萬小亞 楊澤 李陽
[摘要] Wnt信號通路是一條保守復(fù)雜的信號通路,調(diào)節(jié)干細胞自我更新、細胞增殖、分化及凋亡,參與胚胎發(fā)育、組織穩(wěn)態(tài)及細胞癌變等。Wnt蛋白是一類富含L-半胱氨酸的分泌型糖蛋白,通過影響由結(jié)直腸腺瘤性息肉蛋白(APC)、軸蛋白(Axin)、糖原合成酶激酶-3β(GSK-3β)及酪蛋白激酶1(CK1)等組成的降解復(fù)合物的磷酸化作用調(diào)控胞質(zhì)內(nèi)β-catenin的濃度變化,參與Wnt信號通路的激活。經(jīng)典Wnt/β-catenin通路的異常激活與人類惡性腫瘤密切相關(guān)。本文綜述了該信號通路相關(guān)轉(zhuǎn)錄因子及與其他信號通路(Notch通路、TGF-β/BMP通路、Hedgehog通路、Hippo/YAP/TAZ通路)在腫瘤中的相互串話,進一步了解Wnt信號通路與腫瘤關(guān)系,為治療提供潛在靶點。
[關(guān)鍵詞] Wnt信號通路;β-catenin;Wnt蛋白;惡性腫瘤
[中圖分類號] R730.23 [文獻標識碼] A [文章編號] 1673-7210(2016)12(c)-0071-04
[Abstract] The Wnt signaling pathway is a conserved and complex pathway that plays an important role in the regulation of stem cell self-renewal, proliferation, differentiation and apoptosis, involved in embryonic development, tissue homeostasis and cell carcinogenesis. Wnt proteins are a kind of secreted glycoprotein rich in L-Cysteine, and they can regulate the concentrations of β-catenin in the cytoplasm and take part in the activation of Wnt signal pathway by influencing the phosphorylation of destruction complex made up of adenomatous polyposis coli (APC), axial protein (Axin), glycogen synthase kinase 3 beta (GSK-3β), casein kinase 1 (CK1), and so on. The abnormal activation of classic WNT/β-catenin signal pathway is closely related to human malignant tumors. This paper reviews the cross-talk between the transcription factors of Wnt signal pathway and other signal pathways (Notch pathway, TGF-β/BMP pathway, Hedgehog pathway, Hippo/YAP/TAZ pathway), in order to know more about the relationship between Wnt signal pathway and cancer, and provide potential target for the treatment.
[Key words] Wnt signal pathway; β-catenin; Wnt protein; Malignant tumor
Wnt信號通路通常分為經(jīng)典的Wnt(依賴β-catenin)信號通路和非經(jīng)典Wnt(不依賴β-catenin)信號通路[1]。經(jīng)典Wnt/β-catenin信號通路在增殖及生存方面有極為重要的作用,而非經(jīng)典Wnt信號通路更多的與細胞分化、細胞極性及遷移有關(guān)[2-3]。
1 Wnt基因及蛋白
Wnt基因編碼富含L-半胱氨酸的分泌型糖蛋白。Wnt蛋白通過自分泌或旁分泌與受體結(jié)合,激活胞內(nèi)的信號傳導(dǎo)分子,調(diào)節(jié)靶基因的表達[4-5]。Wnt蛋白的異常表達與多種疾病的發(fā)生有關(guān):Wnt1、3a和10b過表達與乳腺癌的發(fā)生有關(guān)[6];Wnt1、2、3a和5b可誘導(dǎo)小鼠乳腺C57MG細胞系惡性轉(zhuǎn)化[7]。
2 Wnt通路相關(guān)蛋白
2.1 Frizzled(Fzd)蛋白
