楊 昆 姚淇露 盧章輝,* 康志兵 陳祥樹,*
(1江西師范大學(xué)化學(xué)化工學(xué)院,無(wú)機(jī)膜材料工程技術(shù)研究中心,南昌330022;2南昌航空大學(xué)航天制造工程學(xué)院,南昌330036)
快速合成廉價(jià)CuMo納米粒子高效催化氨硼烷水解產(chǎn)氫
楊 昆1姚淇露1盧章輝1,*康志兵2陳祥樹1,*
(1江西師范大學(xué)化學(xué)化工學(xué)院,無(wú)機(jī)膜材料工程技術(shù)研究中心,南昌330022;2南昌航空大學(xué)航天制造工程學(xué)院,南昌330036)
在無(wú)表面活性劑和載體的情況下,使用硼氫化鈉作為還原劑,簡(jiǎn)單快速地合成了CuMo非貴金屬納米粒子。采用X射線粉末衍射(XRD)、透射電子顯微鏡(TEM)、高分辨透射電子顯微鏡(HRTEM)、選區(qū)電子衍射(SAED)、電感耦合等離子體原子發(fā)射光譜(ICP-AES)、光電子能譜(XPS)和比表面積分析(BET)等方法詳細(xì)地表征了所合成的CuMo納米粒子,并在室溫下將其用于催化氨硼烷水解產(chǎn)氫。所合成的Cu0.9Mo0.1納米粒子對(duì)于氨硼烷水解制氫表現(xiàn)出優(yōu)異的催化性能,在室溫下其轉(zhuǎn)化頻率(TOF)達(dá)到14.9 min-1,在已報(bào)道的Cu催化劑中處于相對(duì)較高的值。這種簡(jiǎn)單的合成方法不僅僅局限于合成CuMo納米粒子,還可以擴(kuò)展到合成CuW(3.6 min-1)、CuCr(2 min-1)、NiMo(55.6 min-1)和CoMo(21.7 min-1)納米粒子,它提供了一種普適的方法合成Cu-M(M=Mo,W,Cr)和TM-Mo(TM=Cu,Ni,Co)納米粒子作為一系列新型催化劑用于氨硼烷水解。雙金屬納米粒子增強(qiáng)的催化活性歸因于應(yīng)力和配體效應(yīng)誘導(dǎo)的Cu-M納米粒子的協(xié)同促進(jìn)效果。
銅;氨硼烷;水解;氫能源;納米粒子
Key Words:Copper;Ammonia borane;Hydrolysis;Hydrogen energy;Nanoparticle
Hydrogen has been considered to be a promising energy carrier in the last few decades1-8.However,the developmentof the safe and efficientmethods for hydrogen storage materials remains the challenging technologies for hydrogen economy in the future9,10. In recentyears,ammonia borane(AB,NH3BH3)was discovered as a promising candidate for chemicalsources of hydrogen due to its nontoxicity,high theoreticalhydrogen content(19.6%(w,mass fraction)H2),high solubility in water(33.6 g per 100 mL),and high stability in solid form under ambient atmosphere11-17.Hydrogen release from AB is crude divided as two pathways:thermolysis18,19and solvolysis(methanolysis or hydrolysis)20-22.The former reaction process requires high temperature and energy consumption.However,the hydrolytic dehydrogenation of AB can release 3 mol H2per molAB at room temperature in the presence of suitable catalysts(Eq.(1))23-29.
So far,a lot of metal nanopartices(NPs)were tested for hydrogen generation from hydrolysis of AB30-66,among which Ptand Rh-based nanocatalysts show a superior catalytic performance in AB hydrolysis.However,owing to the high prices and limited resources of noble metals,the developmentof high efficientand economicalnoble-metal-free catalysts is of great importance for socialdemand partical application.Copper(Cu),a less expensive non-noble metal,has been intensively studied as the catalyst52-55. However,most of Cu catalysts suffer from low activity performance for hydrolysis of AB up to now.Therefore,the development of high activity of Cu catalyst benefits great practical applications and academic researches.
Itis wellknown thatthe catalytic activities of the metalcatalyst highly depends on the dispersion of the active metals23.In order to acquire the high performance catalysts,various catalysts have been prepared with surfactants and high-surface-area support materials46-50.Recent studies have shown that the dispersion of metal NPs catalysts could be modified by introducing atomic barrier using transition metals like Mo,W,and Cr67-71.These doped metals,in the form of metallic and/or oxidized state,are able to significantly increase the surface area of catalysts to achieve more active sites.
Herein,we report a facile synthesis of CuMo NPs by using a one-step co-reduction method.The as-synthesized CuMo NPs exerta high activity toward the hydrolysis of AB.This method for preparing CuMo NPs can be easily expanded to the CuW and CuCr NPs,providing a generalapproach to Cu-MNPs as a series of novelcatalysts for the hydrolysis of AB.
