亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        過磷酸鈣和雙氰胺聯(lián)用減少污泥堆肥溫室氣體及NH3排放

        2017-04-24 03:48:44陳是吏李國學(xué)何勝洲張邦喜
        農(nóng)業(yè)工程學(xué)報 2017年6期
        關(guān)鍵詞:雙氰胺溫室效應(yīng)過磷酸鈣

        陳是吏,袁 京,李國學(xué),何勝洲,張邦喜

        ?

        過磷酸鈣和雙氰胺聯(lián)用減少污泥堆肥溫室氣體及NH3排放

        陳是吏1,袁 京1,李國學(xué)1※,何勝洲1,張邦喜2

        (1. 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院農(nóng)田土壤污染防控與修復(fù)北京市重點實驗室,北京 100193;2. 貴州省農(nóng)業(yè)資源與環(huán)境研究所,貴陽550006)

        為研究添加劑過磷酸鈣和硝化抑制劑雙氰胺聯(lián)用對脫水污泥高溫好氧堆肥氨氣和溫室氣體減排的影響效果,該文以脫水污泥和玉米秸稈為原材料,設(shè)置4個堆肥處理分別為:不添加任何添加劑作為對照(CK),只添加3.5%(濕基)過磷酸鈣為SP3.5,在添加0.1%雙氰胺基礎(chǔ)上分別加入3.5%(濕基)過磷酸鈣(SD3.5)和5.0%(濕基)過磷酸鈣(SD5.0)控制材料,在60 L發(fā)酵罐中進行為期34 d好氧高溫堆肥試驗,監(jiān)測堆肥過程中的溫室氣體、氨氣排放速率及堆體總有機碳和總氮損失率。結(jié)果表明:添加過磷酸鈣及硝化抑制劑雙氰胺可以促進堆肥腐熟和提高堆肥品質(zhì),同時降低堆肥過程中的總氮損失、NH3排放以及顯著減少污泥堆肥總溫室氣體排放。2種添加劑聯(lián)合使用使SD3.5和SD5.0處理氮素?fù)p失相比于CK處理減少10.92%和13.08%,總溫室氣體排放量比對照減少65.6%和74.8%。該研究可為污泥堆肥添加劑的選擇以及污染氣體的減排控制提供參考。

        污泥處理;堆肥;溫室氣體;過磷酸鈣;雙氰胺;氮素?fù)p失

        0 引 言

        隨著中國工業(yè)化和城鎮(zhèn)化進程的加快,城市污水處理伴隨著大量剩余脫水污泥的產(chǎn)生,剩余污泥中含有大量的有機物、豐富的氮磷等營養(yǎng)物、重金屬以及致病菌和病原菌等,常常伴有惡臭氣體[1]。據(jù)統(tǒng)計,截止2014年,污水處理產(chǎn)生污泥的產(chǎn)量約1×106m3/d,2007至2015年全國污水污泥產(chǎn)量每年的增長比例超過13%[2-4]。龐大的污泥產(chǎn)量不僅給污泥管理帶來沉重的負(fù)擔(dān),也帶來一系列的環(huán)境問題。污泥處理方式主要填埋,焚燒,厭氧消化,好氧堆肥等,由于污泥堆肥優(yōu)勢明顯,這項技術(shù)引起世界各國的廣泛關(guān)注,已成為環(huán)保領(lǐng)域內(nèi)的一個研究熱點[5-8]。

        污泥好氧高溫堆肥技術(shù)得到廣泛認(rèn)可,同時許多研究者指出在污泥堆肥過程中會產(chǎn)生一系列的有害氣體和溫室氣體(greenhouse gas,GHG),其中主要包括NH3、CH4和N2O等[9]。IPPC2007年的報告指出,CH4和N2O都是重要的的溫室氣體,100 a溫室效應(yīng)分別是CO2的25和298倍[10]。這不僅降低堆肥的農(nóng)用價值,而且嚴(yán)重污染大氣、危害人畜健康、加劇全球溫室效應(yīng)以及帶來酸雨危害和水體富營養(yǎng)化等問題。

        傳統(tǒng)的好氧堆肥過程中氮素?fù)p失量約為初始總氮16%~76%[11],氨揮發(fā)對氮損失的貢獻率能達到40%~80%[12],是堆肥過程中氮損失的主要形式。有研究表明,農(nóng)業(yè)活動對N2O排放的貢獻率達到84%,在堆肥過程中0.1%~9.9%初始總氮以N2O的形式損失,0.01%~0.80%的初始總碳以CH4的形式損失[13-17]。因此,堆肥工藝條件日益優(yōu)化的同時,減少堆肥中氮素?fù)p失及溫室氣體排放,已經(jīng)成為國內(nèi)外學(xué)者研究的核心。

        眾多研究者發(fā)現(xiàn)使用化學(xué)添加劑能減少堆肥過程中氮素?fù)p失和溫室氣體排放。Predotova等[18]發(fā)現(xiàn)在畜禽糞便堆肥過程中添加磷礦石能顯著地減少氮素?fù)p失,當(dāng)添加量達到物料干質(zhì)量的33%時,氮素?fù)p失能減少50%;任麗梅[19]發(fā)現(xiàn)在雞糞堆肥過程中添加過磷酸鈣等磷酸鹽能抑制NH3排放從而固持氮素,這是因為磷酸根和銨根離子形成穩(wěn)定的配合物,硫酸根離子和銨根離子形成穩(wěn)定的化合物硫酸銨。李冰等的試驗也得出了相同的結(jié)論[20-22]。

        羅一鳴等[23]發(fā)現(xiàn)在豬糞堆肥過程中使用過磷酸鈣作為氮素固定劑,在低添加量3.3%~6.6%的條件下,堆肥可以達到腐熟,同時可減排NH3、N2O和CH4。但高劑量的過磷酸鈣則會減緩堆肥有機物料降解速率,延遲堆肥腐熟,不利于整個堆肥進程。江滔[24]發(fā)現(xiàn)在豬糞堆肥過程中,使用Mg(OH)2和H3PO4作為氮素固定劑的基礎(chǔ)上,添加硝化抑制劑雙氰胺能夠更大程度地減排N2O和NH3,總溫室氣體減排率能達到65.2%。

