH途徑[19-20],然而不同寄主、不同蟲(chóng)態(tài)會(huì)導(dǎo)致煙粉虱誘導(dǎo)開(kāi)啟不同的防御信號(hào)途徑。這些信號(hào)途徑能夠提高或者抑制寄主植物對(duì)多種危害的抗性[20-22]。目前國(guó)內(nèi)外關(guān)于煙粉虱誘導(dǎo)寄主防御反應(yīng)的研究仍是熱點(diǎn),筆者綜述了誘導(dǎo)防御信號(hào)途徑及防御基因方面的研究進(jìn)展,以期為今后該領(lǐng)域的研究與應(yīng)用提供參考。
1煙粉虱成蟲(chóng)誘導(dǎo)開(kāi)啟JA信號(hào)途徑
煙粉虱成蟲(chóng)取食棉花后的12 h之內(nèi)抑制了葉片內(nèi)茉莉酸甲酯含量的表達(dá),但12 h以后煙粉虱取食強(qiáng)烈誘導(dǎo)了棉葉中茉莉酸甲酯的過(guò)量表達(dá),茉莉酸甲酯含量迅速增加,到達(dá)24 h時(shí),茉莉酸甲酯含量雖然稍有下降,但仍然保持較高的含量表達(dá)[23]。Puthoff等[24]研究了B型煙粉虱成蟲(chóng)和溫室白粉虱成蟲(chóng)為害番茄后局部和系統(tǒng)葉位機(jī)械傷害反應(yīng)和防御反應(yīng)的基因表達(dá)情況,B型煙粉虱成蟲(chóng)和溫室白粉虱成蟲(chóng)為害番茄葉后依賴JA信號(hào)途徑的GluB 以及Chi9 基因大量積累,另外在上部系統(tǒng)葉片中積累了GluB。在粉虱危害后PR-1基因表達(dá)上調(diào)。而乙烯和SA調(diào)控的Chi3和PR-4 基因帶蟲(chóng)葉片中處于較低表達(dá)水平。
2煙粉虱若蟲(chóng)誘導(dǎo)開(kāi)啟SA信號(hào)途徑
EstradaHernndez等[25]通過(guò)SSH技術(shù)研究了A型煙粉虱不同蟲(chóng)態(tài)為害番茄后的基因表達(dá)情況,發(fā)現(xiàn)169個(gè)基因被表達(dá)或被抑制表達(dá),但參與JA和ET信號(hào)的途徑主要的基因都未被煙粉虱為害誘導(dǎo)表達(dá)發(fā)生差異。
B型煙粉虱2齡和3齡若蟲(chóng)取食誘導(dǎo)的基因包括SA合成、感知、信號(hào)轉(zhuǎn)導(dǎo)和防御相關(guān)基因上調(diào)[26-27]。B型煙粉虱2、3齡若蟲(chóng)取食為害擬南芥后與SA信號(hào)途徑中SA合成密切相關(guān)的基因SID2、 EDS5和PAD4誘導(dǎo)上調(diào)了3.3~3.8倍, EDR1和EDS1上調(diào)了1.0倍多。而其SA信號(hào)途徑下游防御相關(guān)基因NPR1、WRKY70、TGA2則上調(diào)了1.0倍多。然而在B型煙粉虱若蟲(chóng)沒(méi)有誘導(dǎo)或者抑制了JA調(diào)控的防御基因[28-32],與JA合成相關(guān)的基因FAD3和FAD7分別下調(diào)了2.7倍和1.89倍,JA途徑防御反應(yīng)基因PDF1.2下調(diào)2.7倍,VSP1下調(diào)2.3倍。其他JA途徑防御基因 FAD2、TH12.1和COⅠ1 在RNA水平上沒(méi)有變化或變化很小。
