賀巖松, 黃 毅,徐中明, 張志飛
(1.重慶大學(xué) 機(jī)械傳動(dòng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400030;2.重慶大學(xué) 汽車工程學(xué)院,重慶 400030)
基于小波奇異熵與SOFM神經(jīng)網(wǎng)絡(luò)的電機(jī)軸承故障識(shí)別
賀巖松1,2, 黃 毅2,徐中明1,2, 張志飛2
(1.重慶大學(xué) 機(jī)械傳動(dòng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400030;2.重慶大學(xué) 汽車工程學(xué)院,重慶 400030)
提出一種用小波奇異熵(WSE)和自組織特征映射(SOFM)神經(jīng)網(wǎng)絡(luò)進(jìn)行電機(jī)軸承故障識(shí)別的建模方法。首先通過對(duì)電機(jī)驅(qū)動(dòng)端和風(fēng)扇端采集的故障振動(dòng)信號(hào)的小波奇異熵的計(jì)算和比較來識(shí)別故障軸承的端位;在此基礎(chǔ)上以故障端信號(hào)的小波包分解底層各結(jié)點(diǎn)能量為特征向量輸入建立自組織特征映射神經(jīng)網(wǎng)絡(luò)模型來識(shí)別故障軸承內(nèi)部的具體點(diǎn)蝕破壞位置。小波奇異熵和SOFM神經(jīng)網(wǎng)絡(luò)的結(jié)合實(shí)現(xiàn)了故障軸承端位及其內(nèi)部點(diǎn)蝕位置的聯(lián)合識(shí)別。分別對(duì)含有內(nèi)外圈和滾動(dòng)體點(diǎn)蝕故障的軸承進(jìn)行建模和識(shí)別試驗(yàn),結(jié)果表明:該模型可以有效地識(shí)別電機(jī)故障軸承的端位及其內(nèi)部點(diǎn)蝕破壞位置;與傳統(tǒng)支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)識(shí)別模型相比,該模型故障識(shí)別準(zhǔn)確率更高,識(shí)別穩(wěn)定性更好,更適宜于故障識(shí)別這樣的多分類問題。
小波包分解;小波奇異熵;自組織特征映射;故障識(shí)別
據(jù)統(tǒng)計(jì),電機(jī)這類旋轉(zhuǎn)機(jī)械出現(xiàn)故障時(shí)有30%以上是由于軸承引起[1],電機(jī)作為工業(yè)設(shè)備和產(chǎn)品的重要組成部分,經(jīng)常處于大負(fù)荷工作狀態(tài),電機(jī)驅(qū)動(dòng)端和風(fēng)扇端的軸承最容易發(fā)生破壞,從而影響電機(jī)的工作性能,因此對(duì)電機(jī)軸承故障的準(zhǔn)確檢測(cè)和及時(shí)識(shí)別具有重要的意義。
旋轉(zhuǎn)機(jī)械中軸承產(chǎn)生的振動(dòng)信號(hào)具有非線性和非平穩(wěn)性特點(diǎn),故障信號(hào)特征信息的提取和識(shí)別方法的選取是故障診斷檢測(cè)的關(guān)鍵環(huán)節(jié)。張?jiān)茝?qiáng)等[2]等采用最優(yōu)廣義S變換(GST)與脈沖耦合神經(jīng)網(wǎng)絡(luò)PNCC提取出了比短時(shí)傅里葉變換(STFT)、偽魏格納分布(WVP)和一般S變換(ST)時(shí)頻聚集性更好的軸承故障特征。小波變換具有自適應(yīng)多分辨率特性,能夠有效地處理和分析這類信號(hào),因此也被廣泛用來提取故障信號(hào)的特征參量[3-7]。在故障特征信息提取的基礎(chǔ)上,趙元喜等[8]提出用BP神經(jīng)網(wǎng)絡(luò)建模進(jìn)行滾動(dòng)軸承聲發(fā)射故障模式識(shí)別;竇東陽等[9]提出基于設(shè)備運(yùn)行數(shù)據(jù)構(gòu)造分類器組用于滾動(dòng)軸承故障識(shí)別;胥永剛等[10]提出用支持向量機(jī)(SVM)進(jìn)行滾動(dòng)軸承故障識(shí)別。