張永紅 朱峰 唐芬芬 邵榆嵐 白興榮
摘要:【目的】分析家蠶絲氨酸蛋白酶(SP)基因序列BmSP25及轉(zhuǎn)錄情況,明確其表達規(guī)律對防御家蠶核型多角體病毒(BmNPV)入侵的免疫應(yīng)答機制,為揭示BmSPs在家蠶免疫應(yīng)答方面的功能作用提供理論依據(jù)。【方法】克隆BmSP25基因序列,對該基因編碼蛋白的氨基酸序列、分子量、結(jié)構(gòu)域等進行生物信息學(xué)分析;利用GeneDoc和MEGA 5.0對BmSP25氨基酸序列進行多序列比對及系統(tǒng)發(fā)育進化樹分析,采用半定量RT-PCR對家蠶不同組織和發(fā)育時期的BmSP25基因轉(zhuǎn)錄情況進行分析,并以實時熒光定量PCR檢測BmSP25基因在BmNPV感染家蠶中腸組織中的轉(zhuǎn)錄水平?!窘Y(jié)果】BmSP25基因的ORF全長885 bp,編碼294個氨基酸,其中第1~17位氨基酸為信號肽,去信號肽的分子量為29.1 kD,理論等電點為7.8。BmSP25蛋白由4個α螺旋、15個β折疊和一些無規(guī)則卷曲構(gòu)成;其氨基酸序列同源性比對分析發(fā)現(xiàn),BmSP25(BGIBMGA008514-PA)與蓓帶夜蛾SP序列(GenBank登錄號ADM35105)的同源性最高,為62.1%。BmSP25基因在家蠶中腸組織中特異表達,且在整個幼蟲時期呈持續(xù)性表達。BmSP25基因在家蠶感染BmNPV后發(fā)生明顯變化,至感染6 h時呈下調(diào)趨勢,而在感染3、12和24 h時均呈明顯上調(diào)表達?!窘Y(jié)論】BmSP25在防御BmNPV入侵家蠶的免疫應(yīng)答過程中發(fā)揮重要作用。鑒于昆蟲SP具有高度保守的底物特異性位點,因此可利用底物類似物、基因定點突變等方式來預(yù)防農(nóng)林害蟲。
關(guān)鍵詞: 家蠶;絲氨酸蛋白酶(SP)基因;表達;BmNPV感染;轉(zhuǎn)錄分析
中圖分類號: S884.51 文獻標(biāo)志碼:A 文章編號:2095-1191(2017)06-1093-06
Abstract:【Objective】Sequence and transcription state of serine protease(SP) gene BmSP25 were analyzed, the immune response mechanism of its expression pattern against Bombyx mori nucleopolyhedrovirus(BmNPV) were defined, in order to provide theoretical basis for exploring the function of BmSPs in immune responses of B. mori. 【Method】The sequence of BmSP25 gene was cloned, bioinformatics was used to analyze the amino acid sequence, molecular weight, functional domain of the coding region of this gene. Multiple sequence alignment and phylogenetic analysis of BmSP25 amino acid sequence were conducted by GeneDoc and MEGA5.0 software. BmSP25 gene transcription in different tissues and at different development stages were analyzed by semi-quantitative PCR, and transcription level of BmSP25 mRNA in intestinal tissue inoculated by BmNPV were detected by real-time quantitative fluorescence PCR. 【Result】The full length of BmSP25 open reading frame(ORF) was 885 bp, encoding 294 amino acids, and from the 1st to the 17th ones were signal peptides. The molecular mass without signal peptides were 29.1 kDa and theoretical isoelectric point was 7.8. BmSP25 protein was composed of 4 α-helices, 15 β-folds and some irregular coils. Homology alignment of amino acid showed that BmSP25(BGIBMGA008514-PA) shared the highest homology(62.1%) with SP sequence of Mamestra configurata(GenBank accession number: ADM35105). BmSP25 gene was specifically expressed in midgut tissues and continuously expressed at the whole larval stage of B. mori. The transcription level of BmSP25 gene was changed after BmNPV inoculation, BmSP25 mRNA was down-regulated at 6 h, but it was up-regulated obviously at 3, 12 and 24 h of inoculation. 【Conclusion】 BmSP25 plays an important role in the process of immune response from intrusion of BmNPV in B. mori. Since insect SP contains highly conserved specificity sites of substrate, substrate analogues and gene site-directed mutation can be utilized to control agricultural and forestry pests.