2.1 Materials and methods
Ammonia borane(NH3BH3,AB,90%,Sigma-Aldrich),sodium borohydride(NaBH4,99%,Sigma-Aldrich),copper chloride dihydrate(CuCl2·2H2O,99%,Sinopharm Chemical Reagent Co. Ltd.),sodium molybdate dihydrate(Na2MoO4·2H2O,99.5%,J&K Scientific Ltd.),sodium tungstate dehydrate(Na2WO4·2H2O, 99%,Aladdin Industrial Inc.)and chromic nitrate nonahydrate (Cr(NO3)3·9H2O,99%,Aladdin Industrial Inc.)were employed without further purification.Ordinary deionized water was used as the reaction solvent.
2.2 Synthesis of catalysts
The Cu0.9Mo0.1NPs were facilely prepared by a one-step coreduction method atroom temperature.Typically,5 mL aqueous solution containing 9.3 mg CuCl2·2H2O and 1.47 mg Na2MoO4· 2H2O were mixed,and then 20 mg NaBH4as a reducing agentwas added to this mixture with magnetic stirring until no more gas generation.Finally the black products of Cu0.9Mo0.1could be obtained and then directly used for the hydrolysis of AB.The other Cu-M NPs(M=Mo,W,Cr)and TM-Mo(TM=Ni,Co,Fe)were also synthesized using the above method.Asynthetic procedure analogous to thatfor the Cu0.9Mo0.1NPs was adapted,using only CuCl2·2H2O,Na2MoO4·2H2O,Na2WO4·2H2O and Cr(NO3)3· 9H2O respectively for the preparation of monometallic nanocatalysts.The totalmolar contents of Cu and Mwere keptto be 0.06 mmolfor allthe Cu-M NPs.
2.3 Catalysts characterization
Chemicalcomposition of the synthesized catalysts was determined by an inductively coupled plasma(ICP)spectrophotometer (725-ES).The X-ray diffraction(XRD)measurements were carried on a Rigaku RINT-2200 X-ray diffractometer with a Cu Kαsource, operating at40 kVand 20 mA.Transmission electron microscope (TEM,JEM-2100)equipped with selected area electron diffraction (SAED)was applied for the detailed microstructure of the asprepared catalysts.The TEMsamples were prepared by depositing one or two droplets of the nanoparticles suspensions on the carbon coated nickel grids.X-ray photoelectron spectroscopy(XPS) measurement was acquired after Ar sputtering for 2 min with an ESCALABMKLL X-ray photoelectron using Al Kαsource.The specific surface area was determined by the using automatic volumetric adsorption equipment(Belsorp mini II).
2.4 Catalytic reactions
Typically,the as-prepared catalysts suspension(5 mL)were placed in a two-necked round-bottomed flask(50 mL),which was placed in a water bath maintained atroom temperature(298 K). One neck of the flask was connected to a gas burette to measure the released hydrogen gas.The reactions were started when 1 mmol AB(34.3 mg)was added to the reaction vessel with vigorously stirring.The volume of hydrogen gas was monitored by recording the displacement of water in the gas burette.The reaction was completed when there was no more gas evolved.
2.5 Durability and reusability test
For the durability test,afterthe completion ofthe firstrun ofthe hydrogen production,another equivalentof AB(34.3 mg,1 mmol) was subsequently added to the reaction flask with vigorous stirring.Such testcycles of the catalystfor the hydrogen generationfrom the hydrolysis of AB were carried outfor five times atroom temperature.
Scheme 1 Schematic illustration for the preparation and application ofthe CuMo NPs for the hydrolysis of NH3BH3under room temperature
Fig.1 XRD patterns of Cu and Cu0.9Mo0.1NPs
3.1 Preparation and characterization
The noble-metal-free CuMo NPs without any surfactant or supportwere prepared through a facile one-step synthetic route method at room temperature(Scheme 1).The as-synthesized Cu0.9Mo0.1NPs were characterized by XRD,TEM,HRTEM, SAED,ICP-AES,XPS and the BET surface area measurements. Fig.1 shows the XRD patterns of the Cu and Cu0.9Mo0.1NPs.As shown in Fig.1,Cu NPs and Cu0.9Mo0.1NPs exhibit the similar peaks ataround 43.3°,50.4°and 74.1°,which can be attributed to (111),(200)and(220)planes of Cu(JPCDS No.04-0836).And another peaks at around 36.5°and 61.6°are corresponding to the (111)and(220)planes of Cu2O(JPCDS No.77-0199),which is due to the partial surface oxidation of Cu during sample processing.In addition,in comparison with Cu NPs,the diffraction intensity of Cu0.9Mo0.1NPs decreases,possibly due to the factthat the crystallization of Cu nanoparticles is reduced by the addition of Mo.Previous studies have shown thatthe amorphous catalysts have a much greater structural distortion and therefore a much higher concentration of active sites for the catalytic hydrolysis reaction of AB than its crystalline counterpart59.This low crystalline structure of Cu in Cu0.9Mo0.1NPs may lead to an improved catalytic activity for the hydrolysis of AB.In addition,no Mo diffraction is observed in the XRD patterns of Cu0.9Mo0.1NPs, which may be caused by the amorphous phase of Mo(Fig.1).