然而傳統(tǒng)支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)采用有導(dǎo)師監(jiān)督的學(xué)習(xí)方式,更適用于數(shù)據(jù)間整體的非線性映射回歸和二分類問題,對(duì)于故障識(shí)別這樣的多分類問題存在訓(xùn)練和決策復(fù)雜度增加的缺點(diǎn)[11-12]。不同故障信號(hào)時(shí)頻特征空間分布不同,而自組織特征映射網(wǎng)絡(luò)SOFM(Self Organizing Feature Map)是一種無監(jiān)督型學(xué)習(xí)和強(qiáng)容錯(cuò)性的智能化分類網(wǎng)絡(luò),它能根據(jù)輸入樣本的特征空間分布特點(diǎn)進(jìn)行自組織學(xué)習(xí)[13-14],比傳統(tǒng)支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)更適用于故障識(shí)別這樣的多分類問題。
本文針對(duì)電機(jī)兩端軸承出現(xiàn)點(diǎn)蝕故障的振動(dòng)信號(hào),在小波包分解的基礎(chǔ)上,引入小波奇異熵和SOFM神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)軸承故障的智能識(shí)別。先通過對(duì)兩端振動(dòng)信號(hào)的小波奇異熵WSE的計(jì)算和比較來識(shí)別故障軸承的端位;然后以不同點(diǎn)蝕位置軸承對(duì)應(yīng)振動(dòng)信號(hào)的小波包分解的底層結(jié)點(diǎn)系數(shù)能量作為SOFM神經(jīng)網(wǎng)絡(luò)的輸入特征向量來建模識(shí)別故障軸承內(nèi)部的具體點(diǎn)蝕位置。識(shí)別結(jié)果表明:該方法可以有效準(zhǔn)確地識(shí)別電機(jī)故障軸承的端位和故障軸承內(nèi)部的點(diǎn)蝕位置,為電機(jī)軸承故障的在線監(jiān)測(cè)、智能識(shí)別和維修保養(yǎng)提供工程指導(dǎo),也為旋轉(zhuǎn)機(jī)械軸承故障的智能識(shí)別提供一種新的途徑。
1.1 小波奇異熵理論
小波奇異熵是小波分解、奇異值分解和信息熵三者的結(jié)合[15],充分利用了小波變換的自適應(yīng)時(shí)頻局部化優(yōu)勢(shì)、奇異值分解對(duì)時(shí)頻空間特征模式的提取功能和信息熵對(duì)信號(hào)不確定度及復(fù)雜度的統(tǒng)計(jì)特性。信號(hào)時(shí)頻特征模式分布越均勻,不確定性和隨機(jī)性越大,小波奇異熵WSE也就越大;反之信號(hào)時(shí)頻特征越集中在少數(shù)模式,不確定性越小,則小波奇異熵越小,因此小波奇異熵是信號(hào)復(fù)雜度和不確定度的統(tǒng)計(jì)量化指標(biāo),可以用來識(shí)別不同特征模式的信號(hào)[16-17]。
對(duì)長(zhǎng)度為N的信號(hào)S(n)進(jìn)行L層小波包分解樹如圖1所示,最底層的p個(gè)長(zhǎng)度為q的小波分解系數(shù)結(jié)點(diǎn)構(gòu)成時(shí)頻分布矩陣Ap×q,該矩陣反映了信號(hào)S(n)的時(shí)頻空間能量分布特征,根據(jù)矩陣的奇異值分解理論,Ap×q可以分解為
Ap×q=Up×kΛk×kVk×q
(1)
式中:p=2L,q=N/2L,Λ=diag(λ1,λ2,…,λk)為奇異值對(duì)角矩陣,表示時(shí)頻信息矩陣A的主要特征模式,且奇異值滿足降序排列:λ1≥λ2…≥λk。為定量描述信號(hào)時(shí)頻能量分布的不確定度和復(fù)雜度,定義小波奇異熵為
(2)
(3)
圖1 信號(hào)L層小波包分解樹Fig.1 L layers wavelet packet decomposition(WPD) tree
1.2 小波奇異熵故障軸承端位識(shí)別參考