Key words: Bombyx mori; serine protease(SP) gene; expression; BmNPV inoculation; transcription analysis
0 引言
【研究意義】絲氨酸蛋白酶(Serine protease,SP)是一類以絲氨酸為活性中心的蛋白水解酶,在昆蟲體內(nèi)消化、生長發(fā)育、免疫應(yīng)答等方面發(fā)揮著重要作用(Rawlings and Barrett,1993;Krem and Di Cera,2002;Zou et al.,2006)。家蠶SP基因家族包括BmSPs及其同源體BmSPHs(Xia et al.,2004),是家蠶先天性免疫中免疫通路級聯(lián)的關(guān)鍵酶類(Hedstrom,2002),因此研究BmSPs基因家族成員對揭示其參與家蠶免疫應(yīng)答功能具有重要意義?!厩叭搜芯窟M展】昆蟲體液免疫中的SP參與酚氧化酶原激活級聯(lián),能激活以無活性前體形式存在的酚氧化酶原(Prophenoloxidase,proPO)形成有活性的酚氧化酶(Phenoloxidase,PO),進而催化家蠶合成醌類物質(zhì)及黑色素以防御病原微生物入侵(Cerenius et al.,2008)。BmSPs含有修剪結(jié)構(gòu)域clip,該結(jié)構(gòu)域含有高度保守TAAHC、DIAL和GDSGGP的活性位點(Perona and Craik,1995),剪切羧基端的一些特殊氨基酸即可活化proPO(Zou et al.,2006;陳建平等,2012)。Xia等(2007)研究發(fā)現(xiàn),BmSPs基因家族中以BmSP82基因在正常家蠶體內(nèi)的轉(zhuǎn)錄水平最高,當(dāng)家蠶感染核型多角體病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)后該基因呈下調(diào)表達;Tanaka等(2008)鑒定了參與家蠶免疫應(yīng)答的BmSPs和BmSPHs基因,并證實其某些成員基因在中腸特異表達,在正常家蠶體內(nèi)主要參與食物消化。Zhao等(2010)利用家蠶基因組數(shù)據(jù)庫并依據(jù)其他物種的SPs基因序列共鑒定出143個基因,分別標(biāo)記為BmSP1~ BmSP143,其中包括51個BmSPs和94個BmSPHs。BmSPs基因功能廣泛,因其在家蠶體內(nèi)不同組織和發(fā)育時期的表達差異,進而發(fā)揮著不同的功能(Srinivasan et al.,2006)。BmSPs基因家族中某些成員在家蠶中腸特異表達,如BmSP2基因在防御BmNPV方面發(fā)揮著重要作用(Nakazawa et al.,2004)、BmSP36和BmSP141基因參與家蠶食物消化過程(劉華偉等,2016;Liu et al.,2016)。【本研究切入點】BmSPs除了在食物消化方面發(fā)揮作用外,還參與防御BmNPV侵染的免疫應(yīng)答過程,但至今鮮見有關(guān)BmSPs基因免疫功能機理研究的報道。【擬解決的關(guān)鍵問題】研究分析BmSP25基因序列及其轉(zhuǎn)錄情況,并結(jié)合BmNPV侵染明確其表達規(guī)律對防御BmNPV的免疫應(yīng)答機制,為揭示BmSPs在家蠶免疫應(yīng)答方面的功能作用提供理論依據(jù)。
