秦 力,丁婧楠,朱勁松
?
高摻量粉煤灰和礦渣高強(qiáng)混凝土抗?jié)B性和抗凍性試驗(yàn)
秦 力1,丁婧楠1,朱勁松2
(1. 東北電力大學(xué)建筑工程學(xué)院,吉林 132012; 2. 天津大學(xué)建筑工程學(xué)院,天津 300072)
采用粉煤灰和礦渣2種摻合料的40%和50% 2種質(zhì)量比例摻量,制備了高摻合料C50高強(qiáng)混凝土,并利用掃描電鏡和X射線衍射技術(shù)分析了高比例摻合料對(duì)高強(qiáng)混凝土強(qiáng)度的影響,最后通過(guò)抗氯離子滲透試驗(yàn)和快速凍融試驗(yàn)綜合分析了高摻合料C50高強(qiáng)混凝土的耐久性。結(jié)果表明:當(dāng)復(fù)摻摻合料總質(zhì)量占膠凝材料總質(zhì)量的50%時(shí),隨著粉煤灰與礦渣摻入量比值的減小混凝土養(yǎng)護(hù)28 d強(qiáng)度有所增加;在摻合料總質(zhì)量不變的情況下,混凝土的抗凍性和抗氯離子滲透性能均隨著粉煤灰摻入量的增加和礦渣摻入量的減小而逐漸提升,但摻合料總質(zhì)量的增加會(huì)降低抗氯離子滲透性能;采用抗凍耐久性指數(shù)與電通量的比值法可較好的綜合評(píng)價(jià)高摻合料高強(qiáng)混凝土的耐久性,耐久性較好的適宜配合比為摻合料總量50%,粉煤灰與礦渣摻量比為4:1。研究可為高摻量粉煤灰和礦渣在高強(qiáng)混凝土中的應(yīng)用提供依據(jù),同時(shí)達(dá)到提高高強(qiáng)混凝土的經(jīng)濟(jì)性和節(jié)約資源的目的。
粉煤灰;礦渣;混凝土;微觀結(jié)構(gòu);氯離子滲透;抗凍性
高強(qiáng)混凝土具有強(qiáng)度高、耐久性好、流動(dòng)性佳、抗?jié)B性高等諸多優(yōu)點(diǎn),廣泛應(yīng)用于高層建筑結(jié)構(gòu)、大跨度橋梁結(jié)構(gòu)及某些特種結(jié)構(gòu)。但由于高強(qiáng)混凝土水灰比較低,水泥用量較高,混凝土構(gòu)件澆筑時(shí)水化熱較大,導(dǎo)致高強(qiáng)混凝土內(nèi)部界面微裂縫增加、孔結(jié)構(gòu)粗化,耐久性降低。現(xiàn)有研究成果表明高強(qiáng)混凝土中摻入礦物摻合料可有效提高其耐久性,與此同時(shí)高比例摻合料會(huì)降低混凝土的早期強(qiáng)度[1-4],但其后期強(qiáng)度增長(zhǎng)較快,增長(zhǎng)率較高[5],在28 d強(qiáng)度會(huì)達(dá)到或超過(guò)設(shè)計(jì)強(qiáng)度值[6-7],且摻合料對(duì)混凝土強(qiáng)度的影響與水灰比關(guān)系較大[8-10]。普通混凝土中適量加入摻合料會(huì)提高其抗凍性和抗氯離子滲透性能[11-16],其中礦渣與引氣劑共同使用可以改善混凝土的孔結(jié)構(gòu),提高其抗凍性[11,17],而大摻量粉煤灰反而會(huì)加速氯離子的滲透[18-20]。高強(qiáng)混凝土隨著摻合料總量的增大,其抗氯離子侵蝕性能增強(qiáng)[21],抗凍融次數(shù)有所增長(zhǎng)[22-23],C50高強(qiáng)混凝土在復(fù)合摻合料摻量為45%時(shí)的抗凍融性能較摻量為25%時(shí)有較大程度的提高[24]。
綜上所述,高強(qiáng)混凝土中摻入高比例礦物摻合料可有效提高其耐久性,但現(xiàn)有研究成果大部分只針對(duì)單一種類礦物摻合料,采用不同種類礦物摻合料時(shí)也只是設(shè)定某一種復(fù)摻比例,未考慮不同種類摻合料高摻量對(duì)高強(qiáng)混凝土耐久性的影響。本文采用粉煤灰和礦渣2種摻合料的40%和50% 2種高比例摻量制備高摻合料C50高強(qiáng)混凝土,分析高比例摻合料對(duì)高強(qiáng)混凝土強(qiáng)度的影響,通過(guò)抗氯離子滲透試驗(yàn)和快速凍融試驗(yàn)綜合評(píng)價(jià)高摻合料C50高強(qiáng)混凝土的耐久性。
1.1 材 料