故障數(shù)據(jù)來源于美國(guó)CaseWesternReserveUniversity電氣工程實(shí)驗(yàn)室的滾動(dòng)軸承故障模擬試驗(yàn)臺(tái)[18]。采用電火花技術(shù)分別對(duì)SKF軸承的內(nèi)圈、外圈和滾動(dòng)體表面加工出深度為0.28mm,直徑為0.18mm的小孔以模擬軸承的單點(diǎn)點(diǎn)蝕破壞,外圈點(diǎn)蝕破壞的位置分別有3,6,12點(diǎn)鐘方向,內(nèi)圈及滾動(dòng)體的破壞位置任意選擇,示意如圖2,其中的點(diǎn)為點(diǎn)蝕位置,故障軸承的點(diǎn)蝕位置分布具體情況如表1所示。數(shù)據(jù)采集試驗(yàn)電機(jī)的額定功率為2.5kw,加速度傳感器分別布置在電機(jī)驅(qū)動(dòng)端和風(fēng)扇端磁性外殼的12點(diǎn)方向上采集兩端軸承附近的振動(dòng)信號(hào),傳感器布置和采集信號(hào)說明如圖3所示,其中FD表示故障軸承位于風(fēng)扇端(Fanend)時(shí)在驅(qū)動(dòng)端(Driveend)采集的振動(dòng)信號(hào),DD、DF和FF信號(hào)含義依此類推。
圖2 軸承內(nèi)部點(diǎn)蝕破壞位置示意圖Fig.2 The illustration of pitting corrosion locations in bearing
點(diǎn)蝕部件點(diǎn)蝕方向直徑/mm深度/mm內(nèi)圈任意方向0.180.28外圈3,6,12點(diǎn)方向0.180.28滾動(dòng)體任意滾動(dòng)體0.180.28注:表中都為單點(diǎn)點(diǎn)蝕破壞
正常軸承運(yùn)轉(zhuǎn)時(shí),各部件的接觸比較均勻,其附近振動(dòng)信號(hào)的小波包分解后的時(shí)頻能量分布較為均勻,不確定性和復(fù)雜性較大,因此小波奇異熵較大;而故障軸承運(yùn)轉(zhuǎn)時(shí),在破壞處產(chǎn)生沖擊,其附近的振動(dòng)信號(hào)的時(shí)頻能量分布表現(xiàn)出一定的確定性和集中性,從而小波奇異熵相對(duì)較小。
圖3 傳感器布置及信號(hào)采集Fig.3 The data acquisition and the sensors layout
分別給電機(jī)驅(qū)動(dòng)端和風(fēng)扇端安裝不同故障類型的軸承,然后進(jìn)行數(shù)據(jù)采集,采樣頻率為12 kHz,采樣點(diǎn)數(shù)取為10 000,以電機(jī)驅(qū)動(dòng)端和風(fēng)扇端分別安裝上滾動(dòng)體點(diǎn)蝕軸承為例,電機(jī)運(yùn)行工況為空載,轉(zhuǎn)速為1 797 r/min。dbN系列小波具有良好的正交性,能將信號(hào)分解到一系列正交的子空間中去,同時(shí)滿足故障信號(hào)突變特征提取的高階消失矩條件。其頻域局部化能力隨著階數(shù)N的增加而加強(qiáng),對(duì)故障信號(hào)的突變特征提取能力也更強(qiáng),但時(shí)域緊支撐性和計(jì)算效率同時(shí)降低,本文參考小波奇異熵故障診斷相關(guān)工程實(shí)踐經(jīng)驗(yàn)[19-20],選擇db4小波進(jìn)行小波包分解。對(duì)驅(qū)動(dòng)端和風(fēng)扇端的振動(dòng)信號(hào)進(jìn)行三層小波包分解,底層結(jié)點(diǎn)小波系數(shù)矩陣的時(shí)頻分布如圖4和圖5所示。由圖分析可知:當(dāng)故障軸承位于驅(qū)動(dòng)端時(shí)驅(qū)動(dòng)端比風(fēng)扇端的小波系數(shù)能量更集中,表現(xiàn)出一定的確定性,其振動(dòng)信號(hào)應(yīng)該比風(fēng)扇端具有較小的奇異熵;反之,風(fēng)扇端小波系數(shù)更集中,表現(xiàn)出相對(duì)的確定性,風(fēng)扇端的小波奇異熵更小,經(jīng)計(jì)算故障軸承分別位于驅(qū)動(dòng)端和風(fēng)扇端時(shí)的兩對(duì)小波奇異熵為(1.65,1.94)和(1.85,1.79),驗(yàn)證了上述判斷。