The morphology and size of the Cu0.9Mo0.1NPs were characterized by TEM and HRTEM.As can be seen from Fig.2(a,b),the TEMimages revealthe uniform distribution of Cu0.9Mo0.1NPs with an average particle size of about(5.2±0.7)nm(histogram in Fig.2(d)).In contrast,the pure Cu NPs withoutthe addition of Mo were severely aggregated to bigger particle size of about(15.6± 2.8)nm(Fig.S1,in Supporting Information).The addition of Mo results in a smaller particle size and a better dispersions of CuMo NPs,which may lead to a better catalytic performance for the hydrolysis ofAB.From the HRTEMimage of an individualCuMo particle(Fig.2(c)),the clear lattice fringes can be measured to be 0.209 nm,which can be assigned to the(111)plane of Cu(JCPDS No.04-0836).In addition,no lattice fringes of Mo species are observed,which is in line with the corresponding SAED pattern (inset Fig.2(b))and the XRDresults(Fig.1),further confirming its amorphous state of Cu0.9Mo0.1NPs.The atomic ratio of Cu:Mo is determined to be 0.9:0.1 by ICP-AES,which is in good agreementwith the initialatomic ratio.
To better understand the chemical composition and valence state of Cu0.9Mo0.1NPs,we further carried out XPS analyses for sample after Ar sputtering.Fig.3(a)shows the peak of Cu 2p. There are two peaks at932.9 and 952.7 eV,which are assigned to 2p3/2and 2p1/2of metallic Cu.Fig.3(b)shows the peak of Mo 3d. The observed Mo 3d5/2and Mo 3d3/2with binding energy of peaks at 226.7 and 232.5 eV corresponding to metallic Mo,while the two peaks at233.2 and 235.9 eV stand for oxidized Mo.
Anitrogen adsorption-desorption study(Fig.S2,in Supporting Information)show that Cu and Cu0.9Mo0.1NPs have a Brunauer-Emmett-Teller(BET)surface area of 14.8 and 38.4 m2·g-1,respectively.Compared to the BET surface area of Cu NPs,the higher surface area of Cu0.9Mo0.1NPs is attributed to a smaller particle size and a better dispersion of bimetallic NPs(Table 1). In general,a higher BET surface area is good for increasing the active surface area of metal NPs.The enhancementof the active surface area of Cu0.9Mo0.1NPs may lead to an improved catalytic activity for the hydrolysis of AB.
3.2 Catalytic hydrolysis of ammonia borane
The catalytic performances of the as-synthesized catalysts for the hydrolysis of AB were measured by using a water-displacementmethod.The as-synthesized CuMo NPs with various Cu/Mo compositions(Cu/Mo molar ratios of 9.5:0.5,9:1,8:2,6:4, 4:6,2:8),Cu and Mo were examined for the hydrolysis of AB at room temperature(Fig.4 and Fig.S5,in Supporting Information).It can be seen from the Fig.4(a),the Mo NPs show no activity for the hydrolysis of AB.Our previous study showed thatthe oxidized Mo shows a very low catalytic activity for hydrogen generation from the hydrolysis of AB(only 5 mL of H2released within 140 min),suggesting thatthe oxidized Mo has a neglectable effect on the catalytic performance of AB hydrolysis67. Moreover,the pure Cu NPs without the addition of Mo show a poor catalytic activity atroom temperature,only about2.6 mmol of hydrogen was generated after 210 min,which is consistentwith the previous reports that monometallic Cu catalysts are foundmodestly active towards the hydrolysis of AB53.However,after doping a smallamount of Mo into Cu NPs,the catalytic activity of the catalyst was enhanced greatly.In addition,the catalytic activity of the CuMo NPs depends on the metalcomposition.The catalytic activity increases when increasing Mo/(Cu+Mo)up to about0.1 and then it gradually decreases when further increasing Mo molar ratio,which may be due to the factthatthe excess Mo blocks the active Cu sites thus causing major deleterious effectin catalytic activity.It is obvious that the Cu0.9Mo0.1NPs exhibits excellentcatalytic performance for the hydrolytic dehydrogenation of AB among allthe catalysts(Fig.4(b)).The turnover frequency (TOF)value of Cu0.9Mo0.1NPs was calculated to be about 14.9 min-1at room temperature,which is relatively high value among allthe Cu catalysts employed in the same reaction(Table 2)42,52-55,72.The significantly enhanced activity of Cu0.9Mo0.1NPs can be attributed a smallparticle size,a low crystalline structure and a high surface area induced by the so-called strain and ligand effects between Cu and Mo.