采用冀東P·O42.5普通硅酸鹽水泥,水泥膠砂在28 d抗折強(qiáng)度10.68 MPa,抗壓強(qiáng)度55.56 MPa,水泥化學(xué)成分及物理性能見(jiàn)表1;摻合料采用I級(jí)粉煤灰和S95礦渣檢驗(yàn)結(jié)果為粉煤灰密度2 100 kg/m3,比表面積470 m2/kg,需水量比93.8%,含水量0.1%,燒失量4.88%,SO3含量0.41%;礦渣密度為2 800 kg/m3,比表面積為417 m2/kg,含水量為0.3%,燒失量為0.9%,SO3含量2.1%,流動(dòng)度比為102%,7 d活性指數(shù)為81%,28 d活性指數(shù)為98%;細(xì)骨料采用松花江河砂,細(xì)度模數(shù)2.9,屬于中砂;粗骨料采用平均直徑為20 mm的機(jī)械破碎級(jí)配碎石;外加劑采用液態(tài)聚羧酸高性能減水劑,減水率實(shí)測(cè)值28.5%,摻量取膠凝材料總量的1%;研究表明,減水劑的使用會(huì)與引氣劑產(chǎn)生聯(lián)動(dòng)效應(yīng)[25],影響各自性能的發(fā)揮,因此本文試驗(yàn)混凝土中均未摻引氣劑。
表1 水泥化學(xué)成分及物理性能
本文設(shè)計(jì)配合比如表2所示,膠凝材料總量為560 kg/m3,A、B組摻合料總質(zhì)量分別占膠凝材料總質(zhì)量的40%和50%,C組為未摻加任何摻合料的基準(zhǔn)混凝土。制作完成的混凝土按照GB/T 50080-2002《普通混凝土拌合物性能試驗(yàn)方法標(biāo)準(zhǔn)》的要求進(jìn)行坍落度試驗(yàn),坍落度值基本都在190 mm左右,參照CECS 104-1999《高強(qiáng)混凝土結(jié)構(gòu)技術(shù)規(guī)程》中坍落度不應(yīng)小于140 mm的規(guī)定,說(shuō)明本文所配制的混凝土流動(dòng)性較好。
1.2 試驗(yàn)方法
按照表2所列配合比制作150 mm×150 mm×150 mm的混凝土立方體試塊,并在標(biāo)準(zhǔn)養(yǎng)護(hù)條件下養(yǎng)護(hù)。按照J(rèn)GJ/T 281-2012《高強(qiáng)混凝土應(yīng)用技術(shù)規(guī)程》中的要求,參照GB/T50081-2002《普通混凝土力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn)》測(cè)定養(yǎng)護(hù)7和28 d時(shí)混凝土的抗壓強(qiáng)度,篩選出養(yǎng)護(hù)28 d強(qiáng)度達(dá)到C50高強(qiáng)混凝土強(qiáng)度要求的配合比。
表2 不同混凝土試件配合比
注:A1~A5摻合料總量占膠凝材料總質(zhì)量的40%,B1~B7摻合料總量占膠凝材料總質(zhì)量的50%,C為基準(zhǔn)混凝土。下同。
Note: A1-A5 with content of admixture is 40% of total cementitious materials, B1~B7 with content of admixture is 50% of total cementitious materials. C is reference concrete. The same as below.
為了從微觀角度進(jìn)一步分析摻合料對(duì)C50高強(qiáng)混凝土性能的影響,對(duì)部分混凝土試樣進(jìn)行了微觀試驗(yàn)。取A1、B7和C組混凝土養(yǎng)護(hù)7 d抗壓強(qiáng)度試驗(yàn)時(shí)剝落的碎渣過(guò)0.16 mm的砂石篩,然后用研缽研磨至0.08 mm以下,經(jīng)干燥處理后進(jìn)行X射線衍射試驗(yàn)。在A2、A4和B2組混凝土試件中心部位取5 mm左右薄片,經(jīng)干燥處理后粘貼在導(dǎo)電膠上,利用型號(hào)為JSM6510A的掃描電鏡觀察拍照。
對(duì)C50高強(qiáng)混凝土抗氯離子滲透性的研究參照ASTMC1202標(biāo)準(zhǔn),制作直徑100 mm,高度50 mm的圓柱體試件,真空飽水后運(yùn)用電通量測(cè)定儀測(cè)定混凝土6 h的總導(dǎo)電量。
對(duì)C50高強(qiáng)混凝土抗凍性的研究按照J(rèn)GJ/T 281-2012《高強(qiáng)混凝土應(yīng)用技術(shù)規(guī)程》中的要求,參照GB/T 50082-2009《普通混凝土長(zhǎng)期性能和耐久性能試驗(yàn)方法標(biāo)準(zhǔn)》,制作100 mm×100 mm×400 mm的棱柱體試件,采用快凍法進(jìn)行抗凍性試驗(yàn),每?jī)鋈谘h(huán)50次測(cè)定質(zhì)量和動(dòng)彈性模量,并計(jì)算質(zhì)量損失率和相對(duì)動(dòng)彈性模量。