        雙氰胺(DCD)作為一種硝化抑制劑施用于農(nóng)田減少農(nóng)田溫室氣體排放已受到廣泛研究,但在堆肥中應(yīng)用較少。李香蘭等[25]發(fā)現(xiàn)施用硝化抑制劑DCD能分別降低水稻生長期21.41%甲烷和8.00%氧化亞氮排放;紀(jì)洋等[26]發(fā)現(xiàn)小麥麥季不同時間施用DCD氧化亞氮減排率能達到21%~35%;Luo等[27]在豬糞堆肥過程中發(fā)現(xiàn)添加物料干質(zhì)量0.2%DCD能顯著減少堆肥中N2O排放量;Jiang等[28]也證實在豬糞秸稈堆肥不同時期添加DCD能降低76.1%~77.6%N2O排放。

        研究表明堆肥過程中單獨使用過磷酸鈣或者硝化抑制劑雙氰胺均可作為添加劑減少堆肥過程中溫室氣體排放和氮素?fù)p失。本文在已有研究的基礎(chǔ)上,以二者聯(lián)用為創(chuàng)新點,設(shè)置不同比例的過磷酸鈣添加水平,同時添加硝化抑制劑雙氰胺,研究過磷酸鈣不同添加量和雙氰胺聯(lián)合作為添加劑對污泥堆肥腐熟度以及溫室氣體和氨氣排放規(guī)律的影響,研究成果可為污泥堆肥添加劑的選擇以及污染氣體的減排控制提供理論依據(jù)。

        1 材料與方法

        1.1 試驗材料

        試驗所用脫水污泥取自北京市海淀區(qū)肖家河污水處理廠未經(jīng)過厭氧消化的生活污泥;玉米秸稈取自中國農(nóng)業(yè)大學(xué)上莊試驗站,經(jīng)粉碎機切割為3 cm左右的秸稈段;過磷酸鈣購于市場,有效成分以P2O5計(≥18%);雙氰胺為實驗室分析所用,分析純標(biāo)準(zhǔn)。原材料的基本性狀見表1。

        表1 初始物料物理化學(xué)性質(zhì)

        注:含水率和密度以濕基計算;TOC和TN均為干基含量。

        Note: Moisture and density were calculated based on wet basis; TOC and TN were calculated based on dry basis.

        1.2 試驗設(shè)計

        本次試驗時間為2015年3月至5月,試驗地點為中國農(nóng)業(yè)大學(xué)上莊實驗站。試驗在60 L好氧高溫堆肥密封發(fā)酵罐中進行,發(fā)酵罐結(jié)構(gòu)如圖1所示。污泥堆肥原料為85%污泥和15%玉米秸稈(占初始物料總質(zhì)量的百分比,濕基),DCD添加量參考初始總氮計算[27]。試驗共設(shè)4個堆肥處理(無重復(fù)),分別是污泥秸稈聯(lián)合堆肥作為對照(CK),并以CK配比為基本材料,只添加物料濕質(zhì)量3.5%過磷酸鈣設(shè)置處理1(SP3.5),在均添加0.1%雙氰胺(DCD)基礎(chǔ)上分別加入物料濕質(zhì)量3.5%過磷酸鈣設(shè)置處理3(SD3.5)、5.0%過磷酸鈣(SD5.0)設(shè)置處理4進行高溫堆肥試驗。各處理添加材料和配比如表2所示,初始堆料體積約為60 L,質(zhì)量35 kg,含水率為65%。試驗周期為34 d,試驗翻堆頻率為1次/周,通風(fēng)方式為連續(xù)通風(fēng),通風(fēng)量為0.2 m3/h。

        表2 堆肥各處理物料添加比例

        1.3 測定項目與方法

        1.3.1 堆肥取樣

        堆肥固體樣本分別在第0、7、14、21、28、34天堆肥物料充分翻堆混勻后至重新裝罐填料前進行采集,以確保采樣均勻。每次翻堆前后對各罐物料進行稱質(zhì)量,用以計算堆肥過程物料質(zhì)量損失變化。堆肥每周取樣1次,每次取樣大約300 g。樣品一式3份,1份鮮樣儲存在4 ℃冰箱中待測pH值、電導(dǎo)率(electric conductivity,EC)、硝態(tài)氮(NO3--N)、銨態(tài)氮(NH4+-N)、發(fā)芽率指數(shù)(germination index,GI)等指標(biāo);1份樣品用烘箱在105 ℃條件下烘干,測定含水率;另1份自然風(fēng)干,粉碎后過100目篩作為干樣測定總有機碳(total organic carbon,TOC)和總氮(total nitrogen,TN)。

        1.3.2 溫室氣體和NH3

        CH4和N2O氣體樣品使用帶三相閥門(德國)的注射器采集,每天測定1次,每次重復(fù)測定3次取平均值。CH4和N2O采用SP-3420A型氣相色譜(北京北分瑞利)測定。其中CH4測定選用火焰電離檢測器(flame ionization detector,F(xiàn)ID),填充柱,載氮氣,溫度為:檢測器280 ℃、進樣口150 ℃、柱溫120 ℃;N2O測定采用電子捕獲檢測器(electron capture detector,ECD),毛細(xì)柱、載氣為氦氣,溫度為:檢測器280 ℃、進樣口120 ℃、柱溫80 ℃;NH3測定采用吸收瓶法測定,用質(zhì)量分?jǐn)?shù)2%的硼酸吸收,標(biāo)準(zhǔn)濃度的稀硫酸滴定。