Fig.2(a,b)TypicalTEM images,(c)high resolution TEMimage,(d)size distribution and (inset Fig.2b)the corresponding SAED pattern of Cu0.9Mo0.1NPs
Fig.3 XPS spectra of(a)Cu 2p and(b)Mo 3d for the assynthesized Cu0.9Mo0.1NPs after Ar etching
Table 1 TOF,BET surface area and average particle size of different catalysts
It should be noted that this synthesis strategy for preparing CuMo employed here can be easily expanded to the other Cu-M NPs(M=W,Cr)as a series of novelcatalysts for the hydrolysis of AB.As shown in Fig.5,the Cu-MNPs(Cu0.9W0.1and Cu0.95Cr0.05NPs)show the higher catalytic performance than thatof pure Cu NPs,with which 70 mL of hydrogen is produced within 14 and 25 min,respectively.The corresponding TOF values for Cu0.9W0.1and Cu0.95Cr0.05NPs were calculated as 3.6 and 2 min-1(Fig.S8 and S9, in Supporting Information).Among all the prepared Cu-M NPs (M=Mo,W,Cr),the Cu0.9Mo0.1NPs show the highestcatalytic activity for the hydrolysis of AB,probably due to the higher surface area(Table 1 and Fig.S2,in Supporting Information)and the smaller particle size(Table 1;Fig.S3 and S4,in Supporting Information).The promoting effectof Mo for the Co and Ni NPs on the hydrolysis of AB was also studied.As shown in Fig.S10, it is obvious that the Co0.9Mo0.1(21.7 min-1)and Ni0.9Mo0.1NPs (55.6 min-1)exhibita higher catalytic performance than thatof free Co(6.8 min-1)and Ni NPs(1.2 min-1),respectively.Therefore,the promoting effect of Mo employed here can be facilely extended to othertransition metalsystems forthe hydrolysis of AB.
Aseries of experiments were carried outby varying the catalyst concentration of Cu-M NPs to identify the reaction order with respect to the catalyst concentration.Fig.S11a-S13a show the plots of hydrogen generation from the hydrolytic dehydrogenation of AB catalyzed by Cu-MNPs atdifferentcatalystconcentrations. The hydrogen generation rate increases with increasing the catalystconcentration.As shown in Fig.S11b-S13b,the line slope of the plot of H2generation rate versus catalystconcentration is 0.94,1.02 and 1.02 for Cu0.9Mo0.1,Cu0.9W0.1and Cu0.95Cr0.05NPs respectively,indicating that the hydrolysis of AB catalyzed by these Cu-MNPs are first order reactions with respect to the catalystconcentration.
Fig.4(a)Hydrogen generation from the hydrolysis of AB(200 mmol·L-1,5 mL)catalyzed by Cu,Mo and Cu0.9Mo0.1NPs at 298 K and (b)plots of time for reaction completion and the corresponding TOF value versus Mo molar content in CuMo NPs(metal/AB=0.06,molar ratio)
Table 2 Comparison of TOFvalue of Cu nanocatalysts forhydrogen generation from the hydrolysis ofammonia borane(AB) at room temperature
Fig.5 Hydrogen generation from the hydrolysis of AB(200 mmol· L-1,5 mL)catalyzed by Cu,Cu0.9Mo0.1,Cu0.9W0.1and Cu0.95Cr0.05NPs at 298 K(metal/AB=0.06)
In order to obtain the activation energy(Ea)for hydrolysis of AB in the presence of Cu0.9Mo0.1NPs,the reactions were carried out at different temperatures(Fig.6).Obviously,the hydrogen generation rates increase with the increasing reaction temperatures,indicating thata high reaction temperature was beneficial for increasing the hydrolysis rate of AB(Fig.6(a)).The catalytic reactions for H2generation from AB were completed in 6.72,4.64, 3.36,2.41 and 1.68 min at 288,293,298,303 and 308 K,respectively,corresponding to the TOF values of 7.4,10.8,14.9, 20.8 and 29.8 min-1(Fig.6(b)).The values of rate constant k atdifferenttemperatures were calculated from the slope of the linear partin Fig.6(a).According to the Arrhenius plot(ln k vs 1/T),the activation energy(Ea)value are calculated to be approximately 51 kJ·mol-1.The Eavalues of Cu0.9W0.1and Cu0.95Cr0.05NPs for the hydrolysis of AB were also studied and calculated to be 51 and 56 kJ·mol-1in Fig.S14 and S15.
The recycle stability of the catalystis crucial in the practical application.As shown in Fig.7,the hydrogen productivity of Cu0.9Mo0.1catalysts remains constant but the catalytic activity shows a decrease with the increase of the number of recycling for hydrolysis of AB.The as-prepared Cu0.9Mo0.1catalysts retain almost 60%of their initialactivities in the fifth run.The reduced activity may be attributed to the increasing metaborate(BO2-) concentration of the generated by-products of AB hydrolysis56and the decrease in the numble of active surface atoms due to a small agglomeration of Cu0.9Mo0.1NPs,which can be evidenced by TEM (Fig.S16,in Supporting Information).