圖4 故障軸承位于驅(qū)動(dòng)端對(duì)應(yīng)信號(hào)小波包分解系數(shù)Fig.4 The DD and DF singals WPD coefficients
圖5 故障軸承位于風(fēng)扇端對(duì)應(yīng)信號(hào)小波包分解系數(shù)Fig.5 The FD and FF singals WPD coefficients
1.3 小波奇異熵故障軸承端位識(shí)別可靠性分析
為探究小波奇異熵對(duì)故障軸承位置識(shí)別的可靠性,分別在不同電機(jī)負(fù)荷和點(diǎn)蝕位置下計(jì)算故障軸承分別位于驅(qū)動(dòng)端和風(fēng)扇端時(shí)兩端信號(hào)的小波奇異熵,用WSEd和WSEf分別表示驅(qū)動(dòng)端和風(fēng)扇端信號(hào)的小波奇異熵,風(fēng)扇端與驅(qū)動(dòng)端的小波奇異熵的比值w=WSEf/WSEd計(jì)算結(jié)果如表2所示,由表可知:電機(jī)在不同負(fù)荷下故障軸承位于驅(qū)動(dòng)端時(shí)w都大于1,而位于風(fēng)扇端時(shí)都小于1;由于外圈6點(diǎn)方向的點(diǎn)蝕處于軸承的載荷區(qū),沖擊性更強(qiáng),特征模式更集中,故障軸承位于驅(qū)動(dòng)端時(shí)小波奇異熵比值w相對(duì)較大,位于風(fēng)扇端時(shí)相對(duì)較小。
表2 小波奇異熵比值計(jì)算結(jié)果
同時(shí)計(jì)算電機(jī)軸承為正常工作狀態(tài)的小波奇異熵比值w如圖6所示,綜合以上數(shù)據(jù)分析可知:w小于1時(shí)故障軸承位于風(fēng)扇端;w大于1時(shí)故障軸承可能位于驅(qū)動(dòng)端,也有可能處于正常狀態(tài),盡管正常狀態(tài)的w比故障軸承位于驅(qū)動(dòng)端更接近于1,但仍需要通過其它判斷方法進(jìn)一步識(shí)別。
圖6 正常軸承小波奇異熵比值Fig.6 The wavelet singular entropy ratios of normal bearing
2.1 SOFM神經(jīng)網(wǎng)絡(luò)
SOFM(Self-Organizing Feature Map)是一種無導(dǎo)師競(jìng)爭(zhēng)型學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),其拓?fù)浣Y(jié)構(gòu)如圖7所示,競(jìng)爭(zhēng)層與輸入層各個(gè)神經(jīng)元連接,競(jìng)爭(zhēng)層的神經(jīng)元也相互連接,其基本思想是:網(wǎng)絡(luò)訓(xùn)練時(shí)對(duì)輸入模式進(jìn)行自組織,以競(jìng)爭(zhēng)層神經(jīng)元與輸入歐式距離最小為原則(即向量?jī)?nèi)積最大)競(jìng)爭(zhēng)對(duì)輸入特征模式的響應(yīng)機(jī)會(huì),最后僅有一個(gè)神經(jīng)元成為競(jìng)爭(zhēng)獲勝者,該獲勝神經(jīng)元就代表了輸入模式的類別,達(dá)到識(shí)別和分類的目的。
圖7 SOFM網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)Fig.7 The topology structure of SOFM network
由于正常軸承和故障軸承對(duì)應(yīng)振動(dòng)信號(hào)的時(shí)頻特征能量分布不同,同時(shí)故障軸承內(nèi)不同位置點(diǎn)蝕破壞對(duì)應(yīng)振動(dòng)信號(hào)的時(shí)頻特征能量分布也不同,因此可以用小波包分解底層子空間各結(jié)點(diǎn)系數(shù)的能量作為SOFM網(wǎng)絡(luò)的輸入特征向量進(jìn)行軸承工作狀態(tài)(正?;蚬收?和故障軸承內(nèi)部點(diǎn)蝕位置的識(shí)別,由于篇幅限制,以下僅以驅(qū)動(dòng)端故障進(jìn)行建模識(shí)別。
