林雅潔
(上海污染場地修復工程技術研究中心/上海環(huán)境衛(wèi)生工程設計院有限公司;上海市環(huán)境工程設計科學研究院有限公司,上海 200232)
石墨烯-層狀雙氫氧化物納米復合材料在環(huán)境修復中的應用綜述
林雅潔
(上海污染場地修復工程技術研究中心/上海環(huán)境衛(wèi)生工程設計院有限公司;上海市環(huán)境工程設計科學研究院有限公司,上海 200232)
選用石墨烯(G)及層狀雙氫氧化物(LDHs)兩種新型高效納米材料,合成結構多樣、功能豐富的新型復合納米材料L-G。結合二者各自優(yōu)勢,減少了各自的自聚積效應,提高分散性,對環(huán)境污染修復起協(xié)同促進作用。文章總結了目前研究中關于L-G復合材料對環(huán)境中溫室氣體CO2的捕獲,以及染料及重金屬的吸附去除進展,以期為復合材料的進一步研究開發(fā)提供參考。
石墨烯;層狀雙氫氧化物;重金屬;環(huán)境修復
關于石墨烯(graphene)及層狀雙氫氧化物(LDHs,也稱水滑石)的復合納米材料的研究,最早的文獻報道起于2011年[1-4],目前由SCI收錄的相關文章約90篇。其中3篇綜述[5-7],此外,研究內容包括以下三方面內容:①材料合成及結構研究[8-10];②納米功能材料應用(超級電容器[11-13]、傳感器[14-16]、催化材料[17-19]、析氧電催化[20-22],儲能材料[23-25]、免疫分析檢測[26-27]、阻燃劑[28-29]、鋰電池[30-31]);③)環(huán)境修復(CO2吸收[32-33]、重金屬及陰離子染料[34-39]吸附去除)。目前的研究尚少且新,主要集中在復合納米材料的合成及其作為納米功能材料在材料學中的應用,對于環(huán)境污染的修復研究應用較少,但石墨烯及LDHs都具有良好的吸附性能,能去除多種環(huán)境污染物,因此其復合物在環(huán)境修復中的應用仍具有較大的研究空間和應用前景。
1.1 石墨烯
石墨烯[40],是指單層石墨層片,由sp2雜化的碳原子緊密排列而成蜂窩狀晶體結構。晶格間以牢固的六邊形狀相連接,π鍵垂直于晶面,是石墨烯導電過程的重要載體。因此石墨烯可描述為由單層碳原子緊密堆積成的二維蜂窩狀晶格結構,其間碳原子連接極其柔韌,結構穩(wěn)定。石墨烯具有優(yōu)異的光學、力學、熱學等性能,導電性可控,化學穩(wěn)定性強等,使其成為新興的納米材料,被廣泛利用于復合材料領域中。
石墨烯及氧化石墨烯,因其高比表面積,片層二維結構等特性,具有很強的吸附能力,和循環(huán)利用能力,被廣泛用于吸附環(huán)境中的污染重金屬[41-46](如Pb、Cd、Hg、Cr、Ni、Co、As、Cu等)、染料[47-49](甲基藍、甲基橙、番紅、孔雀綠、結晶紫等)、油[50]、多環(huán)芳烴[51]、有機溶劑[50]等。可能的吸附機制包括石墨烯片層表面的含氧官能團和污染物間的絡合作用[42,51,52,54]、離子交換作用[53,54]、靜電吸附[54,55]、π鍵作用[51,55]、粒子內擴散作用[53,56]等。吸附過程受環(huán)境中pH、離子強度[57]等因素影響,一般為自發(fā)吸熱反應。
1.2 LDHs
LDHs(Layered double hydroxides),層狀雙氫氧化物,由帶正電荷的氫氧化物層及層間陰離子組成,是一類具有相同結構,不同理化性質的陰離子層狀材料。因其板層金屬離子可控性及層間的可塑性,在多領域被廣泛應用。LDHs經(jīng)剝離后為帶正電的片層,具有分子水平的二維尺度,與不同物質重新組裝后可構建不同的納米功能材料,具有光學、電學、熱穩(wěn)定性等特征,近年來備受研究者們的親睞[58-62]。