Fzd蛋白為Wnt通路的受體蛋白。Wnt配體與Fzd中高度保守的富含半胱氨酸的配體結(jié)合區(qū)(CRD)結(jié)合后磷酸化低密度脂蛋白受體相關(guān)蛋白5/6(LRP5/6),并形成Fzd-LRP5/6異源三聚體復(fù)合物[8]。CRD區(qū)域氨基酸殘基的突變會導(dǎo)致Fzd與Wnt相互作用的消失[9]。
2.2 β-級聯(lián)蛋白(β-catenin)
β-catenin為Wnt通路的關(guān)鍵成分,由CTNNb1基因編碼,N末端是GSK-3β磷酸化降解作用部位,而C末端則參與β-catenin與LEF/TCF的結(jié)合[10-11]。降解復(fù)合物中GSK-3β使游離β-catenin磷酸化,從而被E3泛素降解酶β-Trcp識別并被泛素蛋白酶體系統(tǒng)降解,從而保持胞質(zhì)內(nèi)游離β-catenin相對低濃度[12]。最新研究發(fā)現(xiàn),高糖可誘導(dǎo)β-catenin的乙?;?,增強癌癥相關(guān)的Wnt/β-catenin信號通路[12]。
2.3 Dishevelled(Dvl/Dsh)蛋白
Dvl蛋白是關(guān)鍵胞漿蛋白,含有氨基端DIX區(qū)、中間PDZ區(qū)及羧基端DEP區(qū)。Dvl穿梭于胞質(zhì)與胞核間將Wnt信號傳導(dǎo)到β-catenin的降解復(fù)合物,維持β-catenin的穩(wěn)定[13],Dvl的核定位域突變可抑制Wnt信號。近年已發(fā)現(xiàn)轉(zhuǎn)錄因子FOX(FOXK1、FOXK2)可通過促進Dvl的核轉(zhuǎn)移正向調(diào)控Wnt信號通路[14]。
2.4 R-spondin(RSPO)蛋白
RSPO蛋白家族包括4個成員(Rspo1-4),包含4個主要功能區(qū):2個富含半胱氨酸的furin-like結(jié)構(gòu)域(CR)、1個血小板反應(yīng)蛋白1型結(jié)構(gòu)域(TSP1)以及富含堿性氨基酸的C端區(qū)域。CR區(qū)域主要參與Wnt/β-catenin信號通路的激活[15]。RSPO對經(jīng)典Wnt信號通路的激活可能依賴于對LRP5/6受體的磷酸化[16]。RSPO對LGR蛋白有高度親和力,并且通過與該蛋白受體作用抑制E3泛素連接酶,降解Fzd受體,導(dǎo)致Wnt信號通路的激活[17]。
3 Wnt/β-catenin信號通路(經(jīng)典Wnt通路)
經(jīng)典Wnt信號通路的作用機制已基本闡明:當Wnt信號存在時,Wnt蛋白與Fzd家族特異受體結(jié)合,并在單次跨膜輔助性共受體(如LRP5/6和受體酪氨酸激酶樣受體2ROR2)的協(xié)助下,活化胞質(zhì)內(nèi)Dvl蛋白,觸發(fā)細胞內(nèi)的信號轉(zhuǎn)導(dǎo)[8]?;罨腄vl蛋白能抑制由APC、Axin、GSK-3β、CK1等形成的降解復(fù)合物中關(guān)鍵成分GSK-3β的活性[2],使效應(yīng)分子β-catenin不能被GSK-3β磷酸化,因而β-catenin不能被胞質(zhì)內(nèi)泛素蛋白酶體識別和降解,導(dǎo)致β-catenin在胞質(zhì)中積聚并發(fā)生核轉(zhuǎn)移[10],核轉(zhuǎn)移的β-catenin代替Groucho蛋白與BCL9、Pygopus、組蛋白修飾蛋白CBP及組織特異性轉(zhuǎn)錄激活因子形成復(fù)合物并與T細胞因子/淋巴增強因子復(fù)合物(TCF/LEF)結(jié)合[18],最終激活下游靶基因的表達。
4 非經(jīng)典Wnt信號通路
非經(jīng)典Wnt信號通路包括Wnt/Ca2+通路和Wnt/PCP通路。前者通過鈣依賴性激酶、鈣調(diào)蛋白和轉(zhuǎn)錄因子NF-AT發(fā)揮效應(yīng),調(diào)節(jié)細胞運動和細胞黏著性[1]。此外,研究發(fā)現(xiàn),Wnt/Ca2+信號通路可以通過激活CamK-Ⅱ,抑制β-catenin-TCF/LEF復(fù)合體活化基因的轉(zhuǎn)錄從而拮抗經(jīng)典WNT信號通路[1,19]。Wnt/PCP通路主要參與細胞極性的構(gòu)建及細胞骨架重排,調(diào)節(jié)細胞骨架的不對稱分布和上皮細胞的協(xié)同極化[20]。
5 Wnt信號通路與其他信號通路的交叉串話
由于Wnt信號通路對靶細胞的影響廣泛,與其他信號通路的交叉串話影響細胞增殖、分化及組織穩(wěn)態(tài),從而使得其生物學(xué)作用更加復(fù)雜。與該通路串化有關(guān)的信號通路常見有下述幾個:
5.1 Wnt信號通路與Notch信號通路
在不同的組織中,Wnt與Notch信號通路既可表現(xiàn)出拮抗作用,也可表現(xiàn)出協(xié)同作用。研究發(fā)現(xiàn),Notch信號通路可通過β-catenin抑制Wnt信號通路[21],并且,Wnt信號激活后可以通過Dvl拮抗Notch信號[22]。Notch信號通路在神經(jīng)母細胞瘤和人舌癌細胞系中,可抑制Wnt信號通路[23],而在APC突變的小鼠腸內(nèi)促進Wnt信號的轉(zhuǎn)導(dǎo),從而促進腺瘤的發(fā)展[24]。