1 材料與方法
1. 1 試驗材料
家蠶品種大造和BmNPV均由云南省農(nóng)業(yè)科學(xué)院蠶桑蜜蜂研究所保存提供。家蠶喂食桑葉,按當(dāng)?shù)氐某R?guī)管理模式進行科學(xué)飼養(yǎng);BmNPV使用濃度5.27×106 PIB/mL。主要試驗試劑:MiniBEST Universal RNA Extraction Kit、M-MLV反轉(zhuǎn)錄試劑盒、PCR相關(guān)試劑、實時熒光定量SYBR Primix Ex TaqTM II (Tli RNaseH Plus)試劑盒購自寶生物工程(大連)有限公司,凝膠回收試劑盒及其他化學(xué)試劑購自生工生物工程(上海)股份有限公司。
1. 2 試驗方法
1. 2. 1 家蠶樣品采集 家蠶飼養(yǎng)至五齡第3 d時收集其幼蟲頭、血液、表皮、中腸、脂肪體、馬氏管、氣管、絲腺、精巢和卵巢等組織樣品;家蠶飼養(yǎng)過程中,收集蟻蠶到上蔟不同發(fā)育時期的家蠶個體;在BmNPV處理試驗中,家蠶按常規(guī)方法飼養(yǎng)至五齡起蠶后隨機分成兩組,其中,試驗組每頭家蠶添食10.0 μL病毒懸浮液(5.27×106 PIB/mL),對照組添食等量ddH2O。分別采集添食后3、6、12和24 h的家蠶中腸組織,3次重復(fù),每個重復(fù)至少取5頭家蠶,采集樣品置于-80 ℃保存?zhèn)溆谩?/p>
1. 2. 2 家蠶總RNA提取及cDNA合成 將收集的家蠶組織樣品經(jīng)液氮研磨,參照MiniBEST Universal RNA Extraction Kit總RNA提取試劑盒說明提取RNA。以紫外分光光度計測定總RNA濃度和純度,保留OD260/OD280在1.80~2.00的樣品,根據(jù)M-MLV反轉(zhuǎn)錄酶使用說明將抽提的RNA反轉(zhuǎn)錄合成cDNA。
1. 2. 3 BmSP25基因序列分析 參照家蠶基因組數(shù)據(jù)庫(http://silkworm.genomics.org.cn/)設(shè)計BmSP25基因的擴增引物(表1)。以家蠶中腸組織cDNA為模板進行PCR擴增,擴增程序:95 ℃預(yù)變性4 min;95 ℃ 30 s,60 ℃ 30 s,72 ℃ 1 min,進行35個循環(huán);最后72 ℃延伸10 min。PCR產(chǎn)物經(jīng)膠回收試劑盒回收,純化后連接至pMD19-T載體并轉(zhuǎn)化大腸桿菌DH5α,以M13/M13R引物對擴增驗證陽性克隆,陽性菌液送至生工生物工程(上海)股份有限公司測序。采用在線分析軟件對BmSP25基因編碼蛋白的分子量、等電點(http://web.