有學(xué)者研究B型煙粉虱若蟲(chóng)為害擬南芥21 d后信號(hào)途徑相關(guān)基因的變化,結(jié)果表明當(dāng)銀葉粉虱取食后,在局部葉中水楊酸途徑相關(guān)基因(PR1、BGL2、PR5、 SID2、 EDS5和PAD4)表達(dá)量上調(diào),而茉莉酸和乙烯途徑的相關(guān)基因(PDF1.2、VSP1、HEL、THI2.1、FAD3、 ERS1和 ERF1)則被抑制或無(wú)明顯變化[33]。而在番茄中A型煙粉虱2齡和3齡若蟲(chóng)取食危害后,SA調(diào)控的下游PR基因強(qiáng)烈表達(dá),并且與SA合成相關(guān)的PAL表達(dá)量亦上調(diào),而參與ET合成和感知的基因下調(diào)[25]。煙粉虱取食為害辣椒后水楊酸途徑基因CaPR1上調(diào),而茉莉酸途徑基因CaPIN Ⅱ下降,說(shuō)明煙粉虱危害誘導(dǎo)了水楊酸途徑,抑制了茉莉酸途徑[34]。B型煙粉虱若蟲(chóng)取食煙草后水楊酸信號(hào)途徑相關(guān)基因(PAL、PR1和PR5)的轉(zhuǎn)錄組水平均上調(diào)表達(dá)[35], LOX和COⅠ1在B型煙粉虱若蟲(chóng)整個(gè)取食過(guò)程中表達(dá)量均沒(méi)有顯著變化。
帶番茄花葉病毒的B型煙粉虱和不帶病毒的B型煙粉虱為害的植株,SA信號(hào)途徑調(diào)控的PR蛋白基因表現(xiàn)出不同程度的誘導(dǎo)積累[36]。盡管沒(méi)有病毒的粉虱表現(xiàn)為PR蛋白基因的增加,但帶番茄花葉病毒的B型煙粉虱危害誘導(dǎo)的β-1,3葡聚糖酶、幾丁質(zhì)酶、過(guò)氧化物酶、PR2和PR4表達(dá)水平比不帶病毒粉虱誘導(dǎo)的增加的多。
煙粉虱若蟲(chóng)取食為害三生煙草,強(qiáng)烈誘導(dǎo)其水楊酸含量表達(dá)[37-38]。擬南芥植株JA會(huì)抑制延緩煙粉虱若蟲(chóng)的生長(zhǎng)發(fā)育,因此,煙粉虱若蟲(chóng)通過(guò)誘導(dǎo)開(kāi)啟SA途徑抑制JA的生成以確保自身不受JA防御途徑的影響[26]。
3煙粉虱誘導(dǎo)的SA信號(hào)途徑具有系統(tǒng)傳導(dǎo)性
煙粉虱若蟲(chóng)取食為害擬南芥夠在局部被害葉片PR1、 BGL2、 PR5、 SID2、 EDS5和 PAD4等基因表達(dá)量增加,而PR1、 PR5和 BGL2基因在局部和系統(tǒng)葉片表達(dá)量都增加[33]。在煙草中, B型煙粉虱為害植株后10和15 d時(shí),帶蟲(chóng)葉位與系統(tǒng)白脈葉位中PR1、PR5、PAL 3個(gè)基因表達(dá)明顯上調(diào)[35]。煙粉虱為害三生煙后局部帶蟲(chóng)葉和系統(tǒng)葉的水楊酸含量相對(duì)于對(duì)照均明顯增加。這表明煙粉虱誘導(dǎo)的SA信號(hào)途徑具有系統(tǒng)傳導(dǎo)性[33]。張曉英[37]研究表明,B型煙粉虱取食煙草葉片后系統(tǒng)白脈葉位煙蚜的生長(zhǎng)受到顯著抑制,而對(duì)于蟲(chóng)體葉位則無(wú)明顯影響。而試驗(yàn)測(cè)得不同葉位的SA含量相似,且在SA途徑缺失的NahG煙草上則不存在該差異。加之測(cè)得SA下游的防御酶β-1,3-葡聚糖酶等酶活性趨勢(shì)與上述情況相符[39-41],表明B型煙粉虱取食誘導(dǎo)的SA途徑存在系統(tǒng)差異性。
4煙粉虱誘導(dǎo)了寄主植物新的防御途徑