2.1 摻合料對(duì)高強(qiáng)混凝土強(qiáng)度的影響
混凝土立方體抗壓強(qiáng)度試驗(yàn)結(jié)果如表3所示,按照J(rèn)GJ 55-2011《普通混凝土配合比設(shè)計(jì)規(guī)程》中的規(guī)定,計(jì)算得C50混凝土養(yǎng)護(hù)28 d的配制強(qiáng)度為59.87 MPa,其中A5、B1和B7組混凝土的養(yǎng)護(hù)28 d強(qiáng)度值分別為55.60、56.90和55.80 MPa,未達(dá)到C50高強(qiáng)混凝土的標(biāo)準(zhǔn),而其他各組配合比均能配制出達(dá)到設(shè)計(jì)強(qiáng)度的高強(qiáng)混凝土。
由表3可以看出摻加礦物摻合料的混凝土與基準(zhǔn)混凝土C相比早期強(qiáng)度較低,養(yǎng)護(hù)28 d時(shí)摻合料混凝土強(qiáng)度增長(zhǎng)較快,增長(zhǎng)率為27%~56%。表中A1的養(yǎng)護(hù)7和28 d強(qiáng)度均大于同期B1的強(qiáng)度,A5的7 d強(qiáng)度大于同期B7的強(qiáng)度,二者養(yǎng)護(hù)28 d強(qiáng)度相差不大,由此可以看出,單摻礦物摻合料摻量的增大不利于混凝土強(qiáng)度的增長(zhǎng)。復(fù)摻摻合料總量為40%(A組)時(shí),隨著粉煤灰摻量的減小和礦渣摻量的增大,混凝土養(yǎng)護(hù)28 d抗壓強(qiáng)度降低,由A2的67.40 MPa降至A4的60.30 MPa,而復(fù)摻總量為50%(B組)時(shí),隨著復(fù)摻比F:S的減小,混凝土養(yǎng)護(hù)28 d抗壓強(qiáng)度有所增長(zhǎng),由B2的63.50 MPa增長(zhǎng)至B6的73.00 MPa。試驗(yàn)中,混凝土養(yǎng)護(hù)28 d受壓破壞形態(tài)如圖1所示,隨著試驗(yàn)機(jī)施加壓力的增加,混凝土側(cè)表面出現(xiàn)如圖1所示的垂直承壓面的裂紋,然后裂紋不斷發(fā)展,混凝土表面出現(xiàn)外鼓,有的試件(如圖1a~1c)在試驗(yàn)結(jié)束時(shí)有少量碎屑剝落,整體較為完整,而部分試件(如圖1d~1f)在砂漿和骨料的膠結(jié)面發(fā)生破壞,大塊混凝土碎塊剝落。
從水化的角度進(jìn)一步分析以上現(xiàn)象產(chǎn)生的原因,主要是由于摻合料減緩了水泥早期的水化,因此隨著單摻粉煤灰或礦渣摻量的增加,水泥的水化產(chǎn)物減少,如圖2混凝土的X射線衍射試驗(yàn)結(jié)果所示,圖2c 中Ca(OH)2衍射峰的峰值較圖2a與圖2b高,其中圖2b 中Ca(OH)2衍射峰值對(duì)應(yīng)數(shù)據(jù)最小,而粉煤灰和礦渣水化需要Ca(OH)2的參與,由此導(dǎo)致養(yǎng)護(hù)28 d強(qiáng)度未達(dá)到混凝土的設(shè)計(jì)強(qiáng)度要求。隨著時(shí)間的推移,摻合料的二次水化不斷進(jìn)行,由圖3的掃描電鏡圖像可以明顯的看到養(yǎng)護(hù)7 d時(shí)粉煤灰和礦渣表面較光滑,而在養(yǎng)護(hù)28 d時(shí)其表面附著大量凝膠,出現(xiàn)了較多水化產(chǎn)物如針棒狀鈣礬石,填充了水泥顆??障?,提高了膠結(jié)面的凝聚力,使混凝土結(jié)構(gòu)愈加致密。說(shuō)明粉煤灰與礦渣復(fù)摻產(chǎn)生了超疊加效應(yīng),使得混凝土養(yǎng)護(hù)28 d強(qiáng)度較高且增長(zhǎng)較快。
表3 混凝土抗壓強(qiáng)度試驗(yàn)結(jié)果
a. B3b. B4c. A4 d. A5e. A3f. C
圖1 混凝土養(yǎng)護(hù)28 d受壓破壞形態(tài)
Fig.1 Compression failure pattern of concrete after 28 d curing
2.2 摻合料對(duì)高強(qiáng)混凝土抗氯離子滲透性能的影響
摻與不摻礦物摻合料的C50高強(qiáng)混凝土抗氯離子滲透性能的試驗(yàn)結(jié)果如圖4所示。由圖4可看出基準(zhǔn)混凝土電通量值為633.12 C,摻合料混凝土的電通量值在231.22~525.62 C之間,說(shuō)明摻加礦物摻合料可以降低混凝土中的電通量值,提高其抗氯離子滲透性能,這是由于粉煤灰和礦渣具有微珠結(jié)構(gòu)和較光滑的表面(見(jiàn)圖3),能夠分散到各個(gè)孔隙孔道中,增大了氯離子在混凝土中擴(kuò)散的阻力,隨著水化的不斷進(jìn)行,水化產(chǎn)物不斷填充水泥石的空隙,使得結(jié)構(gòu)更加密實(shí)[26],阻止了侵蝕性介質(zhì)的進(jìn)入。