2.2 Kohonen學(xué)習(xí)算法流程
SOFM采用Kohonen算法進(jìn)行網(wǎng)絡(luò)訓(xùn)練,設(shè)輸入為p維特征向量Xk=[x1,x2,…,xp],其中k∈{1,2,…,K}為樣本序號(hào),SOFM神經(jīng)網(wǎng)絡(luò)輸入層神經(jīng)元和競(jìng)爭(zhēng)層神經(jīng)元j之間的連接權(quán)向量為Wj=[w1j,w2j,…,wpj],(j=1,2,…,m),算法流程如圖8所示,其中Nj*(t,j)為t次訓(xùn)練后在優(yōu)勝鄰域半徑r(t)內(nèi)的神經(jīng)元j與競(jìng)爭(zhēng)獲勝神經(jīng)元j*之間的歐式距離,rate(t,Nj*)為學(xué)習(xí)率關(guān)于訓(xùn)練次數(shù)t和歐式距離Nj*的函數(shù),rate(t,Nj*)隨著t和Nj*的增大而減小,可取rate(t,Nj*)=η(t)e-Nj*),η(t)和r(t)訓(xùn)練時(shí)以等步長(zhǎng)分別從ηmax和rmax線性衰減到ηmin和rmin。
3.1 特征向量計(jì)算
設(shè)輸入層特征向量為X=[x1,x2,…,xp],根據(jù)文獻(xiàn)[21],可將特征向量分量依次對(duì)應(yīng)信號(hào)小波包分解底層子空間低頻到高頻帶的能量,對(duì)信號(hào)s(t)進(jìn)行L層小波包分解(t=1,…,N),dij為分解后底層結(jié)點(diǎn)i的第j個(gè)系數(shù)(i=1,…,p,j=1,…,q),能量分布特征向量按下式計(jì)算:
圖8 SOFM網(wǎng)絡(luò)Kohonen學(xué)習(xí)算法流程Fig.8 The procedure of Kohonen learning algorithm
(4)
式中:p=2L,q=N/2L,N=10 000,給電機(jī)驅(qū)動(dòng)端分別安裝不同點(diǎn)蝕位置故障軸承和正常軸承,在不同電機(jī)負(fù)荷下采集信號(hào),對(duì)信號(hào)進(jìn)行L=3層小波包分解,按(4)式計(jì)算特征向量,結(jié)果如表3所示。
3.2 SOFM神經(jīng)網(wǎng)絡(luò)訓(xùn)練建模
為使訓(xùn)練樣本均勻,訓(xùn)練樣本應(yīng)分布在不同點(diǎn)蝕位置、電機(jī)負(fù)荷下,以表3中帶下劃線序號(hào)標(biāo)記的12個(gè)樣本為訓(xùn)練樣本,剩下12個(gè)樣本為預(yù)測(cè)檢驗(yàn)樣本。SOFM網(wǎng)絡(luò)的競(jìng)爭(zhēng)層采取4×4的神經(jīng)元結(jié)構(gòu),輸入層采用8個(gè)神經(jīng)元,設(shè)網(wǎng)絡(luò)初始學(xué)習(xí)率η(0)=0.9,終止學(xué)習(xí)率ηmin=0.01,初始鄰域半徑為r(0)=4.5,終止鄰域半徑為rmin=0.5,網(wǎng)絡(luò)經(jīng)過1 000次訓(xùn)練后,5類點(diǎn)蝕故障在競(jìng)爭(zhēng)層的激活神經(jīng)元區(qū)域分布如圖9所示,圖中橫縱坐標(biāo)為神經(jīng)元節(jié)點(diǎn)的幾何拓?fù)湮恢米鴺?biāo),激活神經(jīng)元與點(diǎn)蝕故障位置對(duì)應(yīng)關(guān)系如表4所示,由此可知SOFM網(wǎng)絡(luò)經(jīng)1 000次訓(xùn)練后5類點(diǎn)蝕故障分別激活不同的神經(jīng)元區(qū)域,即將5類點(diǎn)蝕故障成功區(qū)分開。
表3 驅(qū)動(dòng)端故障和正常狀態(tài)振動(dòng)信號(hào)特征向量計(jì)算結(jié)果
圖9 SOFM網(wǎng)絡(luò)競(jìng)爭(zhēng)層激活神經(jīng)元區(qū)域Fig.9 The activated neurals areas at SOFM competitive layer