溫室白粉虱或者B型煙粉虱取食的番茄植株相對(duì)于對(duì)照植株鑒定出了Whitefly Regulated(Wfi 1)基因[28]。Wfi1是番茄與哺乳動(dòng)物gp91-phox同源的基因,能夠編碼NADPH氧化酶的1個(gè)亞基[42]。番茄被不同防御信號(hào)物質(zhì)處理后,發(fā)現(xiàn)Wfi1轉(zhuǎn)錄子沒(méi)有被SA、ABA和系統(tǒng)素誘導(dǎo)積累,同時(shí)沒(méi)被外源JA和ET處理積累[28]。
另外,研究發(fā)現(xiàn)南瓜和B型煙粉虱關(guān)系同時(shí)使發(fā)育葉片銀葉紊亂[43]。利用RNA差異顯示技術(shù)鑒定南瓜系統(tǒng)葉中能被B型煙粉虱2齡和3齡若蟲(chóng)誘導(dǎo)的,但是沒(méi)有被甘薯粉虱若蟲(chóng)誘導(dǎo)的基因[44],鑒定了2種基因SILVERLEAF WHITEFLY1(SLW1)和SLW3,這2個(gè)基因在局部為害葉片和系統(tǒng)葉片中積累[29]。值得注意的是,被甘薯粉虱取食后局部葉片SLW1 基因誘導(dǎo)積累的水平較低,但在系統(tǒng)葉片沒(méi)有積累。另外SLW1轉(zhuǎn)錄子能夠被防御物質(zhì)JA和ET 誘導(dǎo)但是機(jī)械傷害沒(méi)有誘導(dǎo)。SLW1編碼了M20B金屬多肽酶,對(duì)粉虱有不能確定的防御功能。
另一方面,甘薯粉虱取食后在局部為害葉片SLW3 基因積累的較少,在系統(tǒng)葉片沒(méi)積累。另外,SLW3轉(zhuǎn)錄子沒(méi)有被JA、ET、SA、過(guò)氧化氫和NO處理誘導(dǎo),表明SLWF能夠被一個(gè)特殊的信號(hào)途徑誘導(dǎo)。
5結(jié)語(yǔ)
總體來(lái)看,粉虱取食誘導(dǎo)的反應(yīng)完全不同于咀嚼式害蟲(chóng)誘導(dǎo)的反應(yīng)。很明顯,不管粉虱若蟲(chóng)取食的是作物還是模式植物擬南芥,都會(huì)誘導(dǎo)有效的防御病原物的信號(hào)途徑,與蚜蟲(chóng)誘導(dǎo)的反應(yīng)一致。但是由于煙粉虱若蟲(chóng)長(zhǎng)期固定的取食方式使得其與其他韌皮部取食昆蟲(chóng)對(duì)寄主植物造成的傷害又不完全相同,導(dǎo)致其誘導(dǎo)的寄主防御反應(yīng)有較強(qiáng)的特異性,目前有研究表明煙粉虱取食寄主后對(duì)其他昆蟲(chóng)如鱗翅目昆蟲(chóng)(斜紋夜蛾、甘藍(lán)尺蠖)以及刺吸式害蟲(chóng)等造成明顯的不利影響,充分研究明確煙粉虱誘導(dǎo)的寄主防御反應(yīng),特別是如何通過(guò)利用這種防御反應(yīng)來(lái)防治其他昆蟲(chóng),是今后煙粉虱研究工作的一個(gè)重要方面。
參考文獻(xiàn)
[1]
CHEN J,MCAUSLANE H,CARLE R B,et al.Impact of Bemisia argentifolii(Homoptera:Auchenorrhyncha:Aleyrodidae) infestation and squash silverleaf disorder on Zucchini yield and quality[J].J Econ Entomol,2004,97(6):2083-2094.
[2] GERLING D,MAYER R T.Bemisia:1995 taxonomy,biology,damage,control and management[M].Andover,UK:Intercept Ltd,1996.