5.2 Wnt信號通路與TGF-β/BMP信號通路
TGF-β Ⅱ型受體敲除后能促進Wnt3a的表達及前列腺癌的發(fā)生[25]。Smad7可直接與β-catenin結(jié)合并通過募集Smurf2誘導(dǎo)β-catenin降解[26],但在前列腺癌中,Smad7可直接引起β-catenin蓄積。研究報道,Wnt和BMP通過Dvl與磷酸化的Smad1直接作用在細胞質(zhì)水平表現(xiàn)為相互拮抗作用[27]。因此,Wnt信號通路與TGF-β/BMP信號通路可以表現(xiàn)為協(xié)同作用和拮抗作用。
5.3 Wnt信號通路與Hedgehog信號通路
基底細胞癌中,Hedgehog信號異??梢餡nt信號轉(zhuǎn)錄因子的高表達[28]。在結(jié)腸癌中,Wnt/β-catenin信號通路增加Hedgehog信號和結(jié)腸癌細胞的存活率[29]。然而,在腸腺瘤細胞中,降低跨膜蛋白質(zhì)受體Smoothened(Smo)的表達可抑制經(jīng)典Wnt信號通路[30]。在結(jié)腸上皮分化中,配體Ihh為Wnt信號的抑制劑[31]。在胃癌細胞中也發(fā)現(xiàn)Gli-1過表達能抑制Wnt信號[32]。
5.4 Wnt信號通路與Hippo/YAP/TAZ信號通路
盡管YAP/TAZ的核轉(zhuǎn)移及定位是Hippo信號通路具有轉(zhuǎn)錄活性的必要條件,但非核區(qū)的TAZ對經(jīng)典Wnt通路極為重要[33]。Hippo通路的效應(yīng)分子TAZ通過與Dvl結(jié)合,干擾Wnt通路對Dvl的磷酸化,從而抑制Wnt通路;胞質(zhì)內(nèi)的YAP也可通過抑制Dvl的活性抑制Wnt通路[34]。最新研究發(fā)現(xiàn),YAP/TAZ為轉(zhuǎn)換Wnt信號通路(the alternative Wnt signaling pathway)的下游效應(yīng)器,在經(jīng)典Wnt信號通路中,Wnt5a/b和Wnt3a能誘導(dǎo)YAP/TAZ活化,稱為“轉(zhuǎn)換Wnt-YAP/TAZ信號軸”,該信號軸誘導(dǎo)YAP/TAZ的活化及TEAD介導(dǎo)的轉(zhuǎn)錄,從而激活YAP/TAZ介導(dǎo)的轉(zhuǎn)換Wnt信號通路的生物學(xué)功能[35]。
6 小結(jié)
隨著研究的不斷深入,近十年來對Wnt信號通路的調(diào)節(jié)機制及復(fù)雜性有了更深入的了解,但其機制的某些重要細節(jié)仍未完全闡明。Wnt信號通路新成員(RSPOs、LGRs、NZRF3/RNF43、PORC、TANKS)與信號調(diào)節(jié)及組織生長等有重要關(guān)系。更深入地了解Wnt信號通路的調(diào)節(jié)機制對研發(fā)以該信號通路為靶點的惡性腫瘤的治療極為重要[36]。
[參考文獻]
[1] Anastas JN,Moon RT. WNT signalling pathways as therapeutic targets in cancer [J]. Nat Rev Cancer,2013,13(1):11-26.
[2] MacDonald BT,Tamai K,He X. Wnt/beta-catenin signaling:components,mechanisms,and diseases [J]. Dev Cell,2009,17(1):9-26.
[3] Ara H,Takagishi M,Enomoto A,et al. Role for Daple in non-canonical Wnt signaling during gastric cancer invasion and metastasis [J]. Cancer Sci,2016,107(2):133-139.
[4] Willert K,Brown JD,Danenberg E,et al. Wnt proteins are lipid-modified and can act as stem cell growth factors [J]. Nature,2003,423(6938):448-452.
[5] B?覿nziger C,Soldini D,Schütt C,et al. Wntless,a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells [J]. Cell,2006,125(3):509-522.
[6] Grigoryan T,Wend P,Klaus A,et al. Deciphering the function of canonical Wnt signals in development and disease:conditional loss- and gain-of-function mutations of beta-catenin in mice [J]. Genes Dev,2008,22(17):2308-2341.