圖4中摻加礦物摻合料總量為50%的B組混凝土的電通量值整體高于摻加總量為40%的A組混凝土,可以看出摻合料總量的增加對(duì)混凝土抗氯離子滲透性能有不利影響。在摻加總量一定時(shí),A組和B組混凝土的電通量值均隨著復(fù)摻比F:S的減小而不斷增大,混凝土的抗氯離子滲透性能降低。對(duì)比A2和B3,A3和B5以及A4和B6的電通量值,結(jié)果為B3>A2,B5>A3,B6>A4,由此可以看出,粉煤灰摻量相同時(shí),礦渣摻量較高的混凝土電通量值較大,說(shuō)明礦渣對(duì)混凝土抗氯離子滲透性能的損傷較粉煤灰嚴(yán)重。
2.3 摻合料對(duì)高強(qiáng)混凝土抗凍性的影響
圖5所示為凍融循環(huán)過(guò)程中混凝土表面形態(tài)變化,圖6和圖7分別為快速凍融試驗(yàn)所得不同凍融循環(huán)次數(shù)下混凝土的質(zhì)量損失率和相對(duì)動(dòng)彈性模量的變化規(guī)律。由圖5可以看出,凍融循環(huán)50次(圖5a)后,混凝土表面出現(xiàn)了細(xì)小的孔洞,試件完整。凍融達(dá)150次(圖5c)時(shí),試件出現(xiàn)掉渣,表面脫落的現(xiàn)象。凍融200次(圖5d)時(shí)損傷加速,部分試件表面水泥砂漿剝落嚴(yán)重,骨料外露,肉眼能夠觀察到砂粒與石子。凍融循環(huán)250次(圖5e)時(shí),所有試件均出現(xiàn)不同程度的表面脫落,個(gè)別試件表面出現(xiàn)橫向裂縫,并且逐漸貫通,最終導(dǎo)致混凝土試塊在長(zhǎng)度方向上發(fā)生斷裂而破壞(圖5f)。
由圖6和圖7可以看出,凍融300次后,所有混凝土試件的質(zhì)量損失率均不超過(guò)1.2%,相對(duì)動(dòng)彈性模量均大于60%,證明C50高強(qiáng)混凝土抗凍性較好。由圖6可以知凍融循環(huán)小于150次時(shí)混凝土質(zhì)量損失率差異并不大,但凍融300次時(shí),基準(zhǔn)混凝土C的質(zhì)量損失率大于摻合料混凝土;摻合料總量不變時(shí),隨復(fù)摻比F:S的減小,混凝土質(zhì)量損失率增大,且B6組混凝土在凍融300次時(shí)發(fā)生斷裂(如圖5f所示)。對(duì)比圖7中2圖可以看出,圖7b中相對(duì)動(dòng)彈性模量下降較圖7a平緩,且圖7b中凍融300次時(shí)相對(duì)動(dòng)彈性模量數(shù)值較大,隨著F:S的減小,混凝土的相對(duì)動(dòng)彈性模量下降幅度由17%(總摻量40%)和13%(總摻量50%)增大到21%。
以上現(xiàn)象可以看出,復(fù)摻摻合料可以進(jìn)一步提高高強(qiáng)混凝土的抗凍性,但粉煤灰摻量減小且礦渣摻量增大對(duì)其抗凍性有所損傷。如圖8不同摻合料復(fù)摻時(shí)的養(yǎng)護(hù)28 d微觀形貌所示,摻合料總量增大后,雖然水泥的水化產(chǎn)物有所減少,但摻合料的二次水化產(chǎn)物增多[27],圖8b中可以看到大量致密的凝膠類物質(zhì)包裹著摻合料顆粒,界面并不十分清晰,其混凝土結(jié)構(gòu)與圖8a相比更加致密,這使得多次凍融循環(huán)后,混凝土內(nèi)部裂縫發(fā)展緩慢,動(dòng)彈性模量較高,抗凍性較好。
a. 凍融50次a. 50 cycles of freezing-thawingb. 凍融100次b. 100 cycles of freezing-thawingc. 凍融150次c. 50 cycles of freezing -thawing d. 凍融200次d. 200 cycles of freezing - thawinge. 凍融250次e. 250 cycles of freezing - thawingf.凍融300次(試件斷裂)f. 300 cycles of freezing-thawing (Specimen cracking)
通過(guò)上述試驗(yàn)數(shù)據(jù)可以看出,粉煤灰和礦渣的摻量及摻量比對(duì)抗凍性指標(biāo)和抗氯離子滲透性的影響趨勢(shì)并非一致。比如B3混凝土電通量值較低,僅為241.51 C,其抗氯離子滲透性較好,但其凍融循環(huán)300次后質(zhì)量損失率為0.88%,相對(duì)較大,且凍融循環(huán)后表面剝蝕嚴(yán)重,其他幾組試驗(yàn)抗氯離子滲透性和抗凍性指標(biāo)的排序也不一致,因此采用單一指標(biāo)綜合評(píng)價(jià)高摻合料C50高強(qiáng)混凝土耐久性存在一定的缺陷。