        1.3.3 O2和CO2

        O2和CO2采用泵吸式氣體檢測儀(英國 Geotech,BM2K-EOOO)直接讀數(shù)測定。

        1.3.4 溫 度

        由堆肥反應(yīng)的溫度傳感器記錄,溫度采集點為堆體中心,采集時間為每天整點通過電腦直接讀取。

        1.3.5 各理化指標(biāo)測定方法

        含水率、pH值、EC值依照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)《NY525-2012有機肥料》中的標(biāo)準(zhǔn)方法測定,具體方法為去離子水與鮮樣以液固比10:1(體積質(zhì)量比)混合,往復(fù)振蕩30 min,振蕩速率為150 r/min,靜置過濾取上清液經(jīng)MP521型pH計和電導(dǎo)儀測定;4和6是堆肥浸提液在465和665 nm波長下測定的吸光度值,是評價堆肥腐熟度的腐殖化參數(shù)之一;總有機碳(total organic carbon, TOC)和總氮(total nitrogen, TN)采用元素分析儀測定(Elementar Analysensysteme, Hanau,德國);NH4+-N和NOx--N測定方法是2 mol/L KCl溶液與鮮樣以液固比10:1混合,振蕩30 min,靜置過濾取上清液經(jīng)稀釋后上流動分析儀測定(Auto Analyzer 3,Seal,德國);發(fā)芽率指數(shù)GI的測定選用蘿卜種子,取水浸提液5 mL置于墊有濾紙的培養(yǎng)皿中,于(20±1)℃培養(yǎng)箱中培養(yǎng)48 h后測定發(fā)芽率和根長,并根據(jù)下列公式計算GI值[29]。

        堆肥過程中總碳、總氮損失比例采用質(zhì)量法計算[29]。

        (2)

        式中為堆體總碳、氮損失比例,%;0、1分別為表示堆肥初始和結(jié)束時總碳、氮質(zhì)量分?jǐn)?shù),g/kg;0、1分別為表示堆肥初始和結(jié)束時物料干質(zhì)量,kg。

        NH3和N2O排放占總氮損失的比例,甲烷排放占總碳損失的比例采用質(zhì)量法計算。

        (4)

        (5)

        式中2、3、4分別代表NH3、N2O和CH4累積排放量,g/kg;TN和TC代表總氮和總碳含量,g/kg;氣體累積排放量為每天氣體排放量的累積值。

        1.4 統(tǒng)計分析方法

        統(tǒng)計分析采用SAS8.0和SPSS 20.0軟件完成。

        2 結(jié)果與分析

        2.1 溫 度

        溫度是衡量堆肥過程中有機質(zhì)降解的一個重要的指標(biāo),本次堆肥過程中4個處理的溫度變化如圖2所示。堆肥初期,各處理中嗜溫性細(xì)菌在低溫條件下分解堆體中可溶性及極易被降解的有機物并釋放出熱量,堆肥溫度快速上升;隨著可利用C源和N源逐漸減少,微生物活動逐漸減弱,堆肥溫度降低,堆肥逐漸腐熟。

        CK處理在堆肥第6天達到高溫期(>50 ℃),SP3.5、SD3.5和SD5.0處理分別在堆肥第5天,第4天和第5天到達高溫期。4個處理高溫期分別持續(xù)4、4、4和2 d,最高溫度可達到70 ℃以上,可以殺滅堆料所含致病微生物和害蟲卵,保證堆肥衛(wèi)生[19]。整個堆肥過程中4個處理溫度變化過程無顯著性差異(>0.05),但SD5.0處理較SD3.5處理晚1 d到達高溫期,這可能是因為隨著過磷酸鈣添加量的增加,堆體初期pH值減小,嗜熱微生物活性受到抑制。這與Luo等發(fā)現(xiàn)在豬糞堆肥過程中添加過磷酸鈣,隨著過磷酸鈣添加量的上升,堆肥升溫啟動到達高溫期時間增長的結(jié)果一致[27]。

        堆肥過程中堆體溫度的上升常伴隨著氧氣濃度的下降,各處理堆肥溫度和氧氣含量呈顯著地負(fù)相關(guān)關(guān)系(=-0.815<0.001),各處理氧氣含量均呈現(xiàn)先下降后上升,再逐漸趨近于室內(nèi)環(huán)境空氣含量。

        a. 溫度

        a. Temperature

        2.2 甲烷(CH4)、氧化亞氮(N2O)和氨氣(NH3)排放

        CH4是由產(chǎn)甲烷菌利用堆料底物中一些簡單的有機物,甲酸、甲醇、甲基胺類以及CO2/ H2等,在厭氧條件下產(chǎn)生的一種溫室氣體[30]。圖3a是堆肥期間CH4每天平均排放速率的變化過程。4個處理CH4排放高峰均發(fā)生在堆肥前期,隨著堆體溫度的升高,微生物分解有機質(zhì)消耗大量的O2,同時污泥顆粒致密,氧氣不能完全滲透,局部缺氧情況無法避免。隨著堆肥過程中可利用有機碳逐漸消耗,微生物生命活動減弱,CH4排放速率也逐漸降低最后趨近于0,不同于趙晨陽等[31]和羅一鳴等[23]堆肥后腐熟期CH4排放速率降低,趨于平緩的結(jié)果。

        CK處理在堆肥第2天達到CH4排放高峰,平均排放速率為0.26 g/(kg·d)。SP3.5,SD3.5和SD5.0處理CH4排放高峰都在堆肥第4天產(chǎn)生,平均排放速率分別為0.07,0.06和0.05 g/(kg·d)。統(tǒng)計分析結(jié)果表明,CK處理CH4平均排放速率與使用添加劑的3個處理均有顯著性差異(<0.01),使用添加劑3個處理間無顯著性差異(>0.05)。

        CK處理CH4累積排放量為0.46 g/kg。SP3.5、SD3.5和SD5.0處理分別為0.14、0.1和0.08 g/kg,相比于CK處理分別減排69.6%、78.3%和82.6%。處理SD5.0較SD3.5 CH4減排率高,這可能是因為SD5.0處理添加高比例過磷酸鈣。這與羅一鳴等[23]發(fā)現(xiàn)豬糞堆肥過程中添加物料干質(zhì)量3.3%過磷酸鈣能顯著抑制CH4排放類似。這是因為過磷酸鈣中的SO42-抑制產(chǎn)甲烷菌的活動,從而導(dǎo)致整個過程中CH4排放量的降低。堆肥過程中硫酸鹽還原菌以簡單的[H]、CH3COOH和乳酸為電子供體,SO42-為電子受體,將SO42-還原為S2-,在此期間產(chǎn)甲烷菌也可以利用上述基質(zhì)完成自身的生化代謝反應(yīng),二者之間形成競爭,而且S2-的產(chǎn)生對產(chǎn)甲烷菌有毒害作用[32-34]。添加DCD處理SD5.0甲烷減排率高,這說明在添加過磷酸鈣的基礎(chǔ)上,添加DCD能夠促進甲烷減排。