[7] Qiang Y,Walsh K,Yao L,et al. Wnts induce migration and invasion of myeloma plasma cells [J]. Blood,2005,106(5):1786-1793.
[8] Bilic J,Huang Y,Davidson G,et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation [J]. Science,2007,316(5831):1619-1622.
[9] Bhanot P,Brink M,Samos CH,et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor [J]. Nature,1996,382(6588):225-230.
[10] Cavallo RA,Cox RT,Moline MM,et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity [J]. Nature,1998,395(6702):604-608.
[11] Arce L,Pate KT,Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression [J]. BMC Cancer,2009,9:159.
[12] Chocarro-Calvo A,García-Martínez JM,Ardila-González S,et al. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer [J]. Mol Cell,2013,49(3):474-486.
[13] Gan X,Wang J,Xi Y,et al. Nuclear Dvl,c-Jun,beta-catenin,and TCF form a complex leading to stabilization of beta-catenin-TCF interaction [J]. J Cell Biol,2008, 180(6):1087-1100.
[14] Wang W,Li X,Lee M,et al. FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus [J]. Dev Cell,2015,32(6):707-718.
[15] Kim K,Wagle M,Tran K,et al. R-Spondin family members regulate the Wnt pathway by a common mechanism [J]. Mol Biol Cell,2008,19(6):2588-2596.
[16] Wei Q,Yokota C,Semenov MV,et al. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling [J]. J Biol Chem,2007,282(21):15903-15911.
[17] Koo B,Spit M,Jordens I,et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors [J]. Nature,2012,488(7413):665-669.
[18] Kramps T,Peter O,Brunner E,et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex [J]. Cell,2002,109(1):47-60.
[19] Clevers H,Loh KM,Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration:Wnt signaling and stem cell control [J]. Science,2014, 346(6205):1248012.
[20] Oishi I,Suzuki H,Onishi N,et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway [J]. Genes Cells,2003,8(7):645-654.
[21] Hayward P,Brennan K,Sanders P,et al. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity [J]. Development,2005,132(8):1819-1830.
[22] Axelrod JD,Matsuno K,Artavanis-Tsakonas S,et al. Interaction between Wingless and Notch signaling pathways mediated by disheveled [J]. Science,1996,271(5257):1826-1832.
[23] Revet I,Huizenga G,Koster J,et al. MSX1 induces the Wnt pathway antagonist genes DKK1,DKK2,DKK3,and SFRP1 in neuroblastoma cells,but does not block Wnt3 and Wnt5A signalling to DVL3 [J]. Cancer Lett,2010, 289(2):195-207.
[24] Fre S,Pallavi SK,Huyghe M,et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine [J]. Proc Natl Acad Sci U S A,2009, 106(15):6309-6314.
[25] Li X,Placencio V,Iturregui JM,et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis [J]. Oncogene,2008,27(56):7118-7130.
[26] Han G,Li AG,Liang Y,et al. Smad7-induced beta-catenin degradation alters epidermal appendage development [J]. Dev Cell,2006,11(3):301-312.
[27] Song J,McColl J,Camp E,et al. Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells [J]. Proc Natl Acad Sci U S A,2014, 111(20):7337-7342.
[28] Yang SH,Andl T,Grachtchouk V,et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling [J]. Nat Genet,2008,40(9):1130-1135.
[29] Noubissi FK,Goswami S,Sanek NA,et al. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA [J]. Cancer Res,2009,69(22):8572-8578.
[30] Pasca di Magliano M,Biankin AV,Heiser PW,et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma [J]. PLoS One,2007,2(11):e1155.
[31] van den Brink GR,Bleuming SA,Hardwick JC,et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation [J]. Nat Genet,2004, 36(3):277-282.
[32] Ohta H,Aoyagi K,F(xiàn)ukaya M,et al. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers [J]. Br J Cancer,2009,100(2):389-398.
[33] Ramos A,Camargo FD. The Hippo signaling pathway and stem cell biology [J]. Trends Cell Biol,2012,22(7):339-346.
[34] Heallen T,Zhang M,Wang J,et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size [J]. Science,2011,332(6028):458-461.
[35] Park HW,Kim YC,Yu B,et al. Alternative Wnt Signaling Activates YAP/TAZ [J]. Cell,2015,162(4):780-794.
[36] Thomas AG,Stathis M,Rojas C,et al. Netupitant and palono?鄄 setron trigger NK1 receptor internalization in NG108-15 cells [J]. Exp Brain Res,2014,232(8):2637-2644.
(收稿日期:2016-10-02 本文編輯:張瑜杰)