CCES01-2004《混凝土結(jié)構(gòu)耐久性設(shè)計(jì)與施工指南》中定義了混凝土抗凍耐久性指數(shù)為300次快速凍融循環(huán)后的動(dòng)彈性模量與初始值的比值[28],文獻(xiàn)[28-31]采用值法評(píng)判混凝土的耐久性能,取為與氯離子擴(kuò)散系數(shù)NEL的比值。值法只適用于采用NEL法測(cè)定混凝土抗氯離子滲透性能的情況,不適用于電通量法,因此本文類比值法[11,29-30],引入與電通量Q的比值這一指標(biāo)來(lái)綜合評(píng)價(jià)混凝土的抗凍性和抗氯離子滲透性能,定義為,即
,≥5%
式中為凍滲比;為抗凍耐久性系數(shù);Q為電通量,C;為試件相對(duì)動(dòng)彈性模量低于75%或質(zhì)量損失大于5%時(shí)的凍融循環(huán)次數(shù),為質(zhì)量損失率。
值越大,說(shuō)明混凝土的抗凍性和抗氯離子滲透綜合性能越好。圖9所示為不同摻量及復(fù)摻比的混凝土所對(duì)應(yīng)的值。由圖可以看出除了B6組試件外,摻加摻合料的混凝土值均大于基準(zhǔn)混凝土的值,對(duì)應(yīng)了摻合料能夠提高混凝土耐久性能的結(jié)論,而B(niǎo)6組混凝土凍融循環(huán)300次前已發(fā)生斷裂,耐久性能不及基準(zhǔn)混凝土,說(shuō)明養(yǎng)護(hù)28 d強(qiáng)度高與耐久性好沒(méi)有必然聯(lián)系。隨著粉煤灰與礦渣摻量比的增大,值減小,說(shuō)明抗凍性和抗氯離子滲透綜合性能降低。
從圖9中數(shù)據(jù)可以看出B2組值最大,說(shuō)明粉煤灰與礦渣的摻量存在一個(gè)最佳值,即總摻量為50%,粉煤灰與礦渣摻量比4:1。這10組配合比按照值大小排序?yàn)椋築2>A2>B3>A1>A3>B4>A4>B5>C>B6,這一結(jié)果與凍融試驗(yàn)結(jié)果和電通量值的排序都不同,值是從抗凍性和抗氯離子滲透性的角度出發(fā),包含摻合料的影響因素,在一定程度上可以較好地表征高摻合料高強(qiáng)混凝土與基準(zhǔn)混凝土的差異與性能,定性的評(píng)價(jià)摻合料混凝土抗凍與抗氯離子滲透綜合性能的優(yōu)劣,并且值法運(yùn)算過(guò)程簡(jiǎn)便,結(jié)果一目了然,計(jì)算公式中電通量值來(lái)源于電通量法,此方法已成為當(dāng)前國(guó)際上最有影響的混凝土抗氯離子滲透試驗(yàn)方法[31-32],也已被中國(guó)水運(yùn)工程及鐵路工程相關(guān)標(biāo)準(zhǔn)采納,說(shuō)明值法同時(shí)具備較強(qiáng)的實(shí)用性[33]。
1)粉煤灰與礦渣復(fù)摻可以促進(jìn)摻合料的二次水化,生成較多的水化產(chǎn)物,使得混凝土后期強(qiáng)度增長(zhǎng)較快,增長(zhǎng)率為27%~56%;總摻量為40%時(shí),隨著粉煤灰與礦渣摻量比F:S的減小,混凝土養(yǎng)護(hù)28 d強(qiáng)度由67.40 MPa降至60.30 MPa,總摻量為50%時(shí),隨著F:S的減小,混凝土養(yǎng)護(hù)28 d強(qiáng)度由63.50 MPa增長(zhǎng)至73.00 MPa。
2)摻合料總量的增加有利于提高C50高強(qiáng)混凝土的抗凍性而不利于提高其抗氯離子滲透性能;在摻合料總量不變的前提下,隨著粉煤灰與礦渣摻量比的減小,C50高強(qiáng)混凝土中的電通量值不斷增大,凍融后質(zhì)量損失率也顯著增長(zhǎng),且相對(duì)動(dòng)彈性模量下降幅度由17%(總摻量40%)和13%(總摻量50%)增大到21%,說(shuō)明減少粉煤灰摻量的同時(shí)提高礦渣的摻量能夠降低混凝土的抗氯離子滲透和抗凍性能。
3)采用值法可較好地綜合評(píng)價(jià)高摻合料C50高強(qiáng)混凝土的耐久性,耐久性較好的適宜配合比為摻合料總量50%,粉煤灰與礦渣摻量比為4:1。
[1] 陳益民,賀行洋,李永鑫,等. 礦物摻合料研究進(jìn)展及存在的問(wèn)題[J]. 材料導(dǎo)報(bào),2006,20(8):28-31.