LDHs層板嵌含多種金屬離子、含氧官能團,層間陰離子的靈活可變等特性,能通過靜電作用、離子交換等方式,去除環(huán)境中的污染物[61-63]。其焙燒產(chǎn)物CLDHs,因層間陰離子及-OH的煅燒支除,具有很強的“記憶效應”,能通過吸收環(huán)境中的陰離子恢復其層狀結構,因此可作為吸附劑及穩(wěn)定劑,有效去除環(huán)境中的陰離子而被廣泛應用于環(huán)境修復中[64-69]。Liang等人[70]總結了LDHs對金屬陽離子的作用機制包括:表面沉淀作用(形成M(OH)2、MCO3)、表面絡合作用(形成O-M-O)、同晶取代作用(取代層板上的Mg或Al)及層間陰離子的螯合作用(形成ML),可應用于解釋LDHs對類金屬As、Se等污染物的吸附作用機制,如圖1所示。
圖1 LDHs對金屬陽離子的吸附機制[70]
石墨烯-水滑石復合材料的合成方法有很多種[71-75],復合的形式也千變萬化,研究者們通常根據(jù)實際需要,引入不同的官能團,改變組合方式,采用不同的合成方法,來獲得目標的復合材料。本文主要介紹最常見的兩種復合材料合成方法:自組裝合成及以石墨烯為基底的合成方法。
2.1 自組裝合成
自組裝合成是以石墨烯及水滑石各自剝層為基礎。其中,石墨烯可直接通過超聲剝離。而LDHs由于層板的正電荷與層間陰離子間的靜電作用太強,需要在層間引入大分子,擴大層間距,減弱陰離子與層板間的相互作用力,減弱其穩(wěn)定性,才可剝離。通常用于LDHs剝離的溶劑包括甲酰胺、短鏈醇等。以甲酰胺為例,當LDHs置于甲酰胺溶液的環(huán)境中,大量的甲酰胺通過強氫鍵作用進入LDHs層空間,引起LDHs的膨脹,擴大
相鄰金屬層板間距,進而剝離分開。
剝離后的石墨烯和LDHs片層,分別帶負電和正電,通過正負電荷相互吸引沉淀,形成石墨烯-水滑石復合材料,具體合成過程以CoAl-LDHs為例[71],如圖2所示。
圖2 (a)CoAl-LDH與GO復合材料的合成示意圖;(b)實物圖[71]
2.2 以石墨烯為基底合成
以石墨烯為基底合成L-G復合物,是以共沉淀法合成LDHs為基礎的。一般選用共沉淀法中的尿素法,將尿素作為沉淀劑,加入到含有組成目標LDHs主體層板金屬的鹽溶液中,利用尿素受熱分解得到碳酸氨,保持溶液堿性環(huán)境,從而提供LDHs合成所需的堿性環(huán)境及層間陰離子,再于一定條件下進行晶化。
L-G復合物合成時,選用剝離后的氧化石墨烯片層-尿素溶液作為陰離子溶液,加入到M2+及M3+的混合鹽溶液中,通過攪拌、沉淀、陳化、潤洗及干燥等步驟,合成相應的RGO-LDHs復合材料,如圖3所示[73]。
圖3 以石墨烯為基底合成L-G復合物流程示意圖[73]
常用的表征方法,包括X射線粉末衍射(XRD)分析,用于表征復合材料的晶體結構,測量晶體參數(shù);傅里葉紅外光譜(FT-IR)分析,表征復合材料內的鍵結構,氫鍵的強弱及變化;采用熱分析,判斷復合材料的熱穩(wěn)定性,反應兩種復合材料的結合情況;拉曼光譜(Raman)分析復合材料中石墨烯的特性;掃描及透射電子顯微鏡(SEM、TEM),表征復合材料的微觀形態(tài),膨脹水化程度。此外,還有電子順磁光譜(ESR)、核磁共振(NMR)、X射線吸收近邊結構光譜(XANES)等表征方法。
現(xiàn)有研究關于石墨烯-水滑石復合材料在環(huán)境中的應用,主要可歸納為三類[32-39]:1)用于環(huán)境中CO2的吸收,固碳貯存能量;2)用于陰離子染料的吸附去除;3)用于重金屬離子的吸附去除。
4.1 用于CO2吸收,節(jié)能減排