Fig.6(a)Hydrogen generation from the hydrolysis of AB(200 mmol·L-1,5 mL)and(b)Arrhenius plots and TOF values of AB hydrolytic dehydrogenation catalyzed by Cu0.9Mo0.1NPs atdifferenttemperatures(metal/AB=0.06)
Fig.7 Durability testfor hydrogen generation from the hydrolysis of AB(200 mmol·L-1,5 mL)catalyzed by Cu0.9Mo0.1NPs at 298 K(metal/AB=0.06)
In summary,CuMo NPs have been facilely prepared via a onestep co-reduction method using NaBH4as a reducing agentand used as a high efficientcatalystfor hydrogen production from the hydrolysis of AB.The characterization data showed that Cu0.9Mo0.1NPs with an average particle size of 5.2 nm were well-dispersed. Compared to the pure Cu NPs,Cu0.9Mo0.1NPs exhibited much higher activity toward hydrolytic dehydrogenation of AB with a TOF value of 14.9 min-1at room temperature.Using the same synthesis method as CuMo NPs,the as-synthesized CuW,CuCr, NiMo and CoMo NPs also showed good activity with TOF values of 3.6,2.0,55.6 and 21.7 min-1,respectively.The significantly enhanced activity can be attributed a small particle size,a low crystalline structure and a high surface area of bimetallic NPs induced by the addition of a smallconcentration of Group VI-B metals.
Supporting Information:available free of charge via the internetathttp://www.whxb.pku.edu.cn.
(2)Chen,P.;Xiong,Z.;Luo,J.;Lin,J.;Tan,K.L.Nature 2002, 420,302.doi:10.1038/nature01210
(3)Hannauer,J.;Akdim,O.;Demirci,U.B.;Geantet,C.; Herrmann,J.M.;Miele,P.;Xu,Q.Energy Environ.Sci.2011,4, 3355.doi:10.1039/C1EE01886H
(4)Lu,L.L.;Zhang,H.J.;Zhang,S.W.;Li,F.L.Angew.Chem. Int.Ed.2015,127,9460.doi:10.1002/ange.201500942
(5)Liang,C.;Liang,S.;Xia,Y.;Huang,H.;Gan,Y.P.;Tao,Y.X.; Zhang,W.K.Acta Phys.-Chim.Sin.2015,31(4),627.[梁初,梁升,夏陽(yáng),黃輝,甘永平,陶新永,張文魁.物理化學(xué)學(xué)報(bào),2015,31(4),627]doi:10.3866/PKU.WHXB201501282
(6)Chang,J.F.;Xiao,Y.;Luo,Z.Y.;Ge,J.J.;Liu,C.P.;Xing,W. Acta Phys.-Chim.Sin.2016,32(7),1556.[常進(jìn)法,肖瑤,羅兆艷,葛君杰,劉長(zhǎng)鵬,邢巍.物理化學(xué)學(xué)報(bào),2016,32(7), 1556.]doi:10.3866/PKU.WHXB201604291
(7)Wang,Z.L.;Wang,H.L.;Yan,J.M.;Ping,Y.;O,S.I.;Li,S.J.; Jiang,Q.Chem.Commun.2014,50,2732.doi:10.1039/ c3cc49281b
(8)Wang,Z.L.;Yan,J.M.;Ping,Y.;Wang,H.L.;Zheng,W.T.; Jiang,Q.Angew.Chem.Int.Ed.2013,52,4406.doi:10.1002/anie.201301009
(9)Zhu,Q.L.;Xu,Q.Energy Environ.Sci.2015,8,478. doi:10.1039/c4ee03690e
(10)Yadav,M.;Xu,Q.Energy Environ.Sci.2012,5,9698. doi:10.1039/c2ee22937d
(11)Lu,Z.H.;Xu,Q.Funct.Mater.Lett.2012,5,123001. doi:10.1142/S1793604712300010
(12)Peng,B.;Chen,J.Energy Environ.Sci.2008,1,479. doi:10.1039/b809243p
(13)Jiang,H.L.;Xu,Q.Catal.Today 2011,170,56.doi:10.1016/j. cattod.2010.09.019
(14)Demirci,U.B.;Miele,P.J.Power Sources 2010,195,4030. doi:10.1016/j.jpowsour.2010.01.002
(15)Sutton,A.D.;Burrell,A.K.;Dixon,D.A.;Garner,E.B.; Gordon,J.C.;Nakagawa,T.;Ott,K.C.;Robinson,J.P.;Vasiliu, M.Science 2011,311,1426.doi:10.1126/science.1199003