expasy.org/compute_pi/)、信號肽(http://www.cbs.dtu.dk/
services/SignalP/)、功能結(jié)構(gòu)域(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)、蛋白質(zhì)二級結(jié)構(gòu)(http://bioinf.cs.ucl.ac.uk/ psipred/)和三級結(jié)構(gòu)(https://swissmodel.expasy.org/)進行預(yù)測;利用GeneDoc對BmSP25與其他物種的SP進行多序列比對分析,以MEGA 5.0(Tamura et al.,2011)的鄰接法(Neighbor-joining)構(gòu)建系統(tǒng)發(fā)育進化樹(Bootstrap 1000次重復(fù)檢驗其可靠性)。
1. 2. 4 BmSP25時空轉(zhuǎn)錄情況分析 以Bmactin3為內(nèi)參基因,設(shè)計BmSP25基因半定量RT-PCR擴增引物(表1),以蟻蠶至五齡第7 d幼蟲各組織器官cDNA為模板進行PCR擴增,擴增程序:94 ℃預(yù)變性4 min;94 ℃ 30 s,72 ℃ 30 s,進行31個循環(huán);最后72 ℃延伸10 min。擴增產(chǎn)物用1.0%瓊脂糖凝膠電泳進行檢測。
1. 2. 5 BmNPV感染家蠶后BmSP25基因轉(zhuǎn)錄分析
設(shè)計BmSP25基因?qū)崟r熒光定量PCR擴增引物(表1)。以不同時段的兩組家蠶中腸組織cDNA為模板、Bmactin3為內(nèi)參基因進行實時熒光定量PCR檢測,參照SYBR Primix Ex TaqTM II(Tli RNaseH Plus)試劑盒說明配制反應(yīng)體系(20.0 μL),即SYBR預(yù)混液10.0 μL,ROX Reference Dye 0.4 μL,10 μmol/L上、下游引物各0.4 μL,模板1.0 μL,ddH2O 7.8 μL。擴增程序:95 ℃預(yù)變性30 s;95 ℃ 30 s,60 ℃ 30 s,進行40個循環(huán)。每個樣品3次重復(fù),收集試驗組和對照組目的基因與內(nèi)參基因的Ct進行統(tǒng)計分析,并采用2-△△Ct計算目的基因的相對表達量(Livak and Schmittgen,2001)。
2 結(jié)果與分析
2. 1 BmSP25基因克隆與序列分析結(jié)果
根據(jù)家蠶基因組數(shù)據(jù)庫設(shè)計擴增BmSP25基因的特異性引物,以家蠶五齡第3 d的中腸組織cDNA為模板進行PCR擴增,目的基因片段測序結(jié)果顯示,BmSP25基因的ORF全長885 bp,編碼294個氨基酸。其中,第1~17位氨基酸為信號肽,為分泌型蛋白。經(jīng)NCBI Conserved Domain Search在線分析發(fā)現(xiàn),第54~288位氨基酸為類胰蛋白酶絲氨酸蛋白酶結(jié)構(gòu)域(Trysin-like serine protease domain),去除信號肽后,其分子量為29.1 kD,理論等電點為7.8。利用PSIPRED Server在線預(yù)測BmSP25蛋白質(zhì)的二級結(jié)構(gòu),結(jié)果表明,BmSP25蛋白由4個α螺旋、15個β折疊和一些無規(guī)則卷曲構(gòu)成(圖1);通過SWISS-MODEL同源建模預(yù)測其三級結(jié)構(gòu),發(fā)現(xiàn)BmSP25蛋白的三級結(jié)構(gòu)(圖2)與其二級結(jié)構(gòu)特征一致,蛋白結(jié)構(gòu)以β折和無規(guī)則卷曲為主。
BmSP25氨基酸序列(BGIBMGA008514-PA)與 NCBI上登錄的其他昆蟲SP進行多序列比對分析,結(jié)果顯示,各序列中均含有SP高度保守的3個催化活性位點(His57、Asp102和Ser195),與活性相關(guān)的AAHC和GDSGGPL及形成二硫鍵的3對半胱氨酸殘基也較保守(圖3)。其中,BmSP25與蓓帶夜蛾SP序列(GenBank登錄號ADM35105)的同源性最高,為62.1%。采用MEGA 5.0的鄰接法(Neighbor-joining)構(gòu)建基于SP序列的系統(tǒng)發(fā)育進化樹(圖4),結(jié)果顯示,鱗翅目昆蟲蛋白酶聚為兩支(Clade I和Clade II),其中BmSP25與蓓帶夜蛾、草地貪夜蛾、玉米螟和小蔗螟的SP序列在親緣關(guān)系上較近。
2. 2 BmSP25基因時空轉(zhuǎn)錄分析結(jié)果