點(diǎn)蝕位置內(nèi)圈滾動(dòng)體外圈3點(diǎn)外圈6點(diǎn)外圈12點(diǎn)正常狀態(tài)激活神經(jīng)元14/141/110/94/46/616/12
3.3 SOFM網(wǎng)絡(luò)模型點(diǎn)蝕位置預(yù)測(cè)識(shí)別
利用3.2節(jié)中訓(xùn)練好的SOFM網(wǎng)絡(luò)模型對(duì)剩余樣本進(jìn)行點(diǎn)蝕位置預(yù)測(cè)識(shí)別檢驗(yàn),競(jìng)爭(zhēng)層神經(jīng)元與預(yù)測(cè)樣本歐式距離最小者即為對(duì)應(yīng)故障樣本激活的神經(jīng)元。結(jié)合表3,預(yù)測(cè)結(jié)果如表5所示,由表可知SOFM網(wǎng)絡(luò)不僅全部準(zhǔn)確識(shí)別出預(yù)測(cè)樣本軸承內(nèi)部點(diǎn)蝕故障的具體位置,同時(shí)將正常狀態(tài)模式和故障模式區(qū)分開來,解決了w>1時(shí)電機(jī)是正常狀態(tài)還是故障軸承位于驅(qū)動(dòng)端的判斷難題。
為比較SOFM模型的識(shí)別性能,再分別建立支持向量機(jī)分類(SVMC)和BP神經(jīng)網(wǎng)絡(luò)分類(BPC)識(shí)別模型,模型訓(xùn)練和預(yù)測(cè)樣本不變,BPC模型采用8×10×6的三層網(wǎng)絡(luò)結(jié)構(gòu),5處點(diǎn)蝕故障位置依次用1~5作為標(biāo)簽,0表示正常模式,預(yù)測(cè)結(jié)果如圖10所示,分析可知:SVMC模型點(diǎn)蝕故障位置識(shí)別正確率為91.7%(11/12),較SOFM模型低;BPC1和BPC2是在BP神經(jīng)網(wǎng)絡(luò)不同初始權(quán)值下的模型,識(shí)別正確率分別為75%(9/12)和83.3%(10/12),較SOFM模型低且識(shí)別性能受初始權(quán)值影響,預(yù)測(cè)穩(wěn)定性相對(duì)較差。
表5 點(diǎn)蝕位置預(yù)測(cè)結(jié)果
圖10 BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)模型預(yù)測(cè)結(jié)果Fig.10 The prediction results of BPC and SVMC models
以電機(jī)驅(qū)動(dòng)端和風(fēng)扇端振動(dòng)信號(hào)的小波奇異熵比值識(shí)別故障軸承的位置,在此基礎(chǔ)上以3層小波包分解的底層子空間能量為特征向量建立SOFM網(wǎng)絡(luò)模型識(shí)別故障軸承內(nèi)部的具體點(diǎn)蝕位置,通過建模預(yù)測(cè)結(jié)果可以得到結(jié)論:
(1)小波奇異熵(WSE)能夠統(tǒng)計(jì)和描述信號(hào)時(shí)頻特征空間的復(fù)雜度和不確定度,可以用來初步識(shí)別電機(jī)故障軸承的端位;
(2)以電機(jī)兩端振動(dòng)信號(hào)小波包分解底層子空間系數(shù)能量作為SOFM網(wǎng)模型的特征向量輸入可以有效識(shí)別電機(jī)軸承狀態(tài)模式以及故障模式時(shí)軸承內(nèi)部點(diǎn)蝕位置;
(3)與傳統(tǒng)支持向量機(jī)分類(SVMC)和BP神經(jīng)網(wǎng)絡(luò)分類(BPC)識(shí)別模型相比,SOFM網(wǎng)絡(luò)模型更適宜于故障識(shí)別這樣的多分類問題,對(duì)軸承內(nèi)部點(diǎn)蝕位置的識(shí)別準(zhǔn)確率更高,識(shí)別性能相對(duì)穩(wěn)定。
[1] 王小玲,陳進(jìn),從飛云.基于時(shí)頻的頻帶熵方法在滾動(dòng)軸承故障識(shí)別中的應(yīng)用[J].振動(dòng)與沖擊,2012,31(18):29-33.