(16)Cheng,H.F.;Kamegawa,T.;Mori,K.;Yamashita,H.Angew. Chem.Int.Ed.2014,53,2910.doi:10.1002/anie.201309759
(17)Cheng,F.Y.;Ma,H.;Li,Y.M.;Chen,J.Inorg.Chem.2007,46, 788.doi:10.1021/ic061712e
(18)Heldebrant,D.J.;Karkamkar,A.;Hess,N.J.;Bowden,M.; Rassat,S.;Zheng,F.;Rappe,K.;Autrey,T.Chem.Mater.2008, 20,5332.doi:10.1021/cm801253u
(19)Li,Z.Y.;Zhu,G.S.;Lu,G.Q.;Qiu,S.L.;Yao,X.D.J.Am. Chem.Soc.2010,132,1490.doi:10.1021/ja9103217
(20)Zhou,L.M.;Zhang,T.R.;Tao,Z.L.;Chen,J.Nano Res.2014, 7,774.doi:10.1007/s12274-014-0438-7
(21)Zhu,Q.L.;Li,J.;Xu,Q.J.Am.Chem.Soc.2013,135,10210. doi:10.1021/ja403330m
(22)Ranmachandran,P.V.;Gagare,P.D.Inorg.Chem.2007,46, 7810.doi:10.1021/ic700772a
(23)Guo,L.L.;Gu,X.J.;Kang,K.;Wu,Y.Y.;Cheng,J.;Liu,P.L.; Wang,T.S.;Su,H.Q.J.Mater.Chem.A 2015,3,22807. doi:10.1039/C5TA05487G
(24)Sun,D.H.;Mazumder,V.;Metin,?.;Sun,S.H.ACS Nano 2011,5,6458.doi:10.1021/nn2016666
(25)Kang,J.X.;Chen,T.W.;Zhang,D.F.;Guo,L.Nano Energy 2016,23,145.doi:10.1016/j.nanoen.2016.03.017
(26)Mori,K.;Miyawaki,K.;Yamashita,H.ACS Catal.2016,6, 3128.doi:10.1021/acscatal.6b00715
(27)Rej,S.;Hsia,C.F.;Chen,T.Y.;Lin,F.C.;Huang,J.S.;Huang, M.H.Angew.Chem.Int.Ed.2016,55,7222.doi:10.1002/ anie.201603021
(28)Yang,L.;Su,J.;Meng,X.Y.;Luo,W.;Cheng,G.Z.J.Mater. Chem.A 2013,1,10016.doi:10.1039/C3TA11835E
(29)Wen,M.;Sun,B.;Zhou,B.;Wu,Q.S.;Peng,J.J.Mater.Chem. 2012,22,11988.doi:10.1039/c2jm31311a
(30)Chandra,M.;Xu,Q.J.Power Sources 2007,168,135. doi:10.1016/j.jpowsour.2007.03.015
(31)Chandra,M.;Xu,Q.J.Power Sources 2006,156,190. doi:10.1016/j.jpowsour.2005.05.043
(32)Wang,X.;Liu,D.P.;Song,S.Y.;Zhang,H.J.J.Am.Chem. Soc.2013,135,doi:15864.10.1021/ja4069134
(33)Chen,W.Y.;Ji,J.;Feng,X.;Duan,X.Z.;Qian,G.;Li,P.;Zhou, X.G.;Chen,D.;Yuan,W.K.J.Am.Chem.Soc.2014,136, doi:16736.10.1021/ja509778y
(34)Khalily,M.A.;Eren,H.;Akbayrak,S.;Susapto,H.H.;Biyikli, N.;?zkar,S.;Guler,M.O.Angew.Chem.Int.Ed.2016,128, 12445.doi:10.1002/ange.201605577
(35)Zahmak?ran,M.;?zkar,S.Appl.Catal.B:Environ.2009,89, 104.doi:10.1016/j.apcatb.2008.12.004
(36)Yao,Q.L.;Lu,Z.H.;Jia,Y.S.;Chen,X.S.;Liu,X.Int.J. Hydrog.Energy 2015,40,2207.doi:10.1016/j. ijhydene.2014.12.047
(37)Yao,Q.L.;Shi,W.M.;Fang,G.;Lu,Z.H.;Zhang,X.L.;Tao, D.J.;Kong,D.J.;Chen,X.S.J.Power Sources 2014,257,293. doi:10.1016/j.jpowsour.2014.01.122
(38)Fuku,K.;Hayashi,R.;Takakura,S.;Kamegawa,T.;Mori,K.; Yamashita,H.Angew.Chem.Int.Ed.2013,52,7446. doi:10.1002/anie.201301652
(39)Chen,Y.Z.;Liang,L.F.;Yang,Q.H.;Hong,M.C.;Xu,Q.;Yu, S.H.;Jiang,H.L.Mater.Horiz.2015,2,606.doi:10.1039/ c5mh00125k
(40)Xi,P.X.;Chen,F.J.;Xie,G.Q.;Ma,C.;Liu,H.Y.;Shao,C. W.;Wang,J.;Xu,Z.H.;Xu,X.M.;Zeng,Z.Z.Nanoscale 2012,4,5597.doi:10.1039/c2nr31010d
(41)Chen,Y.Z.;Xu,Q.;Yu,S.H.;Jiang,H.L.Small2015,11,71. doi:10.1002/smll.201401875