        普遍認(rèn)為N2O在堆肥過程中由銨態(tài)氮的硝化和硝態(tài)氮的反硝化2種途徑產(chǎn)生。不同時期2種途徑對N2O產(chǎn)生的貢獻率不同。一些學(xué)者認(rèn)為堆肥早期N2O主要由硝化反應(yīng)產(chǎn)生,Santos等[30]認(rèn)為是甲烷氧化菌對氨氣氧化的結(jié)果;Hao等[35],Sommer[36]和Szanto[15]發(fā)現(xiàn)堆肥前期溫度低,氧氣充足,促進了N2O產(chǎn)生于堆肥表層,El Kader等[37]認(rèn)為N2O在堆肥開始前物料儲存時就已經(jīng)形成。Thompson等[38]和Fukumoto等[39]的研究表明堆肥腐熟期才是N2O的主要產(chǎn)生階段,堆肥腐熟期硝態(tài)氮含量升高反硝化作用產(chǎn)生N2O,好氧區(qū)域的硝酸鹽、亞硝酸鹽因為翻堆進入?yún)捬鯀^(qū)產(chǎn)生反硝化作用,從而產(chǎn)生N2O。

        堆肥期間N2O平均排放速率的變化過程如圖3b所示。CK處理N2O平均排放速率高峰產(chǎn)生在堆肥前7天和堆肥腐熟期的第21~28天,這與眾多學(xué)者的研究結(jié)果一致[35-36,38-39];添加雙氰胺(DCD)的2個處理在整個堆肥過程中N2O幾乎沒有排放。

        CK、SP3.5、SD3.5和SD5.0處理N2O平均排放速率分別在堆肥第26天,第5天,第1天和第1天達到最大值為0.037、0.007 2、0.002 6和0.002 5 g/(kg·d)。CK和SP3.5處理N2O平均排放速率顯著高于添加DCD的2個處理(<0.001),CK和SP3.5處理間有差異但并不顯著(>0.05),SD3.5和SD5.0處理間N2O平均排放速率無顯著性差異(=0.842)。整個堆肥過程中CK處理的N2O累積排放量最高為0.21 g/kg;SP3.5,SD3.5和SD5.0處理N2O累積排放量分別為0.10、0.025、0.015 g/kg,相比于CK處理分別減排52.4%、88.1%和92.9%。

        CK處理前7天產(chǎn)生排放高峰可能是由于堆肥物料中硝態(tài)氮作為底物反硝化作用產(chǎn)生N2O,SP3.5處理N2O排放峰值低于CK處理,這可能是因為過磷酸鈣的添加抑制了N2O的產(chǎn)生[23]。堆肥14 d后N2O的產(chǎn)生主要是由于銨態(tài)氮和硝態(tài)氮之間相互轉(zhuǎn)化,同時堆肥后期氧氣濃度較高,有利于硝化細(xì)菌的生存,促進硝化反應(yīng)的發(fā)生。添加DCD的2個處理在堆肥過程中N2O幾乎沒有排放:一是可能因為堆肥前期反硝化作用不強;二是因為DCD作為硝化抑制劑顯著抑制了堆肥腐熟期硝化反應(yīng)的發(fā)生,切斷N2O的產(chǎn)生來源。

        試驗表明,污泥堆肥過程中添加過磷酸鈣和雙氰胺能顯著減少堆肥過程中N2O的產(chǎn)生。過磷酸鈣能一定程度抑制N2O的產(chǎn)生,隨著過磷酸鈣添加量的增加,減排效果更好,這與羅一鳴等[23]研究結(jié)果類似。何勝洲[40]在豬糞堆肥過程中添加物料干重4%~24%過磷酸鈣,N2O排放累積排放量減少25.6%~37.3%,隨著過磷酸鈣添加量的增加,N2O累積排放量減少,但各處理間排放無顯著性差異。Jiang等[28]在豬糞堆肥過程中發(fā)現(xiàn)使用初始物料含氮量2.5%~10%的DCD,可降低76%~78%N2O排放量。這說明過磷酸鈣添加影響能一定程度減少N2O排放,DCD能很好的抑制N2O排放。

        堆肥期間NH3平均排放速率如圖3c。3個處理的NH3排放速率高峰均發(fā)生在堆肥高溫期,隨著高溫期有機質(zhì)的降解,NH3大量產(chǎn)生。堆肥前4天由于堆肥溫度過低3個處理均未檢測到NH3排放,16 d后NH3平均排放速率幾乎為0。CK處理NH3排放速率和累積排放量最高分別為0.74 g/(kg·d)和2.19 g/kg。SP3.5、SD3.5和SD5.0處理NH3最大平均排放速率均低于CK,NH3累積排放量分別為1.90、1.92、1.52 g/kg,相比于CK處理分別減排12.5%、12.3%和30.6%。過磷酸鈣堆肥過程中固定氮素的主要機制為堆肥過程中磷酸鈣、石膏和游離酸都能將堆體的銨轉(zhuǎn)化為比較穩(wěn)定的酸性磷酸銨或硫酸銨[19,41]。

        2.3 銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3--N)含量變化

        整個堆肥過程中銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3--N)含量變化如圖4所示。堆肥前14天隨著堆肥進入高溫期,可供微生物利用有機質(zhì)迅速降解,各處理NH4+-N含量迅速升高,一部分轉(zhuǎn)化為NO3--N,NO3--N含量隨之上升;另一部分則以NH3和N2O形式逸散。

        隨著堆肥逐漸腐熟,堆肥第14天起,CK處理NH4+-N含量先小幅下降后迅速下降最后趨于穩(wěn)定,NO3--N含量逐漸上升,堆肥結(jié)束NO3--N上升到最大值,二者相互轉(zhuǎn)化。相比于對照處理,SD3.5和SD5.0處理堆肥第14天起NH4+-N和NO3--N含量變化平緩,這是因為硝化抑制劑DCD降低了硝化細(xì)菌的活性從而抑制堆肥過程中硝化作用的發(fā)生,阻止NH4+-N向NO3--N轉(zhuǎn)化。