Chen Yimin, He Xingyang, Li Yongxin, et al. Research progress and shortcoming of mineral admixtures[J]. Material Reserve, 2006, 20(8): 28-31. (in Chinese with English abstract)
[2] Khokhar M, Roziere E, Turcry P. Mix design of concrete with high content of mineral additions: optimisation to improve early age strength[J]. Cement & Concrete Composites, 2010, 32(5): 377-385.
[3] Shen D, Shi X, Zhu S, et al. Relationship between tensile Young’s modulus and strength of fly ash high strength concrete at early age[J]. Construction & Building Materials, 2016, 123: 317-326.
[4] 吳福飛,侍克斌,董雙快,等. 摻合料和水膠比對(duì)水泥基材料水化產(chǎn)物和力學(xué)性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):119-126.
Wu Fufei, Shi Kebin, Dong Shuangkuai, et al. Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 119-126. (in Chinese with English abstract)
[5] 張?zhí)O. 超細(xì)礦渣粉對(duì)混凝土結(jié)構(gòu)、組成與性能影響研究[D]. 沈陽(yáng):東北大學(xué),2012.
Zhang Ping. Study on Influence of Superfine-Slag Powder on Structure, Composition and Properties of Concrete[D]. Shenyang: Northeastern University, 2012. (in Chinese with English abstract)
[6] Singh B, Rahman M R, Paswan R, et al. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete[J]. Construction & Building Materials, 2016, 118: 171-179.
[7] 施惠生,許碧莞,闞黎黎. 礦渣微粉對(duì)混凝土氣體滲透性及強(qiáng)度的影響[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2008,36(6):782-786.
Shi Huisheng, Xu Biwan, Kan Lili. Effect of slag powder on gas permeability and compressive strength of high performance concrete[J]. Journal of Tongji University: Natural Science, 2008, 36(6): 782-786. (in Chinese with English abstract)
[8] Shehab H K, Eisa A S, Wahba A M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement[J]. Construction & Building Materials, 2016, 126: 560-565.
[9] Wang X Y,Park K B. Analysis of compressive strength development of concrete containing high volume fly ash[J]. Construction and Building Materials, 2015, 98: 810-819.
[10] 胡瓊,宋燦,鄒超英. 再生混凝土力學(xué)性能試驗(yàn)[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2009,41(4):33-36.
Hu Qiong, Song Can, Zou Chaoying. Experimental research on the mechanical properties of recycled concrete[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 33-36. (in Chinese with English abstract)
[11] 楊文武,錢(qián)覺(jué)時(shí),范英儒. 磨細(xì)高爐礦渣對(duì)海工混凝土抗凍性和氯離子擴(kuò)散性能的影響[J]. 硅酸鹽學(xué)報(bào),2009,37(1):29-34.
Yang Wenwu, Qian Jueshi, Fan Yingru. Effect of ground granulated blastfurrnace slag on both froat-resistance and chloride ions diffusion properties of marine concrete[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 29-34. (in Chinese with English abstract)
[12] 涂文懋,彭惠惠,徐兵波,等. 復(fù)摻礦物摻合料對(duì)C50海工混凝土性能影響[J]. 武漢理工大學(xué)學(xué)報(bào),2007,29(6):43-45.
Tu Wenmao, Peng Huihui, Xu Bingbo, et al. Influence of mineral admixtures composite technique on C50 sea construction high performance concrete[J]. Journal of Wuhan University of Technology, 2007, 29(6): 43-45. (in Chinese with English abstract)
[13] Nath P, Sarker P. Effect of fly ash on the durability properties of high strength concrete[J]. Procedia Engineering, 2011, 14(3): 1149-1156.
[14] Chung C W, Shon C S, Kim Y S. Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze–thaw cycles[J]. Construction & Building Materials, 2010, 24(9): 1739-1745.
[15] 金祖權(quán),孫偉,趙鐵軍,等. 在不同溶液中混凝土對(duì)氯離子的固化程度[J]. 硅酸鹽學(xué)報(bào),2009,37(7):1068-1072.
Jin Zuquan, Sun Wei, Zhao Tiejun, et al. Chloride binding in concrete exposed to corrosive solutions[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1068-1072. (in Chinese with English abstract)
[16] 洪雷,危行財(cái),汪明剛. 單軸壓荷載下?lián)胶狭蠈?duì)混凝土滲透性的影響[J]. 建筑材料學(xué)報(bào),2013,16(1):143-146.
Hong Lei, Wei Xingcai, Wang Minggang. Influence of mineral admixtures on permeability of concrete under sustained uniaxial compressive load[J]. Journal of Building Materials, 2013, 16(1): 143-146. (in Chinese with English abstract)
[17] 張粉芹,王海波,王起才. 摻合料和引氣劑對(duì)混凝土孔結(jié)構(gòu)與性能影響的研究[J]. 水力發(fā)電學(xué)報(bào),2010,29(1):180-185.
Zhang Fenqin, Wang Haibo, Wang Qicai. Study on effects of mineral admixture and air-entraining agent on the pore structure and performance of concrete[J]. Journal of Hydroelectric Engineering, 2010, 29(1): 180-185. (in Chinese with English abstract)
[18] 孫叢濤,宋華,牛荻濤,等. 粉煤灰混凝土的氯離子結(jié)合性能[J]. 建筑材料學(xué)報(bào),2016,19(1):35-39.