通過半定量RT-PCR檢測BmSP25基因在五齡第3 d家蠶各組織中的表達情況,結(jié)果顯示,BmSP25基因在中腸組織中特異表達(圖5-A)。對家蠶蟻蠶至五齡第7 d整個幼蟲時期進行表達譜分析,結(jié)果發(fā)現(xiàn)BmSP25基因在整個家蠶幼蟲時期呈持續(xù)性表達(圖5-B)。
2. 3 BmNPV感染家蠶后BmSP25基因的轉(zhuǎn)錄分析結(jié)果
以添食ddH2O的五齡起蠶為對照組、BmNPV感染的五齡起蠶為試驗組,利用實時熒光定量PCR檢測BmSP25基因在家蠶中腸組織中的轉(zhuǎn)錄水平,結(jié)果(圖6)顯示,與對照組相比,試驗組家蠶感染BmNPV 3 h后BmSP25基因轉(zhuǎn)錄水平開始升高,至感染6 h時表現(xiàn)為下調(diào)表達,但感染12和24 h時檢測發(fā)現(xiàn)又呈明顯上調(diào)表達。說明BmSP25基因表達受病原微生物BmNPV入侵的影響。BmNPV侵染家蠶的第一道屏障是中腸,結(jié)合BmSP25基因在中腸組織中的特異表達,認(rèn)為其在防御BmNPV侵染方面發(fā)揮重要作用。
3 討論
SP在昆蟲體內(nèi)主要參與消化、發(fā)育和免疫應(yīng)答等生理過程。本研究成功克隆獲得BmSP52基因(BGIBMGA008514-TA),其基因序列由5個外顯子和4個內(nèi)含子組成,編碼區(qū)全長885 bp,編碼294個氨基酸,其中第1~17位氨基酸為信號肽,去信號肽的分子量為29.1 kD,理論等電點為7.8。氨基酸多序列比對分析結(jié)果表明,BmSP52與蓓帶夜蛾的SP序列同源性最高(62.1%);而系統(tǒng)發(fā)育進化樹顯示,家蠶與夜蛾科昆蟲(蓓帶夜蛾與草地貪夜蛾)、螟蛾科(玉米螟與小蔗螟)蛋白酶同聚在Clade II分支上。胰蛋白酶類的SP底物特異性位點主要是189S/189G-216G-226G/226A(Perona and Craik,1995),BmSP25與螟蛾科(玉米螟與小蔗螟)在底物特異性位點189G處高度保守,與多序列比對分析結(jié)果和系統(tǒng)發(fā)育進化樹分析結(jié)果一致。鑒于昆蟲SP具有高度保守的底物特異性位點,因此可利用底物類似物、基因定點突變等方式來預(yù)防農(nóng)林害蟲。
BmSP52基因在家蠶中腸組織中特異表達,且在整個幼蟲時期呈持續(xù)性表達。中腸是昆蟲消化食物和吸收營養(yǎng)的主要器官,也是抵御BmNPV等病源微生物入侵的重要場所。中腸消化液含有多種抗BmNPV的相關(guān)蛋白,如家蠶脂肪酶(Bmlipase-1)(Ponnuvel et al.,2003)、BmSP2(Nakazawa et al.,2004)、家蠶還原型輔酶II氧化還原酶(NADPH-oxidoreductase-like)(Selot et al.,2007)、紅色熒光蛋白(Red fluorescent protein)(Sunagar et al.,2011)和堿性胰蛋白酶Trypsin(Ponnuvel et al.,2012)。SP在昆蟲免疫應(yīng)答過程中主要參與信號調(diào)控,在病原微生物入侵時激活細胞信號轉(zhuǎn)導(dǎo)路徑,如激活昆蟲免疫反應(yīng)的核心細胞信號Imd和Toll通路(Hultmark,2003),進而誘導(dǎo)抗菌肽合成(Weber et al.,2003)。本研究結(jié)果表明,BmSP52基因轉(zhuǎn)錄水平在家蠶感染BmNPV后發(fā)生明顯變化,在感染6 h時呈下調(diào)趨勢,而在感染3、12和24 h時均呈明顯上調(diào)表達,表明BmSP52基因表達受病原微生物BmNPV誘導(dǎo)而參與家蠶幼蟲免疫應(yīng)答過程。由于BmSP25與BmSP36、BmSP141具有高度保守胰蛋白酶的底物特異性基序,故推測BmSP25在家蠶中腸食物消化方面也發(fā)揮重要作用,但具體原理有待進一步驗證。
4 結(jié)論
BmSP25在家蠶中腸組織中特異表達,且在整個幼蟲期呈持續(xù)性表達,尤其在防御BmNPV入侵的免疫應(yīng)答過程中發(fā)揮重要作用。鑒于昆蟲SP具有高度保守的底物特異性位點,因此可利用底物類似物、基因定點突變等方式來預(yù)防農(nóng)林害蟲。
參考文獻:
陳建平,趙萍,董照明,張艷,石虎,夏慶友. 2012. 參與家蠶免疫反應(yīng)的clip絲氨酸蛋白酶家族基因分析[J]. 蠶業(yè)科學(xué),38(2):241-248. [Chen J P,Zhao P,Dong Z M,Zhang Y,Shi H,Xia Q Y. 2012. An analysis on clip serine protease family genes involved in innate immunity of Bombyx mori[J]. Science of Sericulture,38(2):241-248.]