        2.4 物理化學(xué)和物料腐熟指標(biāo)

        整個堆肥過程中,堆肥前后物料的物理化學(xué)性質(zhì)及腐熟度指標(biāo)變化如表3所示。污泥堆肥過程中,各處理C/N比呈下降趨勢,這是因為碳素降解率大于氮素降解率的原因。發(fā)芽率指數(shù)是評價堆肥腐熟的一個重要參數(shù),一般來說堆肥最終GI>80%[42],則認(rèn)為堆肥腐熟,施用于農(nóng)田對植物無害。

        表3 堆肥物理化學(xué)和物料腐熟指標(biāo)

        注:不同小寫字母代表不同處理同一指標(biāo)具有顯著性差異,<0.05。

        Note: Different lowercase letters indicate significant difference in same index of different treatment in<0.05.

        所有處理堆肥產(chǎn)品最后GI>80%且有顯著性差異(<0.05),SD3.5處理GI值最高約為120%。4個處理的pH值指標(biāo)都能達到呈弱堿性(pH值=7~8.5),處理SD3.5和SD5.0的最終堆肥pH值顯著高于其他2個處理(<0.05)。Sellami等[43]發(fā)現(xiàn)堆肥電導(dǎo)率過高會產(chǎn)生較強的生物毒性。整個堆肥過程中,各處理EC值均≤4 mS/cm,堆肥可正常施用。堆肥結(jié)束后使用添加劑的3個處理EC值和CK處理有顯著性差異(<0.05),這是因為過磷酸鈣的主要成分為磷酸二氫鈣的水合物Ca(H2PO4)2·H2O,還含有少量游離的H3PO4和無水硫酸鈣,可溶性離子較多,增大了EC值。

        隨著堆肥的進行,4/6呈下降的趨勢。整個堆肥過程中,各處理4/6值均呈現(xiàn)降低趨勢。添加雙氰胺2個處理的4/6值低于對照和單獨添加過磷酸鈣的處理,說明這雙氰胺能有效提高堆肥的腐殖化程度。隨著過磷酸鈣添加量的升高,堆肥4/6值逐漸下降,堆肥腐殖化程度加大。

        2.5 碳氮平衡及溫室效應(yīng)分析

        堆肥過程中沒有產(chǎn)生滲濾液,各元素均以氣態(tài)形式和其他態(tài)損失。4個處理元素平衡及溫室效應(yīng)分析如表4所示。過磷酸鈣和雙氰胺聯(lián)用減少了堆肥過程的總氮損失,4個處理的總氮損失占初始總氮的24.00%~37.08%。相比于CK處理,SP3.5、SD3.5和SD5.0處理總氮損失分別減少了10.92%和13.08%。

        隨著過磷酸鈣添加量的增加,氮素?fù)p失率下降,這與羅一鳴等[23]的研究結(jié)果一致。NH3揮發(fā)總氮損失貢獻為62.00%~85.01%,這與大部分學(xué)者等的研究結(jié)果類似[19,23]。N2O對總氮損失貢獻為0.6%~2.4%,與楊帆等[44]廚余垃圾堆肥過程中N2O的排放結(jié)果相似,但是低于Jiang[45]等豬糞堆肥的研究結(jié)果,這可能是因為堆肥物料和工藝參數(shù)的不同影響N2O的排放。3個處理的總碳損失占初始總有機碳的49.64%~55.95%,各處理總碳損失均以CO2形式揮發(fā)為主,CO2揮發(fā)占到總碳損失的61.2%~71.4%。以CH4形式損失的碳素約占初始總碳質(zhì)量的0.49%~1.12%。增加過磷酸鈣的添加量對于總氮和總碳損失的影響不大。與對照相比,可減少總氮損失10.92%~13.08%,減少總有機碳損失11.2%~11.3%。

        堆肥過程中產(chǎn)生的N2O、CH4和CO2均是主要溫室氣體,但是由于堆肥過程中產(chǎn)生CO2來源于微生物的呼吸作用,許多學(xué)者認(rèn)為CO2可不計入總溫室效應(yīng)的計算[46]。試驗表明添加過磷酸鈣和雙氰胺作為添加劑可減少NH3排放48.5%~52.8%,CH4排放69.6%~82.6%,N2O排放88.1%~92.9%。堆肥各處理N2O,CH4氣體的CO2排放當(dāng)量如表4所示。CK處理堆肥過程中產(chǎn)生的總溫室效應(yīng)為170.11 kg/t,SP3.5、SD3.5和SD5.0處理分別為109.11、58.47和42.94 kg/t,相比于CK處理分別減少35.8%、65.6%和74.8%。隨著過磷酸鈣添加量的增大,總溫室效應(yīng)減小。

        各個處理排放CH4產(chǎn)生溫室效應(yīng)占總溫室效應(yīng)均大于50%。CK處理CH4排放對總溫室效應(yīng)貢獻率為55.3%,N2O貢獻率與甲烷相當(dāng)為45.7%。添加DCD的2個處理總溫室效應(yīng)均以CH4貢獻為主,處理SD3.5和SD5.0的CH4溫室效應(yīng)貢獻率為68.6%和78.2%,分別為N2O溫室效應(yīng)貢獻率2倍和3倍以上。過磷酸鈣添加量由物料干質(zhì)量3.5% 增加到5.0%時,N2O對總溫室效應(yīng)效應(yīng)貢獻率由31.4%下降到21.8%。過磷酸鈣和雙氰胺作為添加劑可減少總溫室氣體當(dāng)量111.64~127.17 kg/t。

        表4 碳氮平衡及溫室效應(yīng)分析

        注:碳、氮素平衡為碳、氮損失占初始總碳、氮的百分比;溫室氣體排放當(dāng)量值以物料的干基計算;N2O和CH4對溫室效應(yīng)的貢獻率依次分別為CO2的298和25倍。

        Note: The balance of carbon and nitrogen is the percentage of carbon and nitrogen loss in the initial total carbon and nitrogen; The equivalent value of greenhouse gas emission was calculated based on dry basis; The global warming potentials of CH4and N2O, are 25 and 298 times higher than that of CO2, respectively.