WANG Xiaoling,CHEN Jin,CONG Feiyun. Application of spectral band entropy (SBE) method in rolling bearing fault diagosis based on time-frequency analysis[J].Journal of Vibration and Shock,2012,31(18):29-33.
[2] 張?jiān)茝?qiáng),張培林,吳定海,等. 基于最優(yōu)廣義S變換和脈沖耦合神經(jīng)網(wǎng)絡(luò)的軸承故障診斷[J]. 振動(dòng)與沖擊,2015,34(9):26-31.
ZHANG Yunqiang,ZHANG Peilin,WU Dinghai,et al. Bearing fault diagnosis based on optimal generalized S transform and pulse coupled neural network[J].Journal of Vibration and Shock,2015,34(9):26-31.
[3] 向玲,唐貴基,胡愛軍.旋轉(zhuǎn)機(jī)械非平穩(wěn)振動(dòng)信號(hào)的時(shí)頻分析比較[J].振動(dòng)與沖擊,2010,29(2):42-45.
XIANG Ling,TANG Guiji,HU Aijun.Vibration signal’s time-frequency analysis and comparison for a rotating machinery[J].Journal of Vibration and Shock,2010,29(2):42-45.
[4] ZHENG H, LI Z, CHEN X. Gear fault diagnosis based on continuous wavelet transform[J].Mechanical Systems and Signal Processing,2002,16(2):447-457.
[5] BELSAK A, FLASKER J. Wavelet analysis for gear crack identification[J].Mechanical Systemm and Signal Processing,2009,16(6):1983-1990.
[6] 張玲玲,趙懿冠,肖云魁,等.基于小波包-AR譜的變速器軸承故障特征提取[J].振動(dòng)、測(cè)試與診斷,2011,31(4):492-495.
ZHANG Lingling,ZHAO Yiguan,XIAO Yunkui,et al. Automobile transmission bearing fault feature extraction based on wavelet packet-auto regressive model spectrum[J].Journal of Vibration,Measurement & Diagnosis,2011,31(4):492-495.
[7] JENA D P,PANIGRAHI S N,KUMAR R.Gear fault identification and localization using analytic wavelet transform of vibration signal[J].Measurement,2013,46:1115-1124.
[8] 趙元喜,高立新,崔玲麗,等.基于諧波小波包和BP神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承聲發(fā)射故障模式識(shí)別技術(shù)[J].振動(dòng)與沖擊,2010,29(10):162-165.
ZHAO Yuanxi,GAO Lixin,CUI Lingli,et al.Fault pattern recognition technique for roller bearing acoustic emission based on harmonic wavelet packet and BP neural network[J].Journal of Vibration and Shock,2010,29(10):162-165.
[9] 竇東陽,趙英凱.基于分類器組的軸承故障識(shí)別方法研究[J].振動(dòng)與沖擊,2010,29(10):221-224.
DOU Dongyang,ZHAO Yingkai.Fault recognition method of rolling bearings based on classifier ensembles[J].Journal of Vibration and Shock,2010,29(10):221-224.
[10] 胥永剛,孟志鵬,陸明.基于雙樹復(fù)小波包變換和SVM的滾動(dòng)軸承故障診斷方法[J].航空動(dòng)力學(xué)報(bào),2014,29(1):67-72.
XU Yonggang,MENG Zhipeng,LU Ming.Fault diagnosis method of rolling bearing based on dualtree complex wavelet packet transform and SVM[J].Journal of Aerospace Power,2014,29(1):67-72.
[11] 楊雪.支持向量機(jī)多分類分類方法的研究[D].哈爾濱:哈爾濱工程大學(xué),2006.
[12] 秦政博.基于小波包和支持向量機(jī)的滾動(dòng)軸承故障識(shí)別方法[D].太原:太原理工大學(xué),2010.
[13] 雷璐寧,石為人,范敏.基于改進(jìn)的SOM神經(jīng)網(wǎng)絡(luò)在水質(zhì)評(píng)價(jià)分析中的應(yīng)用[J].儀器儀表學(xué)報(bào),2009,30(11):2379-2382.
LEI Luning,SHI Weiren,FAN Min.Water quality evaluation analysis based on improved SOM neural network[J].Chinese Jorunal of Scientific Instrument,2009,30(11):2397-2382.