[3] HENNEBERRY T J,JECH L F,HENDRIX D L,et al.Bemisia argentifolii(Homoptera:Aleyrodidae) honeydew and honeydew sugar relationships to sticky cotton[J].Southwestern entomologist,2000,25(1):1-14.
[4] YEE W L,TOSCANO N C,CHU C C,et al.Bemisia argentifolii(Homoptera:Aleyrodidae) action thresholds and cotton photosynthesis[J].Environmental entomology,1996,25(6):1267-1273.
[5] COSTA H S,ULLMAN D E,JOHNSON M W,et al.Squash silverleaf symptoms induced by immature,but not adult,Bemisia tabaci[J].Phytopathology,1993,83(7):763-766.
[6] VAN DE VEN W T,LEVESQUE C S,PERRING T M,et al.Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding[J].The plant cell,2000,12(8):1409-1423.
[7] SCHUSTER D J.Relationship of silverleaf whitefly population density to severity of irregular ripening of tomato[J].Hortscience,2001,36(6):1089-1090.
[8] HANIFKHAN S,BULLOCK R,STOFFELLA P,et al.Possible involvement of altered gibberellin metabolism in the induction of tomato irregular ripening in dwarf cherry tomato by silverleaf whitefly[J].Journal of plant growth regulation,1997,16(4):245-251.
[9] POWELL C A,STOFFELLA P J.Susceptibility of tomato cultivars of internal and external tomato irregular ripening[J].Hortscience A publication of the american society for horticultural science,1995,30(6):1307.
[10] MCCOLLUM T G,STOFFELLA P J,POWELL C A,et al.Effects of silverleaf whitefly feeding on tomato fruit ripening[J].Postharvest biology & technology,2004,31(2):183-190.
[11] DELATTE H,REYNAUD B,GRANIER M,et al.A new silverleafinducing biotype Ms of Bemisia tabaci(Hemiptera:Aleyrodidae) indigenous to the islands of the southwest Indian Ocean[J].Bulletin of entomological research,2005,95(1):29-35.
[12] SCHMALSTIG J G,MCAUSLANE H J.Developmental anatomy of zucchini leaves with squash silverleaf disorder caused by the silverleaf whitefly[J].Journal of the american society for horticultural science,2001,126(5):544-554.
[13] BUNTIN D G,GILBERTZ D A,OETTING R D.Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera:Aleyrodidae)[J].J Econ Entomol,1993,86(2):517-522.
[14] LIN T B,SCHWARTZ A,SARANGA Y.Photosynthesis and productivity of cotton under silverleaf whitefly stress[J].Crop science,1999,39(1):174-184.
[15] LIN T B,WOLF S,SCHWARTZ A,et al.Silverleaf whitefly stress impairs sugar export from cotton source leaves[J].Physiologia plantarum,2000,109(3):291-297.
[16] KARBAN R,BALDWIN I.Induced responses to herbivory[M].Chicago:University of Chicago Press,1997.
[17] BLEECKER A B,KENDE H.Ethylene:A gaseous signal molecule in plants[J].Annu Rev Cell Dev Biol,2000,16:1-18.
[18] MORAN P J,THOMPSON G A.Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways[J].Plant physiology,2001,125(2):1074-1085.
[19] KALOSHIAN I,WALLING L L.Hemipterans as plant pathogens[J].Annual review of phytopathology,2005,43(1):491-521.
[20] WALLING L L.The myriad plant responses to herbivores[J].Journal of plant growth regulation,2000,19(2):195-216.
[21] STOUT M J,THALER J S,THOMMA B.Plantmediated interactions between pathogenic microorganisms and herbivorous arthropods[J].Annual review of entomology,2006,51:663-689.
[22] BOSTOCK R M.Signal crosstalk and induced resistance:Straddling the line between cost and benefit[J].Annual review of phytopathology,2005,43(1):545-580.
[23] 張帆.棉花防御與煙粉虱反防御的交互作用[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2009.
[24] PUTHOFF D P,HOLZER F M,PERRING T M,et al.Tomato pathogenesisrelated protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding[J].J Chem Ecol,2010,36(11):1271-1285.