        3 結(jié)論與討論

        1)污泥堆肥過程中聯(lián)用過磷酸鈣和雙氰胺可以促進堆肥腐熟和提高最終堆肥品質(zhì),各處理最終發(fā)芽率指數(shù)分別為103.21%、97.4%、120.31%和111.0%。

        2)添加過磷酸鈣和雙氰胺可以減少堆肥過程中的總氮損失和總有機碳損失,提高堆肥產(chǎn)品中養(yǎng)分含量。增加過磷酸鈣的添加量對于總氮和總碳損失的影響不大。與對照相比,可減少總氮損失10.92%~13.08%,減少總有機碳損失11.2%~11.3%。

        3)過磷酸鈣和雙氰胺作為添加劑可減少NH3排放48.5%~52.8%,CH4排放69.6%~82.6%,N2O排放88.1%~92.9%;折算為總溫室氣體當(dāng)量減少了111.64~127.17 kg/t。

        本試驗屬于工程性試驗,原料較多且發(fā)酵罐較大,不易進行重復(fù)試驗,且在充分混勻物料的基礎(chǔ)上對每個指標(biāo)都進行了重復(fù)檢測,因此本文試驗數(shù)據(jù)大都具有科學(xué)性。

        [1] 陳紅英,王紅濤.城市污水處理廠污泥的資源化利用研究[J]. 浙江工業(yè)大學(xué)學(xué)報,2007,35(3):337-340.

        [2] 中華人民共和國住房和城鄉(xiāng)建設(shè)部. 中國城鎮(zhèn)排水與污水處理狀況公報[R]. 北京:住房和城鄉(xiāng)建設(shè)部,2012.

        [3] 許效天,楊躍偉,孟俊峰. 城市污水污泥堆肥控制因素和腐熟度評價[J]. 環(huán)境科學(xué)與管理,2008,33(10):191-194.

        [4] 章非娟. 城市污水廠污泥的堆肥處理[J]. 中國給水排水,1991(3):36-39.

        [5] Tsutsui H, Fujiwara T, Matsukawa K, et al. Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure[J]. Bioresource Technology, 2013, 141(7): 205-211.

        [6] Kummer A, Grassi F, Lodo T, et al. Composted sewage sludge in replacement of mineral fertilization on wheat production and development[J]. Engenharia Agrícola, 2016, 36(4): 706-714

        [7] Lu C, Chen T, Ding G, et al. Bacterial communities and their association with the bio-drying of sewage sludge[J]. Water Research, 2015, 90: 44-51.

        [8] Li Y, Li W, Wu C, et al. New insights into the interactions between carbon dioxide and ammonia emissions during sewage sludge composting[J]. Bioresource Technology, 2013, 136(12): 385-393.

        [9] Maulini-Duran C, Artola A, Font X, et al. Gaseous emissions in municipal wastes composting: Effect of the bulking agent[J]. Bioresource Technology, 2014, 172: 260-268.

        [10] IPCC Fourth Assessment Report: Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge University Press, 2007: 212-213.

        [11] Barrington S, Choiniere D, Trigui M, et al. Effect of carbon source on compost nitrogen and carbon losses: Bioresource Technology, 2002, 83(7): 189-194.

        [12] Luo W, Yuan J, Luo Y, et al. Effects of mixing and covering with mature compost on gaseous emissions during composting: Chemosphere, 2014, 117: 14-19.

        [13] Morand P, Peres G, Robin P, et al. Gaseous emissions from composting bark/manure mixtures[J]. Compost science & utilization, 2005, 13(1): 14-26.

        [14] Shen Y, Ren L, Li G, et al. Influence of aeration on CH4, N2O and NH3emissions during aerobic composting of a chicken manure and high C/N waste mixture[J]. Waste Management, 2011, 31(1): 33-38.

        [15] Szanto G L, Hamelers H V M, Rulkens W H, et al. NH3, N2O and CH4emissions during passively aerated composting of straw-rich pig manure[J]. Bioresource Technology, 2007, 98(14): 2659-2670.

        [16] Yamulki S. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures[J]. Agriculture, Ecosystems & Environment, 2006, 112(2): 140-145.

        [17] Awasthi M, Wang Q, Huang H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172-181.

        [18] Predotova M, Schlecht E, Buerkert A,et al. Nitrogen and carbon losses from dung storage in urban gardens of Niamey, Niger[J]. Nutrient Cycling in Agroecosystems, 2010, 87(1): 103-114.

        [19] 任麗梅. 堆肥過程中的碳氮物質(zhì)損失及控制機理研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2009.

        Ren Limei. Study on Mechanism of Carbon and Nitrogen Loss and Control During Composting[D]. Beijing: China Agricultural University, 2009. (in Chinese with English abstract)

        [20] 李冰,王昌全,江連強,等. 化學(xué)改良劑對稻草豬糞堆肥氨氣釋放規(guī)律及其腐熟進程的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2008,27(4):1653-1661.

        Li Bing, Wang Changquan, Jiang Lianqiang, et al. Effect of chemical amendments on NH3 emissions and compost maturity duriong co-composting of pig manure and straw[J]. Journal of Agro-Environment Science, 2008, 27(4): 1653-1661. (in Chinese with English abstract)

        [21] 林小鳳,李國學(xué),任麗梅,等. 氯化鐵和過磷酸鈣控制堆肥氮素?fù)p失的效果研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2008,27(4):1662-1666.

        Lin Xiaofen, Li Guoxue, Ren Limei, et al. Effect of FeCl3and Ca(H2PO4)2as amendments on reducing nitrogen loss during composting[J]. Journal of Agro-Environment Science, 2008, 27(4): 1662-1666. (in Chinese with English abstract)

        [22] 翁俊基. 過磷酸鈣在豬糞堆肥過程中的保氮效果研究[J]. 安徽農(nóng)業(yè)科學(xué),2012,40(8):4528-4529.