(42)Xu,Q.;Chandra,M.J.Power Sources 2006,163,364. doi:10.1016/j.jpowsour.2006.09.043
(43)Li,P.Z.;Aranishi,K.;Xu,Q.Chem.Commun.2012,48,3173. doi:10.1039/c2cc17302f
(44)Cao,C.Y.;Chen,C.Q.;Li,W.;Song,W.G.;Cai,W. ChemSusChem 2010,3,1241.doi:10.1002/cssc.201000229
(45)Metin,?.;Mazumder,V.;?zkar,S.;Sun,S.H.J.Am.Chem. Soc.2010,132,1468.doi:1468.10.1021/ja909243z
(46)Zhang,J.K.;Chen,C.Q.;Yan,W.J.;Duan,F.F.;Zhang,B.; Gao,Z.;Qin,Y.Catal.Sci.Technol.2010,6,2112.doi:10.1039/ C5CY01497B
(47)Xu,F.Q.;Hu,X.F.;Cheng,F.Y.;Liang,J.;Tao,Z.L.;Chen,J. Chin.J.Inorg.Chem.2015,31(1),103.[徐鳳勤,胡小飛,程方益,梁靜,陶占良,陳軍.無(wú)機(jī)化學(xué)學(xué)報(bào),2015,31(1), 103.]doi:10.11862/CJIC.2015.032
(48)Yan,J.M.;Zhang,X.B.;Shioyama,H.;Xu,Q.J.Power Sources 2010,195,1091.doi:10.1016/j.jpowsour.2009.08.067
(49)Umegaki,T.;Yan,J.M.;Zhang,X.B.;Shioyama,H.; Kuriyama,N.;Xu,Q.J.Power Sources 2010,195,8209. doi:10.1016/j.jpowsour.2010.07.079
(50)Li,Z.;He,T.;Liu,L.;Chen,W.D.;Zhang,M.;Wu,G.T.; Chen,P.Chem.Sci.2017,8,781.doi:10.1039/C6SC02456D
(51)Yang,Y.W.;Feng,G.;Lu,Z.H.;Hu,N.;Zhang,F.;Chen,X.S. Acta Phys.-Chim.Sin.2014,30(6),1180.[楊宇雯,馮剛,盧章輝,胡娜,張飛,陳祥樹.物理化學(xué)學(xué)報(bào),2014,30(6), 1180.]doi:10.3866/PKU.WHXB201404141
(52)Yao,Q.L.;Lu,Z.H.;Zhang,Z.J.;Chen,X.S.;Lan,Y.Q.Sci. Rep.2014,4,7597.doi:10.1038/srep07597
(53)Yang,Y.W.;Lu,Z.H.;Hu,Y.J.;Zhang,Z.J.;Shi,W.M.;Chen, X.S.;Wang,T.T.RSC Adv.2014,4,13749.doi:10.1039/ c3ra47023g
(54)Zahmak?ran,M.;Durap,F.;?zkar,S.Int.J.Hydrog.Energy 2010,35,187.doi:10.1016/j.ijhydene.2009.10.055
(55)Ozay,O.;Inger,E.;Aktas,N.;Sahiner,N.Int.J.Hydrog. Energy 2011,36,8209.doi:10.1016/j.ijhydene.2011.04.140
(56)Yao,Q.L.;Lu,Z.H.;Wang,Y.Q.;Chen,X.S.;Feng,G.J. Phys.Chem.C 2015,119,14167.doi:10.1021/acs.jpcc.5b02403 (57)Lu,Z.H.;Li,J.P.;Zhu,A.L.;Yao,Q.L.;Huang,W.;Zhou,R. Y.;Zhou,R.F.;Chen,X.S.Int.J.Hydrog.Energy 2013,38, 5330.doi:10.1016/j.ijhydene.2013.02.076
(58)Lu,Z.H.;Li,J.P.;Feng,G.;Yao,Q.L.;Zhang,F.;Zhou,R.Y.; Tao,D.J.;Chen,X.S.;Yu,Z.Q.Int.J.Hydrog.Energy 2014, 39,13389.doi:10.1016/j.ijhydene.2014.04.086
(59)Yan,J.M.;Zhang,X.B.;Han,S.;Shioyama,H.;Xu,Q.Angew. Chem.Int.Ed.2008,47,2287.doi:10.1002/anie.200704943
(60)Feng,K.;Zhong,J.;Zhao,B.H.;Zhang,H.;Xu,L.;Sun,X.H.; Lee,S.T.Angew.Chem.Int.Ed.2016,55,11950.doi:10.1002/ ange.201604021
(61)Bulut,A.;Yurderi,M.;Ertas,?.E.;Celebi,M.;Kaya,M.; Zahmakiran,M.Appl.Catal.B:Environ.2016,180,121. doi:10.1016/j.apcatb.2015.06.021
(62)Umegaki,T.;Yan,J.M.;Zhang,X.B.;Shioyama,H.; Kuriyama,N.;Xu,Q.Int.J.Hydrog.Energy 2009,34,3816. doi:10.1016/j.ijhydene.2009.03.003
(63)Kalidindi,S.B.;Indirani,M.;Jagirdar,B.R.Inorg.Chem.2008, 47,7424.doi:10.1021/ic800805r
(64)Yan,J.M.;Wang,Z.L.;Wang,H.L.;Jiang,Q.J.Mater.Chem. 2012,22,10990.doi:10.1039/c2jm31042b
(65)Li,P.Z.;Aijaz,A.;Xu,Q.Angew.Chem.Int.Ed.2012,51, 6753.doi:10.1002/anie.201202055