L-G復合物用于CO2的吸附,主要基于LDHs對CO2特殊的強親和力和吸附性,通過煅燒LDHs形成有效混合氧化物,對CO2進行催化吸收。雖然LDHs對CO2的吸附能力強,但是其吸附的穩(wěn)定性及吸附能力還有待提高[32]。因此,選用質量輕、帶電量充足的石墨烯納米材料進行復合,以提高LDHs對CO2的吸附能力。研究結果表明,L-G復合物中石墨烯的含量僅需7%,其吸附能力與LDHs相比即有顯著增加,吸附量增值高達60%[33]。
研究者們認為,此種吸附促進作用主要的原因包括兩方面:其一,在L-G復合物中,LDHs起類似墊片作用,防止石墨烯片層的聚積;另一方面,對于LDHs,石墨烯的加入對LDHs起支撐作用,促進LDHs的擴散、分散,形成更具有活性的結構主體,因而提高了LDHs的吸附能力及循環(huán)吸附穩(wěn)定性[33]。
圖4 L-G復合物吸收CO2示意圖[33]
4.2 陰離子染料吸附
L-G復合物用于甲基藍的去除,LDHs作為交聯(lián)劑接入氧化石墨烯片層,通過電荷輔助氫鍵及晶格間的陽離子π鍵作用,形成3D網(wǎng)狀結構,在溶液中具有很強的穩(wěn)定性和較高的親和力,克服了石墨烯易碎的特性[34]。L-G復合物減少了GO的自堆積,激活了更多的吸附位點,同時3D結構,易于分離和收集,提高了工作效率。
通過引入具有磁性的零價鎳[35],用于甲基橙的吸附去除,石墨烯的加入,有效地阻止了LDHs的自積聚,同時帶有磁性的鎳提高了復合材料的回收循環(huán)利用性能。
4.3 重金屬及其絡合物的吸附去除
對重金屬污染物的吸附去除研究較陰離子染料多,研究的內容包括復合物的合成方法、組成類型、環(huán)境因素(pH、溫度)、接觸時間、吸附劑濃度等因素對于L-G復合物吸附性能的影響,此外,還通過反應熵、焓的測定,研究吸附反應過程[36]。
研究結果表明,復合物中石墨烯的比例能影響復合物的吸附能力,石墨烯含量過高或過低,L-G復合物對As的吸附量都降低[37];吸附反應熵為負值,說明為自發(fā)吸附,溫度升高,在一定程度上有利于吸附量的增加[36];環(huán)境pH值約為5.1時,吸附效率最高[36];在合成過程中加入尿素[38],能有效的減少氧化石墨烯的自聚積,促進 LDHs在石墨烯片層表面的原位成核,獲得結構合理、分散性強的L-G復合物,進而提高吸附效率。
復合物對重金屬的吸附機制,不同的研究者給出了不同的猜測,一般認為吸附過程以化學吸附為主,石墨烯表面吸附作用與煅燒后的LDHs的“記憶效應”間的協(xié)同作用共同促進吸附[38]。LDHs作為大孔徑主體,為吸附過程提供了可靠的傳輸路徑[39],石墨烯的加入大大提高了復合物的比表面積,暴露更多的吸附點位,極大促進吸附。
綜上所述,通過不同方式合成不同形式的L-G復合物,是一種高效快速,穩(wěn)定的吸附劑,可用于環(huán)境中多種污染物的修復。主要有以下幾點優(yōu)勢:①利用兩種材料的相互作用,減少兩種材料各自的凝聚,增加接觸面積;②對于帶正電的污染物,利用LDHs對無機離子的親和力,增加石墨烯對重金屬的捕獲和吸附量;③對于帶負電的污染物,利用石墨烯對LDHs的分散,增加LDHs層空間,促進LDHs對絡合物的吸附和結合。因此,研究L-G復合物在環(huán)境污染修復中推廣應用,具有較大潛力。
[1]Chen D,Wang X,Liu T,et al.Electrically Conductive Poly(vinyl alcohol) Hybrid Films Containing Graphene and Layered Double Hydroxide Fabricated via Layer-by-Layer Self-Assembly[J].Acs Applied Materials & Interfaces,2010,2(7):2005-2011.