        Weng Junji. Nitrogen conservation of calcium superphosphate in swine manure compost[J]. Journal of Anhui Agricultural Science, 2012, 40(8): 4528-4529. (in Chinese with English abstract)

        [23] 羅一鳴,李國學(xué),F(xiàn)rank Schuchardt,等. 過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22):235-242.

        Luo Yiming,Li Guoxue,F(xiàn)rank Schuchardt, et al. Effects of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 235-242. (in Chinese with English abstract)

        [24] 江滔. 堆肥化過程中溫室氣體產(chǎn)生機理及減排技術(shù)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2011.

        Jiang Tao. The Greenhouse Gas Formation Mechanism during Composting and Mitigation Technologies Research [D]. Beijing: China Agricultural University, 2011. (in Chinese with English abstract)

        [25] 李香蘭,馬靜,徐華,等. DCD不同施用時間對水稻生長期CH4和N2O排放的影響[J]. 生態(tài)學(xué)報,2008,28(8):3675-3681.

        Li Xianglan, Ma Jing, Xu Hua, et al. Effect of different application time of DCD on methane and nitrous oxide emissions during rice growth period[J]. Acta Ecologica Sinica, 2008, 28(8): 3675-3681. (in Chinese with English abstract)

        [26] 紀(jì)洋,余佳,馬靜,等. DCD不同施用時間對小麥生長期N2O排放的影響[J]. 生態(tài)學(xué)報,2011,31(23):7151-7160.

        Ji Yang, Yu Jia, Ma Jing, et al. Effect of timing of DCD application on nitrous oxide emission during wheat growing period[J]. Acta Ecologia Sinica, 2001, 31(23): 7151-7160. (in Chinese with English abstract)

        [27] Luo Y, Li G, Luo W, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4, emissions during composting[J]. Biomedical and Environmental Sciences, 2013, 25(7): 1338-1345.

        [28] Jiang Tao, Ma Xuguang, Tang Qiong, et al. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3, and N2O emissions during composting[J]. Bioresource Technology, 2016, 217: 210-218.

        [29] Ren Limei, Schuchardt F, Shen Yujun, et al. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk[J]. Waste Management, 2010, 30(5): 885-892.

        [30] Santos A, Bustamante M A, Tortosa G, et al. Gaseous emissions and process development during composting of pig slurry: the influence of the proportion of cotton gin waste[J]. Journal of Cleaner Production, 2015, 112: 81-90.

        [31] 趙晨陽,李洪枚,魏源送,等. 翻堆頻率對豬糞條垛堆肥過程溫室氣體和氨氣排放的影響[J]. 環(huán)境科學(xué),2014,35(2):533-540.

        Zhao Chenyang, Li Hongmei, Wei Yuansong, et al. Effects of turning frequency on emission of greenhouse gas and ammonia during swine manure windrow composting[J]. Environmental Science, 2014, 35(2): 533-540. (in Chinese with English abstract)

        [32] Hao X, Larney F, Chang C, et al. The effect of phosphor-gypsum on greenhouse gas emissions during cattle manure composting[J]. Journal of Environmental Quality, 2005, 34(3): 774-781.

        [33] Abram J, Nedwell B. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen[J]. Archives of Microbiology, 1978, 117(1): 89-92.

        [34] Anderson G. Indentification and control of inhibition in the anaerobic treatment of industry wastewater[J]. Process Biochemistry, 1982, 17(4): 28-32.

        [35] Hao X Y, Chang C, Larney F, et al. Greenhouse gas emissions during cattle feedlot manure composting[J]. Journal of Environmental Quality, 2001, 30(2): 376-386.

        [36] Sommer S G, Moller H B. Emission of greenhouse gases during composting of deep litter from pig production-effect of straw content[J]. Journal of Agricultural Science, 2000, 134: 327-335.

        [37] El Kader N A, Robin P, Paillat J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology, 2007, 98(14): 2619-2628.

        [38] Thompson A G, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4during the composting of liquid swine manure[J]. Environmental Monitoring and Assessment, 2004, 91(1/2/3): 87-104.

        [39] Fukumoto Y, Osada T, Hanajima D, et al. Patterns and quantities of NH3,N2O and CH4emissions during swine manure composting without forced aeration––effect of compost pile scale[J]. Bioresource Technology, 2003, 89(2): 109-114.

        [40] 何勝洲. 基于CO2減排的堆肥過程過磷酸鈣添加比例和控制條件研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2016.

        He Shengzhou. The Investigation of Adding Proportion of Superphosphate and Control Condition during Composting based on the Reduction of CO2[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)

        [41] Hu T J, Zeng G M, Huang D L, et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process[J]. Journal of Hazardous Materials, 2007, 141: 736-744.

        [42] Tiquia S M, Tam N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge[J]. Bioresource Technology, 1998, 65(1): 43-49.

        [43] Sellami F, Hachicha S, Chtourou M, et al. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters [J]. Bioresource Technology, 2008, 99(15):6900-6907.

        [44] 楊帆,歐陽喜輝,李國學(xué),等. 膨松劑對廚余垃圾堆肥CH4, N2O和NH3排放的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):226-233.

        Yang Fan, Ouyang Xihui, Li Guoxue , et al. Effect of bulking agent on CH4, N2O and NH3emissions in kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013(18): 226-233. (in Chinese with English abstract)

        [45] Jiang Tao, Schuchardt F, Li Guoxue , et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system[J]. Chemosphere, 2013, 90(4): 1545-1551.

        [46] IPCC Core Writing Team, Pachauri, R K, Reisinger A, 2007. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change[R]. IPCC (Ed.), Climate Change 2007, Switzerland, Geneva, pp. 104.