[25] ESTRADAHERNNDEZ M G,VALENZUELASOTO J H,IBARRALACLETTE E,et al.Differential gene expression in whitefly Bemisia tabaciinfested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect′s life cycle[J].Physiologia plantarum,2009,137(1):44-60.
[26] KEMPEMA L A,CUI X,HOLZER F M,et al.Arabidopsis transcriptome changes in response to phloemfeeding silverleaf whitefly nymphs.Similarities and distinctions in responses to aphids[J].Plant Physiol,2007,143(2):849-865.
[27] ZHANG P J,LI W D,HUANG F,et al.Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling[J].Journal of chemical ecology,2013,39(5):612-619.
[28] PUTHOFF D P.PlantInsect Interactions:The Tomato Defense Response Following Feeding by PhloemFeeding Whiteflies[D].California:University of California,1999.
[29] VEN DE VEN W T,LEVESQUE C S,PERRING T M,et al.Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding[J].Plant cell,2000,12(8):1409-1423.
[30] MORAN P J,THOMPSON G A.Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways[J].Plant physiology,2001,125(2):1074-1085.
[31] MORAN P J,CHENG Y F,CASSELL J L,et al.Gene expression profiling of Arabidopsis thaliana in compatible plantaphid interactions[J].Archives of insect biochemistry and physiology,2002,51(4):182-203.
[32] THOMPSON G A,GOGGIN F L.Transcriptomics and functional genomics of plant defence induction by phloemfeeding insects[J].Journal of experimental botany,2006,57(4):755-766.
[33] ZARATE S I,KEMPEMA L A,WALLING L L.Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses[J].Plant physiology,2007,143(2):866-875.
[34] YANG J W,YI H S,KIM H,et al.Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the belowground microflora[J].J Ecol,2011,99(1):46-56.
[35] 畢明娟.B型煙粉虱誘導(dǎo)的煙草防御信號(hào)途徑及B型煙粉虱和煙蚜對(duì)煙草防御反應(yīng)的生理適應(yīng)性差異[D].泰安:山東農(nóng)業(yè)大學(xué),2010.
[36] MCKENZIE C L,SHATTERS R G,DOOSTDAR H,et al.Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesisrelated proteins in tomato[J].Archives of insect biochemistry and physiology,2002,49(4):203-214.
[37] 張曉英.水楊酸信號(hào)途徑在B型煙粉虱誘導(dǎo)煙草對(duì)煙蚜防御反應(yīng)中的作用[D].泰安:山東農(nóng)業(yè)大學(xué),2012.
[38] ZHAO H P,ZHANG X Y,XUE M,et al.Feeding of whitefly on tobacco decreases aphid performance via increased salicylate signaling[J].Plos one,2015,10(9):1-14.
[39] 李慶亮.B型煙粉虱為害對(duì)煙草生理生化的影響及其誘導(dǎo)的防御反應(yīng)[D].泰安:山東農(nóng)業(yè)大學(xué),2009.
[40] 王洪濤.B型煙粉虱取食誘導(dǎo)的煙草對(duì)斜紋夜蛾生長(zhǎng)發(fā)育和繁殖的影響及機(jī)制[D].泰安:山東農(nóng)業(yè)大學(xué),2011.
[41] 李慶亮.B型煙粉虱為害后煙草的生理響應(yīng)[D].泰安:
山東農(nóng)業(yè)大學(xué),2012.
[42] TORRES M A,DANGL J L,JONES J D.Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J].Proceedings of the national academy of sciences of the united states of america,2002,99(1):517.
[43] COSTA H S,WESTCOT D M,ULLMAN D E,et al.Ultrastructure of the endosymbionts of the whitefly,Bemisia tabaci and Trialeurodes vaporariorum[J].Protoplasma,1993,176(3):106-115.
[44] VAN DE VEN W,PUTHOFF D,LEVESQUE C,et al.Activation of novel signalling pathways by phloemfeeding whiteflies[J].Bull oilbsrop iobcwprs,2002,25(6):33-40.