[2].Li M,Zhu J E,Zhang L,et al.Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine.[J].Nanoscale,2011,3(10):4240-6.
[3]Wu X L,Wang L,Chen C L,et al.Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal[J].Journal of Materials Chemistry,2011,21(43):17353-17359.
[4]Wang Y,Peng W,Liu L,et al.Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine[J].Microchimica Acta,2011,174(1):41-46.
[5]Daud M,Kamal M S,Shehzad F,et al.Graphene/layered double hydroxides nanocomposites:A review of recent progress in synthesis and applications[J].Carbon,2016,104:241-252.
[6]Cao Y,Li G,Li X.Graphene/layered double hydroxide nanocomposite:Properties,synthesis,and applications[J].Chemical Engineering Journal,2016,292:207-223.
[7]Zhao M,Zhang Q,Huang J,et al.Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ‐ Properties,Synthesis,and Applications[J].Advanced Functional Materials,2012,22(4):675-694.
[8]Lonkar S P,Raquez J M,Dubois P.One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide(LDH) Nanohybrids[J].Nano-Micro Letters,2015,7(4):332-340.
[9]Ma W,Wang L,Xue J,et al.Ultra-large scale synthesis of Co-Ni layered double hydroxides monolayer nanosheets by a solvent-free bottom-up strategy[J].Journal of Alloys & Compounds,2016,662:315-319.
[10]Chen S,Mao M,Liu X,et al.A high-rate cathode material hybridized by in-site grown Ni-Fe layered double hydroxide and carbon black nanoparticles[J].Journal of Materials Chemistry A,2016,4(13):4877-4881.
[11]Wu J,Liu W W,Wu Y X,et al.Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/Co x Ni 1-x -layered double hydroxides ultrathin nanosheets for high-performance supercapacitors[J].Electrochimica Acta,2016,203:21-29.
[12]Ma K Y,Cheng J P,Zhang J,et al.Dependence of Co/Fe ratios in Co-Fe layered double hydroxides on the structure and capacitive properties[J].Electrochimica Acta,2016,198:231-240.
[13]Wu X,Jiang L,Long C,et al.Energy Storage:Dual Support System Ensuring Porous Co-Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors(Adv.Funct.Mater.11/2015)[J].Advanced Functional Materials,2015,25(11):1648-1655.
[14]Wei Y,Chen S,Li F,et al.Highly Stable and Sensitive Paper-Based Bending Sensor Using Silver Nanowires/Layered Double Hydroxides Hybrids[J].Acs Applied Materials & Interfaces,2015,7(26).
[15]Wang Y,Wang Z,Rui Y,et al.Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides:direct electrochemistry and hydrogen peroxide sensing.[J].Biosensors & Bioelectronics,2015,64:57-62.
[16]A nonenzymatic reduced glutathione sensor based on Ni-Al LDHs/MWCNTs composites
[17]Zou Y,Wang X,Ai Y,et al.Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides:Batch Experimental and Theoretical Calculation Study.[J].Environmental Science Technology,2016,50(7).