劉華偉,李游山,唐新,張曉璐,趙萍. 2016. 家蠶絲氨酸蛋白酶BmSP141的表達特征及對饑餓的響應(yīng)[J]. 中國農(nóng)業(yè)科學(xué),49(6):1207-1218. [Liu H W,Li Y S,Tang X,Zhang X L,Zhao P. 2016. Characterization and expression analysis of serine protease BmSP141 from the silkworm(Bombyx mori) in response to starvation[J]. Scientia Agricultura Sinica,49(6):1207-1218.]
Cerenius L,Lee B L,S?觟derh?覿ll K. 2008. The proPO-system:Pros and cons for its role in invertebrate immunity[J]. Trends in Immunology,29(6):263-271.
Hedstrom L. 2002. Serine protease mechanism and specificity[J]. Chemical Reviews,102(12):4501-4524.
Hultmark D. 2003. Drosophila immunity:Paths and patterns[J]. Current Opinion in Immunology,15(1):12-19.
Krem M M,Di Cera E. 2002. Evolution of enzyme cascades from embryonic development to blood coagulation[J]. Tr-
ends in Biochemical Sciences,27(2):67-74.
Liu H W,Li Y S,Tang X,Guo P C,Wang D D,Zhou C Y,Xia Q Y,Zhao P. 2016. A midgut-specific serine protease,BmSP36,is involved in dietary protein digestion in the silkworm,Bombyx mori[J]. Insect Science. doi: 10.1111/ 1744-7917.12369.
Livak K J,Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T )) Method[J]. Methods,25(4):402-408.
Nakazawa H,Tsuneishi E,Ponnuvel K M,F(xiàn)urukawa S,Asaoka A,Tanaka H,Ishibashi J,Yamakawa M. 2004. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus[J]. Virology,321(1):154-162.
Perona J J,Craik C S. 1995. Structural basis of substrate specificity in the serine proteases[J]. Protein Science,4(3):337-360.
Ponnuvel K M,Nakazawa H,F(xiàn)urukawa S,Asaoka A,Ishibashi J,Tanaka H,Yamakawa M. 2003. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus[J]. Journal of Virology,77(19):10725-10729.
Ponnuvel K M,Nithya K,Sirigineedi S,Awasthi A K,Yamakawa M. 2012. In vitro antiviral activity of an alkaline trypsin from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus[J]. Archives of Insect Biochemistry and Physiology,81(2):90-104.
Rawlings N D,Barrett A J. 1993. Evolutionary families of peptidases[J]. Biochemical Journal,290(1):205-218.