(66)Wen,M.C.;Cui,Y.W.;Kuwahara,Y.;Mori,K.;Yamashita,H. ACS Appl.Mater.Inter.2016,8,21278.doi:10.1021/ acsami.6b04169
(67)Yao,Q.L.;Lu,Z.H.;Huang,W.;Chen,X.S.;Zhu,J.J.Mater. Chem.A 2016,4,8579.doi:10.1039/C6TA02004F
(68)Wang,H.L.;Yan,J.M.;Li,S.J.;Zhang,X.W.;Jiang,Q.J. Mater.Chem.A 2015,3,121.doi:10.1039/c4ta05360e
(69)Patel,N.;Fernandes,R.;Miotello,A.J.Catal.2010,271,315. doi:10.1016/j.jcat.2010.02.014
(70)Fernandes,R.;Patel,N.;Miotello,A.;Jaiswal,R.;Kothari,D. C.Int.J.Hydrog.Energy 2012,37,2397.doi:10.1016/j. ijhydene.2011.10.119
(71)Yang,K.K.;Yao,Q.L.;Huang,W.;Cheng,X.S.;Lu,Z.H.Int. J.Hydrog.Energy 2017,doi:10.1016/j.ijhydene.2016.12.029
(72)Kalidindi,S.B.;Sanyal,U.;Jagirdar,B.R.Phys.Chem.Chem. Phys.2008,10,5870.doi:10.1039/B805726E
Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane
YANGKun1YAO Qi-Lu1LU Zhang-Hui1,*KANG Zhi-Bing2CHEN Xiang-Shu1,*
(1Jiangxi Inorganic Membrane Materials Engineering Research Centre,College of Chemistry and Chemical Engineering, Jiangxi Normal University,Nanchang 330022,P.R.China;2SchoolofAeronautical Manufacture Engineering, Nanchang Hangkong University,Nanchang 330036,P.R.China)
Noble-metal-free CuMo nanoparticles(NPs)without surfactant or support have been facilely prepared using NaBH4as a reducing agent.The as-prepared CuMo nanocatalysts were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),selected area electron diffraction(SAED),inductively coupled plasma-atomic emission spectroscopy(ICP-AES),X-ray photoelectron spectroscopy(XPS),and Brunauer-Emmett-Teller(BET)surface area measurements,and used as catalysts for the hydrolysis of ammonia borane(AB,NH3BH3)at room temperature.The as-synthesized Cu0.9Mo0.1NPs exhibited a high activity towards the hydrolysis ofAB with a turnover frequency(TOF)of14.9 min-1,a higher value than thatreported for Cu catalysts.Our synthesis is not limited to CuMo NPs alone,butcan easily be extended to CuW(3.6 min-1),CuCr(2 min-1),NiMo(55.6 min-1), and CoMo(21.7 min-1)NPs,providing a generalapproach to Cu-M(M=Mo,W,Cr)and TM-Mo(TM=Cu,Ni, Co)NPs as a series ofnovelcatalysts for the hydrolysis ofAB.The enhanced activity ofbimetallic NPs may be attributed to the synergistic effects ofthe Cu-M NPs induced by the strain and ligand effects.
O643
chlapbach,L.;Züttel,A.Nature 2001,414,353.
10.1038/ 35104634
doi:10.3866/PKU.WHXB201702087
Received:December15,2016;Revised:January 21,2017;Published online:February 8,2017.
*Corresponding authors.LU Zhang-Hui,Email:luzh@jxnu.edu.cn.CHEN Xiang-Shu,Email:cxs66cn@jxnu.edu.cn.
The projectwas supported by the NationalNatural Science Foundation of China(21463012),Young Scientist Foundation of Jiangxi Province,China (20133BCB23011),and“Gan-po talent555”Projectof Jiangxi Province,China.
國(guó)家自然科學(xué)基金(21463012),江西省青年科學(xué)家培養(yǎng)對(duì)象(20133BCB23011)及江西省贛鄱英才555工程資助?Editorialoffice of Acta Physico-Chimica Sinica