[18]Wang Y,Wang Z,Wu X,et al.Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen[J].Electrochimica Acta,2016,192:196-204.
[19]Carrasco J A,Romero J,Varela M,et al.Correction:Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts[J].Inorg.chem.front,2016,3(4):478-487.
[20]Qian L,Lu Z,Xu T,et al.Trinary Layered Double Hydroxides as High‐Performance Bifunctional Materials for Oxygen Electrocatalysis[J].Advanced Energy Materials,2015,5(13).
[21]Zhang G,Lin B,Yang W,et al.Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer[J].Rsc Advances,2015,5(8):5823-5829.
[22]Huo R,Jiang W J,Xu S,et al.Co/CoO/CoFe2O4/G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction.[J].Nanoscale,2013,6(1):203-6.
[23]Long X,Wang Z,Xiao S,et al.Transition metal based layered double hydroxides tailored for energy conversion and storage[J].Materials Today,2016,19(4):213-226.
[24]Ensafi A A,Jafari-Asl M,Nabiyan A,et al.Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism[J].Energy,2016,99:103-114.[25]Du D,Yue W,F(xiàn)an X,et al.Ultrathin NiO/NiFe2O4,Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties[J].Electrochimica Acta,2016,194:17-25.
[26]Shen M,Zhang Z,Ding Y.Synthesizing NiAl-layered double hydroxide microspheres with hierarchical structure and electrochemical detection of hydroquinone and catechol[J].Microchemical Journal,2016,124:209-214.
[27]Li M,Zhu J E,Zhang L,et al.Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine.[J].Nanoscale,2011,3(10):4240-6.
[28]Liu Y J,Mao L,F(xiàn)an S H.Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3layered double hydroxide as a synergistic agent[J].Journal of Applied Polymer Science,2014,131(17):8964-8973(10).
[29]Huang G,Chen S,Song P,et al.Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites[J].Applied Clay Science,2014,s 88-89(3):78-85.
[30]Du D,Yue W,Ren Y,et al.Fabrication of graphene-encapsulated CoO/CoFe2O4,composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries[J].Journal of Materials Science,2014,49(23):8031-8039.
[31]Latorre-Sanchez M,Atienzar P,Abellán G,et al.The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries[J].Carbon,2012,50(2):518-525.
[32]Iruretagoyena D,Shaffer M S P,Chadwick D.Adsorption of carbon dioxide on graphene oxide supported layered double oxides[J].Adsorption,2014,20(2):321-330.
[33]Garciagallastegui A,Iruretagoyena D,Gouvea V,et al.Graphene Oxide as Support for Layered Double Hydroxides:Enhancing the CO2Adsorption Capacity[J].Chemistry of Materials,2013,24(23):4531-4539.
[34]Fang Q,Chen B.Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification[J].Journal of Materials Chemistry,2014,2(23):8941-8951.
[35]Zhe Y,Ji S,Wei G,et al.Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution[J].Journal of Colloid & Interface Science,2013,408(20):25-32.
[36]Nandi D,Basu T,Debnath S,et al.Mechanistic Insight for the Sorption of Cd(II) and Cu(II) from Aqueous Solution on Magnetic Mn-Doped Fe(III) Oxide Nanoparticle Implanted Graphene[J].Journal of Chemical & Engineering Data,2013,58(58):2809-2818.
[37]Wen T,Wu X,Tan X,et al.One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions.[J].Acs Applied Materials & Interfaces,2013,5(8):3304-3311.
[38]Yuan X,Wang Y,Wang J,et al.Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal[J].Chemical Engineering Journal,2013,221(2):204-213.
[39]Wu X L,Wang L,Chen C L,et al.Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal[J].Journal of Materials Chemistry,2011,21(43):17353-17359.
[40]朱宏偉,徐志平,謝丹.石墨烯的結構、制備方法與性能表征[M].清華大學出版社,2011.