Selot R,Kumar V,Shukla S,Chandrakuntal K,Brahmaraju M,Dandin S B,Laloraya M,Kumar P G. 2007. Identification of a soluble NADPH oxidoreductase(BmNOX) with antiviral activites in the gut juice of Bombyx mori[J]. Bioscience,Biotechnology,and Biochemistry,71(1):200-205.
Srinivasan A,Giri A P,Gupta V S. 2006. Structural and functional diversities in lepidopteran serine proteases[J]. Ce-
llular & Molecular Biology Letters,11(1):132-154.
Sunagar S G,Savanurmath C J,Hinchigeri S B. 2011. The profiles of red fluorescent proteins with antinucleopolyhedrovirus activity in races of the silkworm Bombyx mori[J]. Journal of Insect Physiology,57(12):1707-1714.
Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S. 2011. MEGA5:Molecular,evolutionary,genetics,analysis,using maximum,likelihood,evolutionary,distance,and maximum,parsimony,methods[J]. Molecular Biology and Evolution,28(10):2731-2739.
Tanaka H,Ishibashi J,F(xiàn)ujita K,Nakajima Y,Sagisaka A,Tomimoto K,Suzuki N,Yoshiyama M,Kaneko Y,Iwasaki T,Sunagawa T,Yamaji K,Asaoka A,Mita K,Yamakawa M. 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori[J]. Insect Biochemistry and Molecular Biology,38(12):1087-1110.
Weber A N,Tauszig-Delamasure S,Hoffmann J A,Lelièvre E,Gascan H,Ray K P,Morse M A,Imler J L,Gay N J. 2003. Binding of the Drosophila cytokine Sp?覿tzle to Toll is direct and establishes signaling[J]. Nature Immunology,4(8):794-800.
Xia Q,Cheng D,Duan J,Wang G,Cheng T,Zha X,Liu C,Zhao P,Dai F,Zhang Z,He N,Zhang L,Xiang Z. 2007. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm,Bombyx mori[J]. Ge-
nome Biology,8(8):R162.
Xia Q,Zhou Z,Lu C,Cheng D,Dai F,Li B,Zhao P,Zha X,Cheng T,Chai C,Pan G,Xu J,Liu C,Lin Y,Qian J,Hou Y,Wu Z,Li G,Pan M,Li C,Shen Y,Lan X,Yuan L,Li T,Xu H,Yang G,Wan Y,Zhu Y,Yu M,Shen W,Wu D,Xiang Z,Yu J,Wang J,Li R,Shi J,Li H,Li G,Su J,Wang X,Li G,Zhang Z,Wu Q,Li J,Zhang Q,Wei N,Xu J,Sun H,Dong L,Liu D,Zhao S,Zhao X,Meng Q,Lan F,Huang X,Li Y,F(xiàn)ang L,Li C,Li D,Sun Y,Zhang Z,Yang Z,Huang Y,Xi Y,Qi Q,He D,Huang H,Zhang X,Wang Z,Li W,Cao Y,Yu Y,Yu H,Li J,Ye J,Chen H,Zhou Y,Liu B,Wang J,Ye J,Ji H,Li S,Ni P,Zhang J,Zhang Y,Zheng H,Mao B,Wang W,Ye C,Li S,Wang J,Wong G K,Yang H;Biology Analysis Group. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science,306(5703):1937-1940.
Zhao P,Wang G H,Dong Z M,Duan J,Xu P Z,Cheng T C,Xiang Z H,Xia Q Y. 2010. Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori[J]. BMC Genomics. doi:10.1186/1471-2164-11-405.
Zou Z,Lopez D L,Kanost M R,Evans J D,Jiang H. 2006. Comparative analysis of serine protease-related genes in the honey bee genome:Possible involvement in embryonic development and innate immunity[J]. Insect Molecular Biology,15(5):603-614.
(責(zé)任編輯 蘭宗寶)