Sun Congtao, Song Hua, Niu Ditao, et al. Chloride binding capacity of fly ash concrete[J]. Journal of Building Materials, 2016, 19(1): 35-39. (in Chinese with English abstract)
[19] Uysal M, Akyuncu V. Durability performance of concrete incorporating class F and class C fly ashes[J]. Construction & Building Materials, 2012, 34(34): 170-178.
[20] 曹長(zhǎng)偉,張文獻(xiàn),王雁飛. 高摻量粉煤灰混凝土路面應(yīng)用性能的試驗(yàn)研究[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(1):50-55.
Cao Changwei, Zhang Wenxian, Wang Yan fei. Experimental study on application of high content fly ash concrete to road pavement[J]. Journal of Tongji University: Natural Science, 2007, 35(1): 50-55. (in Chinese with English abstract)
[21] 何富強(qiáng),元強(qiáng),鄭克仁,等. 摻礦物摻合料混凝土ASTM C1202測(cè)試指標(biāo)的相關(guān)性[J]. 東南大學(xué)學(xué)報(bào):自然科學(xué)版,2006(增刊2):105-109.
He Fuqiang, Yuan Qiang, Zheng Keren, et al. Correlations of test parameters of concrete with mineral admixtures according to ASTM C1202[J]. Journal of Southeast University: Natural Science Edition, 2006(Supp.2): 105-109. (in Chinese with English abstract)
[22] 劉俊龍,麻海燕,王甲春. 干燥環(huán)境條件下大摻量礦物摻合料高強(qiáng)混凝土的抗凍性[J]. 混凝土,2009,232(2):69-72.
Liu Junlong Ma Haiyan, Wang Jiachun. Freeze-thaw durability of high strength concrete with high volume mineral admixtures at dry environment[J]. Concrete, 2009, 232(2): 69-72. (in Chinese with English abstract)
[23] Yaz?c? H. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete[J]. Construction & Building Materials, 2008, 22(4): 456-462.
[24] 冷發(fā)光,田冠飛,丁威,等. 大摻量復(fù)合摻合料混凝土性能研究[J]. 低溫建筑技術(shù),2008,30(4):1-4.
Leng Faguang, Tian Guanfei, Ding Wei, et al. Study on concrete with high volume compound mineral admixture[J]. Low Temperature Architecture Technology, 2008, 30(4): 1-4. (in Chinese with English abstract)
[25] 李雪峰,付智. 高原低氣壓環(huán)境對(duì)引氣混凝土含氣量及氣泡穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):165-172.
Li Xuefeng, Fu Zhi. Effect of low atmospheric pressure of plateau environment on air content and bubble stability of air-entrained concrete[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 165-172. (in Chinese with English abstract)
[26] 秦力,李敏,丁婧楠. 高溫高濕養(yǎng)護(hù)對(duì)高強(qiáng)混凝土耐久性的影響[J]. 東北電力大學(xué)學(xué)報(bào),2016,36(1):18-22.
Qin Li, Li Min, Ding Jingnan. The effect from curing of high temperature and high humidity to durability of high strength concrete[J]. Journal of Northeast Dianli University, 2016, 36(1): 18-22. (in Chinese with English abstract)
[27] 范志宏,黎鵬平,蘇達(dá)根,等. 膠凝材料組成對(duì)鋼筋混凝土耐久性的影響[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2012,40(4):85-89. Fan Zhihong, Li Pengping, Su Dagen, et al. Influence of cementitious Material Composition on durability of reinforced concrete[J]. Journal of South China University of Technology: Natural Science Edition, 2012, 40(4): 85-89. (in Chinese with English abstract)
[28] 中國(guó)工程院土木水利與建筑學(xué)部. 混凝土結(jié)構(gòu)耐久性設(shè)計(jì)與施工指南[M]. 北京:中國(guó)建筑工業(yè)出版社,2004.
[29] 楊文武,錢(qián)覺(jué)時(shí),黃煜鑌. 海洋環(huán)境下硅灰混凝土的抗凍性與氯離子擴(kuò)散性[J]. 重慶大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(2):158-162.
Yang Wenwu, Qian Jueshi, Huang Yubin. Frost resistance and chloride ion diffusion of silica-fume concrete in a marine environment[J]. Journal of Chongqing University: Natural Science Edition, 2009, 32(2): 158-162. (in Chinese with English abstract)
[30] 楊文武,黃煜鑌,郭立杰. 海洋環(huán)境下粉煤灰混凝土的抗凍性與抗氯離子滲透性的耦合[J]. 海洋科學(xué),2009,33(12):83-88.
Yang Wenwu, Huang Yubin, Guo Lijie. Characteristics of frost resistance and resistance to chloride-ion penetration of fly ash concrete in a marine environment[J]. Marine Sciences, 2009, 33(12): 83-88. (in Chinese with English abstract)
[31] 何富強(qiáng),元強(qiáng),鄭克仁,等. 摻礦物摻合料混凝土ASTM C1202測(cè)試指標(biāo)的相關(guān)性[J]. 東南大學(xué)學(xué)報(bào):自然科學(xué)版,2006(增刊2):105-109.