[41]Zhao G,Li J,Ren X,et al.Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management[J].Environmental Science & Technology,2011,45(24):10454-62.
[42]Sitko R,Turek E,Zawisza B,et al.Adsorption of divalent metal ions from aqueous solutions using graphene oxide.[J].Dalton Transactions,2013,42(16):5682-9.[43]Dinda D,Gupta A,Saha S K.Removal of toxic Cr(VI) by UV-active functionalized graphene oxide for water purification[J].Journal of Materials Chemistry A,2013,1(37):11221-11228.
[44]Guo X,Du B,Qin W,et al.Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI),Pb(II),Hg(II),Cd(II) and Ni(II) from contaminated water[J].Journal of Hazardous Materials,2014,278:211-220.
[45]Hai T X,Jian H C,Xue S,et al.NH 2 -rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution[J].Chemical Engineering Journal,2015,263:280-289.
[46]Sitko R,Janik P,Zawisza B,et al.Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent[J].Analytical Chemistry,2015,87(6):3535-42.
[47]Zhao F,Repo E,Yin D,et al.EDTA-Cross-Linked β-Cyclodextrin:An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes[J].Environmental Science & Technology,2015,49(17):10570-80.
[48]Shanshan,WANG,Yang,et al.β-Cyclodextrin functionalized graphene oxide:an efficient and recyclable adsorbent for the removal of dye pollutants[J].Frontiers of Chemical Science and Engineering,2015,9(1):77-83.
[49]Wang D,Liu L,Jiang X,et al.Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2015,466(6):166-173.
[50]Xing L B,Hou S F,Zhou J,et al.Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption[J].Journal of Solid State Chemistry,2015,230:224-232.
[51]Shen Y,Chen B.Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water.[J].Environmental Science & Technology,2015,49(12):7364-72.
[52]Moo J G,Khezri B,Webster R D,et al.Graphene oxides prepared by Hummers′,Hofmann′s,and Staudenmaier′s methods:dramatic influences on heavy-metal-ion adsorption.[J].ChemPhysChem,2014,15(14):2922-2929.
[53]Hur J,Shin J,Yoo J,et al.Competitive Adsorption of Metals onto Magnetic Graphene Oxide:Comparison with Other Carbonaceous Adsorbents[J].Scientific World Journal,2014,2015:1-11.
[54]Bian Y,Bian Z Y,Zhang J X,et al.Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal[J].Applied Surface Science,2015,329:269-275.
[55]Liu J,Du H,Yuan S,et al.Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.[J].Water Science & Technology A Journal of the International Association on Water Pollution Research,2015,71(11):1611-9.
[56]Zhao F,Repo E,Sillanp M,et al.Green Synthesis of Magnetic EDTA- and/or DTPA-Cross-Linked Chitosan Adsorbents for Highly Efficient Removal of Metals[J].Industrial & Engineering Chemistry Research,2015,54(4):1271-1281.
[57]Hai T X,Jian H C,Xue S,et al.NH 2 -rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution[J].Chemical Engineering Journal,2015,263:280-289.
[58]Lin Y,F(xiàn)ang Q,Chen B.Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides[J].Chemical Engineering Journal,2014,237(2):38-46.
[59]Evans D G,Duan X.Preparation of layered double hydroxides and their applications as additives in polymers,as precursors to magnetic materials and in biology and medicine.[J].ChemInform,2006,37(15):485-96.
[60]Leroux F,Taviot-Guého C.Fine tuning between organic and inorganic host structure:New trends in layered double hydroxide hybrid assemblies[J].Journal of Materials Chemistry,2005,15(35-36):3628-3642.
[61]Goh K H,Lim T T,Dong Z.Application of layered double hydroxides for removal of oxyanions:a review.[J].Water Research,2008,42(6-7):1343-68.