[14] 張瑩,潘保芝.基于主成分分析的SOM神經(jīng)網(wǎng)絡(luò)在火山巖性別識(shí)別中的應(yīng)用[J].測(cè)井技術(shù),2009,33(6):550-554.
ZHANG Ying,PAN Baozhi.Application of SOM neural network method to volcanic lithology recognition based on principal components analysis[J].Well Logging Technology,2009,33(6):550-554.
[15] ROSSON O A,BLANCO S,YORDANOVA J,et al.Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J].J Neurosci Meth,2001,105(1):65-75.
[16] HE Z Y,WU X,QIAN Q Q.Automatic fault detection for power system using wavelet singular entropy[C]//Proceeding of ICIMA IEEE compress. Chengdu,2004.
[17] 謝平,杜義浩,黃雙峰.基于信息熵的復(fù)雜機(jī)械系統(tǒng)非線性特征提取方法研究[J].振動(dòng)與沖擊,2008,27(7):135-137.
XIE Ping,DU Yihao,HUANG Shuangfeng.Research on nonlinear feature extracting method of complex mechanical system based on information entropy[J].Journal of Vibration and Shock,2008,27(7):135-137.
[18] The Case Western Reserve University Bearing Data Center Website[EB/OL].http://csegroup.edu/bearingdatacenter/home.
[19] 王冰,刁鳴,宋凱.基于小波奇異熵和相關(guān)向量機(jī)的氫氣傳感器故障診斷[J].電機(jī)與控制學(xué)報(bào),2015,19(1):96-101.
WANG Bing,DIAO Ming,SONG Kai.Fault diagnosis of hydrogen sensor based on wavelet singular entropy and relevance vector machine[J].Electric Machines and Control,2015,19(1):96-101.
[20] 何正友,符玲,錢清泉,等.小波奇異熵及其在高壓輸電線路故障選相中的應(yīng)用[J].中國(guó)電機(jī)工程學(xué)報(bào),2007,27(1):31-36.
HE Zhengyou,FU Ling,QIAN Qingquan, et al.Study on wavelet singular entropy and its application to faulty phase selection in HV transmission lines[J].Proceedings of the CSEE,2007,27(1):31-36.
[21] 曾憲偉,趙衛(wèi)民,盛菊琴.小波包分解樹結(jié)點(diǎn)與信號(hào)子空間頻帶的對(duì)應(yīng)關(guān)系及其應(yīng)用[J].地震學(xué)報(bào),2008,30(1):90-96.
ZENG Xianwei,ZHAO Weiming,SHENG Juqin.Corresponding relationships between nodes of decomposition tree of wavelet packet and frequency bands of signal subspace[J].Acta Seimologica Sinica,2008,30(1):90-96.
Motor bearing fault identification based on the wavelet singular entropy and SOFM neural network
HE Yansong1,2, HUANG Yi2, XU Zhongming1,2, ZHANG Zhifei2
(1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China;2.College of Automotive Engineering, Chongqing University, Chongqing 400030, China)
A new modeling method combining the wavelet singular entropy and Self Organizing Feature Map(SOFM) neural network was proposed to identify the motor bearing faults.The end position of the faulty bearing was identified by computing and comparing the wavelet singular entropies of fault vibration signals collected at the ends of drive and fan of the motor. Then using the bottom node energies of the fault signals decomposed by wavelet packet as input feature vectors, a SOFM neural network model was built to identify the pitting corrosion damage location in the faulty bearing.The faulty bearing end position and its internal pitting corrosion location were identified jointly by the combination of wavelet singular entropy and SOFM neural network.Through the modeling and identification of the bearings damaged by pitting corrosion at inner, outer raceway and rolling elements respectively, it is shown that the model can identify the faulty bearing end position and its internal pitting corrosion damage location effectively. The model is of more accurate identification ability and is more robust than the traditional identification model composed by the support vector machine and BP neural network, and is more suitable for the fault identification of such kind of multi classification problems.
wavelet packet decomposition;wavlet singular entropy;self organizing feature map;fault identification
國(guó)家自然科學(xué)基金(51275540)
2015-08-19 修改稿收到日期: 2016-03-21
賀巖松 男,博士,教授,1968年4月生
TH17;TM32;TH133.3
A
10.13465/j.cnki.jvs.2017.10.035