        Combination of superphosphate and dicyandiamide decreasing greenhouse gas and NH3emissions during sludge composting

        Chen Shili1, Yuan Jing1, Li Guoxue1※, He Shengzhou1, Zhang Bangxi2

        (1.,,100193; 2.550006)

        To study the effects of superphosphate (SP) and nitrification inhibitor dicyandiamide (DCD) on NH3, N2O and CH4emissions, an experiment of straw and sludge co-composting for 34 days was carried out. This research used 60 L sealed fermenter as composting reactor, raw sludge as basic composting material, corn stalk as porous material and set four composting treatments. The control check (CK) was the co-composting of straw and sludge without any additives. Other three treatments, SP3.5 treatment was only added with 3.5% superphosphate, SD3.5 and SD5.0 treatments were added with 0.1% dicyandiamide (DCD) besides the basic materials, with 3.5% superphosphate (SP3.5) and 5% superphosphate (SP5.0) , respectively, based on the wet weight of the materials. The results indicated that, during 34 days test, the combination use of SP and DCD additives can promote the decomposition of compost and improve the stability and maturity. The highest temperature of all treatments was greater than 70℃. The temperature higher than 50 ℃of CK, SP3.5, SD3.5 and SD5.0 treatments lasted for 4, 4, 4 and 2 d respectively, which met the compost sanitation requirements. The germination indices of CK, SP3.5, SD3.5 and SD5.0 treatments were 103.21%±7.38%, 97.4%±4.50%, 120.31%±3.15% and 111.00%±2.70%, respectively. Statistical analysis data showed the germination indices of SD3.5 and SD 5.0 were significantly higher than those of other two treatments (<0.05), which were promoted by 17.1% and 7.8% compared to CK.4/6values of CK, SP3.5, SD3.5 and SD 5.0 treatments were 2.09±0.36, 2.20±0.26, 1.88±0.10 and 1.79±0.04, respectively. The4/6values of SD3.5 and SD 5.0 were decreased by10.0% and 14.4 % compared to CK. The EC value of all treatments used superphosphate and dicyandiamide were below 4 mS/cm, which could be biologically non-toxic. The total organic carbon losses of CK, SP3.5, SD3.5 and SD 5.0 treatments were 55.95%, 50.26%, 49.66% and 49.64%, respectively. The total organic carbon losses of treatments used additives were decreased by 11.2%-11.3%. Meanwhile, the total nitrogen losses of CK, SP3.5, SD3.5 and SD 5.0 treatments were 37.08%, 28.22%, 26.16% and 24.00%, respectively. The total nitrogen losses of treatments used additives were decreased by 10.92%-13.08%. The results showed that the CK had the peak value of gases emission among all treatments. NH3and CH4mainly occurred in the mesophilic and thermophilic phase of composting, process, while N2O occurred predominantly in the later period of composting. While combination use of superphosphate and dicyandiamide, the peak values of CH4, N2O and NH3emission were decreased. Besides, the cumulative emissions of CH4, N2O and NH3also were decreased by 69.6%-82.6%, 88.1%-92.9% and 48.5%-52.8%, respectively. The global warming potentials of CH4and N2O, on a 100-year time frame, were 25 and 298 times higher than that of CO2, respectively. The global warming potential value of CK, SP3.5, SD3.5 and SD5.0 were 170.11, 109.11, 58.47 and 42.94 kg/t. The combination use of superphosphate and dicyandiamide additives significantly mitigated total GHG emissions. The total greenhouse effects were decreased by 65.6%-74.8%.

        sludge disposal; composting; greenhouse gases; superphosphate; dicyandiamide; nitrogen loss

        10.11975/j.issn.1002-6819.2017.06.026

        X705

        A

        1002-6819(2017)-06-0199-08

        2016-10-08

        2017-03-07

        中小企業(yè)發(fā)展專項資金中歐國際合作項目(SQ2013ZOA000008);“十二五”國家科技支撐計劃循環(huán)農(nóng)業(yè)項目課題(2012BAD14B16)

        陳是吏,主要從事固體廢棄物處理與資源化研究。北京 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,100193。Email:467858147@qq.com

        李國學(xué),男,教授,博士生導(dǎo)師,主要從事固體廢棄物處理與資源化研究。北京中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,100193。Email:ligx@cau.edu.cn

        猜你喜歡
        雙氰胺溫室效應(yīng)過磷酸鈣
        模擬地球的氣候變化—溫室效應(yīng)小實驗
        導(dǎo)數(shù)分光光度法測定尿基復(fù)合肥料中的雙氰胺
        中國中藥雜志(2017年17期)2017-09-23 06:45:37
        糠醛改性雙氰胺的制備及性能研究
        粘接(2016年10期)2016-11-10 05:55:24
        怎樣提高農(nóng)家肥肥效
        雙氰胺在純棉針織物低溫練漂中的應(yīng)用研究
        淺議城市進化程度與溫室效應(yīng)
        河南科技(2014年18期)2014-02-27 14:15:09
        過磷酸鈣與有機肥拌施效果好
        溫室效應(yīng)、低碳經(jīng)濟與我國減排對策分析
        雙氰胺及其應(yīng)用簡介
        肉体裸交137日本大胆摄影| 国产又色又爽的视频在线观看91| 青青草好吊色在线观看| 国产后入清纯学生妹| 最近中文字幕视频高清| 成人午夜免费福利| 欧美日韩成人在线| 最新福利姬在线视频国产观看| 国产亚洲综合另类色专区| 夜夜爽妓女8888888视频| 又硬又粗又大一区二区三区视频| 精品国产午夜久久久久九九| 国产无卡视频在线观看| 久久综合狠狠综合久久综合88| 欧美国产成人精品一区二区三区| 国产在线高清无码不卡| 日韩女优图播一区二区| 青春草在线视频免费观看| 一本色道久久99一综合| 国产女主播福利一区在线观看| 三级黄色片免费久久久| 日本道精品一区二区三区| 在线观看国产一区亚洲bd| 少妇人妻av一区二区三区| 4hu四虎永久免费地址ww416| 中文字幕无码家庭乱欲| 人妻av一区二区三区高| 麻豆最新国产av原创| 黄瓜视频在线观看| 精品福利一区| av免费在线国语对白| …日韩人妻无码精品一专区| 四虎影视国产在线观看精品| 中文字幕人妻少妇精品| 国产精品情侣呻吟对白视频| 欧美巨大xxxx做受中文字幕| 国产aⅴ丝袜旗袍无码麻豆| 美女在线一区二区三区视频| 永久免费看啪啪网址入口| 成人国产在线观看高清不卡| 国产精品一区二区熟女不卡|