[62]Ting Liu;Y,Kuang Wang,;M,T Y C,et al.Arsenate Sorption on Lithium/Aluminum Layered Double Hydroxide Intercalated by Chloride and on Gibbsite:Sorption Isotherms,Envelopes,and Spectroscopic Studies[J].Environmental Science & Technology,2007,40(24):7784-9.
[63]Newman S P,Jones W.Synthesis,characterization and application of layered double hydroxides containing organic guest[J].New Journal of Chemistry,1998,22(2):105-115.
[64]Williams G R,O′Hare D.Towards Understanding,Control and Application of Layered Double Hydroxide Chemistry[J].ChemInform,2006,37(45):3065-3074.
[65]Bish D L.Anion exchange in takovite:applications to other hydroxide minerals.[J].Bulletin De Mineralogie,1980,103(2):170-175.
[66]Wu X,Tan X,Yang S,et al.Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides[J].Water Research,2013,47(12):4159-4168.
[67]Cheng X,Wang Y,Sun Z,et al.Pathways of phosphate uptake from aqueous solution by ZnAl layered double hydroxides.[J].Water Science & Technology A Journal of the International Association on Water Pollution Research,2013,67(8):1757-63.
[68]Chao Y F,Lee J J,Wang S L.Preferential adsorption of 2,4-dichlorophenoxyacetate from associated binary-solute aqueous systems by Mg/Al-NO3 layered double hydroxides with different nitrate orientations.[J].Journal of Hazardous Materials,2009,165(1-3):846-52.
[69]Morimoto K,Anraku S,Hoshino J,et al.Surface complexation reactions of inorganic anions on hydrotalcite-like compounds.[J].Journal of Colloid & Interface Science,2012,384(1):99-104.
[70]Liang X,Zang Y,Xu Y,et al.Sorption of metal cations on layered double hydroxides[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2013,433(35):122-131.
[71]Wang L,Wang D,Dong X Y,et al.Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.[J].Chemical Communications,2011,47(12):3556-3558.
[72]Zhao M,Zhang Q,Huang J,et al.Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ‐ Properties,Synthesis,and Applications[J].Advanced Functional Materials,2012,22(4):675-694.
[73]Li H,Zhu G,Liu Z H,et al.Fabrication of a hybrid graphene/layered double hydroxide material[J].Carbon,2010,48(15):4391-4396.
[74]Wang Y,Li F,Dong S,et al.A facile approach for synthesizing Fe-based layered double hydroxides with high purity and its exfoliation.[J].Journal of Colloid & Interface Science,2016,467:28-34.
[75]Liang D,Yue W,Sun G,et al.Direct Synthesis of Unilamellar MgAl-LDH Nanosheets and Stacking in Aqueous Solution[J].Langmuir,2015.
Graphene/Layered Double Hydroxides Nanocomposites:A review of Recent Progress in Environmental Remediation
LIN Yajie
(Shanghai Engineering Research Center of Contaminated Sites Remediation/Shanghai Design Institute in EnvironmentalSanitary Engineering Co.,Ltd/ Shanghai Institute for Design and Research on Environmental Engineering Co.,Ltd,Shanghai 200232)
Applied grapheme and layered double hydroxides(LDHs),synthesis a diversified structure and functional nano-material. Making good use of their respective advantages,prevent the aggregation of LDHs and graphene,then received a synergistic contribution in environmental remediation. This paper summarized the current studies about L-G composite applied in carbon dioxides capture,dye and heavy metal adsorption removal,so that provide a reference for further study about the composite.
Graphene;LDHs;metal pollutants;environmental remediation
林雅潔,工程師、碩士,研究方向為污染場地修復技術研究
X21
A
1673-288X(2017)03-0095-05
項目資助:上海市國資委企業(yè)技術創(chuàng)新和能級提升項目(No. 2015016)
引用文獻格式:林雅潔.石墨烯-層狀雙氫氧化物納米復合材料在環(huán)境修復中的應用綜述[J].環(huán)境與可持續(xù)發(fā)展,2017,42(3):95-99.