He Fuqiang, Yuan Qiang, Zheng Keren, et al. Correlations of test parameters of concrete with mineral admixtures according to ASTM C1202[J]. Journal of Southeast University: Natural Science Edition, 2006(Supp.2): 105-109. (in Chinese with English abstract)
[32] 楊綠峰,周明,陳正. 海洋混凝土結(jié)構(gòu)耐久性定量分析與設(shè)計(jì)[J]. 土木工程學(xué)報(bào),2014(10):70-79.
Yang Lüfeng, Zhou Ming, Chen Zheng. Quantitative analvsis and design for durability of marine concrete structures[J]. China Civil Engineering Journal, 2014(10): 70-79. (in Chinese with English abstract)
[33] 冷發(fā)光,田冠飛. 混凝土抗氯離子滲透性試驗(yàn)方法[J]. 東南大學(xué)學(xué)報(bào):自然科學(xué)版,2006(增刊2):63-69.
Leng Faguang, Tian Guanfei. Investigation of test methods of chloride ion penetration in concrete[J]. Journal of Southeast University: Natural Science Edition, 2006(Supp.2): 63-69. (in Chinese with English abstract)
Experiment on anti-permeability and frost resistance of high strength concrete with high-ratio of fly ash and slag
Qin Li1, Ding Jingnan1, Zhu Jinsong2
(1.,,132012,; 2.,300072,)
As civil engineering develops toward high rise, large span, heavy load and lightweight structure, higher requirements in strength and performance of concrete has been put forward. Mineral admixture as the fifth component of concrete is gaining popularity in practical application and helps to improve the strength and durability of concrete. At present, researches are mainly focus on the kind of mineral admixture and its influence on concrete performance. Application of an amount of admixture is an important developing direction of high strength concrete. We prepared 2 kinds of high strength concrete containing 40% and 50% fly ash and slag respectively to identify the best quality proportion of mineral admixture in high strength concrete C50. Microstructures in different ages and phase in early age were observed with scanning electron microscopy and-ray diffraction respectively so as to evaluate the influence of high quality proportion of admixture on high strength concrete from a microscopic perspective. Durability was assessed through chloride-ion penetration resistant test and rapid freezing-thawing test. And the comprehensive capability to resist frost and chloride ion permeation was reflected by the ratio of frost-resistant durability coefficient to electric flux value. The results showed that mineral admixture reduced the early hydration of cement. Peak value of calcium hydroxide was lower in the concrete with mineral admixture than that in the reference concrete, which led to the decrease in early strength of the concrete. Due to the super-composite effect of fly ash and slag, the later strength increased more rapidly and the structure became more compact, with some samples reaching or exceeding the reference concrete strength after 28 d curing. The strength would continue to improve in the long run. With the decline of the ratio of fly ash to slag, the strength of concrete after 28 d curing with 40% admixture decreased, while that of concrete with 50% admixture increased. Capability to resist chloride ion permeation improved as the increase of fly ash and the decrease of slag in concrete with a fixed share of total mineral admixture. The fixed share of fly ash and the increase of slag led to the decrease in that capability, suggesting fly ash had a better performance than slag in this respect. But the increase of total mineral admixture would undermine the capability of concrete to resist chloride ion permeation. Mineral admixture could better improve the frost-resistant performance of high strength concrete C50. With the decrease of the ratio of fly ash to slag, there were a greater mass loss, a greater decrease of relative dynamic elastic modulus and a greater decline of frost resistance after freeze-thawing. Concrete with higher percentage of mineral admixture had a slower decrease of relative dynamic elastic modulus, with a high value even after freeze-thawing of 300 times. The mixing quality of fly ash and slag was not consistent with the effect tendency of the frost resistance index and chloride ion permeability. But we found that the higher the ratio of frost-resistant durability coefficient to electric flux value, the better the comprehensive performance of frost resistance and chloride ion permeation resistance. Ratio of frost-resistant durability coefficient to electric flux value decreased in an approximately linear way with the increase of the ratio of fly ash to slag. D-value which was the ratio of frost-resistant durability coefficient to electric flux value could effectively evaluate the durability of high strength concrete C50 with high ratio admixture, and we proposed the proper mixing proportion was 50% for admixture amount and the content ratio of fly ash to slag was 4:1.
fly ash; slags; concretes; microstructure;chloride penetration; frost resistance
10.11975/j.issn.1002-6819.2017.06.017
TU528.0
A
1002-6819(2017)-06-0133-07
2016-10-17
2016-11-15
國(guó)家自然科學(xué)基金資助(51178305,51578370);東北電力大學(xué)研究生創(chuàng)新基金資助(Y2015025)
秦 力,男,遼寧葫蘆島人,教授,從事高強(qiáng)混凝土材料耐久性、碳纖維復(fù)合芯導(dǎo)線運(yùn)行特性研究。吉林 東北電力大學(xué)建筑工程學(xué)院,132012。Email:jilinql@163.com